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Protective measurement, which was proposed as a method of observing
the wavefunction of a single system, is extended to the observation of
the density matrix of a single system. This provides a new meaning to
the density matrix as having the same ontological status as the wave-
function describing a pure state. This also enables quantum entropy
to be associated with a single system.
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1. INTRODUCTION

It 1s well known that quantum mechanics may be formulated by speci-
fying the state of a quantum system by either a statevector that belongs
to the Hilbert space or by a “density matrix” that is a Hermitian oper-
ator p acting on the Hilbert space with non negative eigenvalues whose
sum i1s 1. The density matrix has the advantage that not only does
it describe a pure state that satisfies the condition p? = p, which can
equally well be described by a state vector, but also i1t can describe a
mixed state which cannot be described by a state vector.

The traditional meaning given to the density matrix is that its
eigenvalues are the probabilities for finding the system in the corre-

sponding eigenstates. The only way we know of giving physical mean-
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ing to the probabilities of outcomes is by interpreting them as relative
frequencies of the corresponding states in an appropriate ensemble of
N identical copies of the system that are in the various possible states
and taking th@€mit of N — oo.

But there are three drawbacks to this meaning due to the fact
that the ensemble associated with p by this prescription is not unique:
(1) When two or more eigenvalues of p are equal, the basis of cigenstates
of p is not unique. Therefore, the ensemble associated with p, according
to the above prescription, is not unique. (2) If a usual measurement
is made of an observable A that does not commute with p, then the
possible outcomes, which are eigenstates of A, are in general different
from the eigenstates of p. Hence p undergoes a sudden change to a new
density matrix p’ whose eigenstates are the eigenstates of A. This is the
quantum measurement problem stated more generally than the usual
statement in which p represents a pure state. (3) The interpretation
of the probabilities as relative frequencies is not possible for a fixed
finite N because of fluctuations from the mean values. We also cannot
set N = oo because then the relative frequencies would be ratios of
infinities which are not mathematically meaningful. So, it 1s necessary
to take the limit of N — oo. We then need to associate with p a
sequence of finite ensembles with ever increasing N, with none of the
members of the sequence providing a physical meaning to p, except in
some aproximale sense. It appears to us that this scquence is merely a
conceptualization and does not provide an objective reality that could
be described by the density matrix.

In this paper we provide a new meaning to the density matrix
which does not have the above drawbacks. This investigation will be
primarily concerned with the following question: Can the density ma-
trix be associated with a single system, as opposed to an ensemble?
We shall answer this question affirmatively, in Sec. 2, by generalizing
a method for observing a pure state by means of ‘protective measure-
ments’ on a single system in that state [1,2] to the observation of the
density matrix of a single system. This suggests that the density ma-
trix may be regarded as objective and real, instead of as a catalog of
probabilities for the outcomes of possible measurements. The relevance
of this new meaning of the densily matrix to entropy will be consid-
ered in Sec. 3. The philosophical aspects of this work will be discussed
elsewhere [3].

2. PROTECTIVE MEASUREMENTS OF THE
DENSITY MATRIX

A protective observation may be performed by having the observed
system as a non degenerate eigenstate of the Hamiltonian and making
the measurement adiabatically. Then the wave function of the system
does not collapse, which makes it possible to measure several, possibly
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non commuting, observables on the system. From the measurements
of a sufficient number of such observables, the wave function may be
rcconstructed, although the measurements were all on a single system.
To describe this quantitatively, write the total Hamiltonian in the form

H=Hs+ Hs + Hy, (1)

where Hy, Hs, and Hj are, respectively, the Hamiltonians of the appa-
ratus, the system, and the interaction between the two. The simplest
choice for H; is the von Neumann form

HI — —g(t)qAa (2)

where A is the observable of the system that is measured, ¢ is the
observable of the apparatus that is used to monitor the state of the
system, and g(gt) 1s a c-number function of time ¢ that represents the
turning on and off of the interaction. From an experimental point of
view, as will become clear later, it is useful to consider the more general
interaction Hamiltonian

Hy = —g(t) 3_ Mi;qiA;, (3)
LEW

where ¢;, A; are respectively observables of the system and the appa-
ratus, M;; is a non-singular constant matrix. Suppose g¢(t) is non-zero
only in the interval (0,7") and

w=[ glt)i (4

In a protective measurement [1], go is kept small and g(tP is
varicd slowly. Then the system plus apparatus state |¥ > evolves
without entanglement, i.e.

(W (t) >= |x(t) > |a(t) >, where x and a are the states of the
system and apparatus. And |x(t) > does not change appreciably during
the measurement in (0,7"). Let p; be observables of the apparatus
that are conjugate to ¢;, i.e. [pi,q;] = —thé;;. On using Schrodinger’s
equation,

d 2

— < Vlp; —
<|p|tIJ>?i

7 < V|[H,p]|¥ >=g(t) D Mi; < UIA;]T > . (5)
J

Hence the changes in p; =< ¥|p;|¥ >=< a|p;la > are

Ap; = ZgoMz‘j < xl4lx > . (6)

ol |
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Thus, by observing Ap;, since M;; is non singular, < x|A;|x > may be
obtained. Thus < x|A;|x > are determined although only a single sys-
tem is being used. By determining < x|A;|x > for sufficient number of

observables A; on the same system, the state vector of this system |y >
may be reconstyucted up to a phase. Since the phase is undetermined,
protective me®3urements really determine, even for a system that is in
a pure state, its density matrix p = |x >< x|, and not its state vector.
Because this p was observed on a single system, it 1s not neccessary to
give it a statistical meaning.

In [1], it was assumed that the system was in an isolated non
entangled state prior to its interaction with the apparatus. Then the
interaction with the apparatus does not lead to any entanglement. But
in an actual experiment, some interaction of the system with the envi-
ronment is unavoidable. So, let us consider the system under observa-
tion and another system in an entangled state. Then without loss of
generality the state of the combined system may be written as

X >= ¢ > |ér >, (7)

T

where the {|i), >} and {|¢, >} are orthonormal sets of states of the
first and the second system, respectively.

The protective observation of a state of two systems has been
studied by one of us [2]. The basic ideas are: (1) Choose the interac-
tion so that |x >, that represents the state of the two systems, 1s a
non-degenerate eigenstate of the system Hamiltonian Hs. (2) By adi-
abatic measurements {< x|A:|x >} is determined. (3) {< x|Ai|lx >}
is sufficient to reconstruct |y > up to a phase, independently of any
knowledge of Hs.

In [2], H; was chosen so as to measure the observables of both
systems so that the entangled pure state |x > could be reconstructed.
But suppose now that the observable that is measured, represented by
the Hermitian operator A, is that of the first system only. The inter-
action that protects |x > is on while this measurement is performed.
Then the result of this protective measurement 1s

< xlAlx >= Z |c:,r|2 < P | Al >=1r pA, (8)

where p = 3, |e, |2, >< 1, is the reduced density matrix of the first
system. Thus the possible pure states in which the system can be in
which are represented by p all contribute with the appropriate weights
to the result of the protective measurement which is a single number,
such as the displacement of the pointer in an apparatus. This 1s dif-
ferent from the protective observation of a single pure state which was
studied previously [1,2]. We have now obtained a new physical meaning
to trpA as a number that can in principle be obtained in an appropriate



‘the Density Matrix _ 575

single experiment, and not a mean value of many experiments which
was the original physical meaning given to trpA.

Protective measurements of different observables A; of the first
system, give trpA; for each of these observables. By doing this for
suflicient number of observables, p may be determined by observations
on a single system, even when p 1s impure.

As a simple example, consider as the pair of systems the Spins
of two particles and as the apparatus their centers of masses. Suppose
that the particles have momenta p, and p, and equal mass m. Then

2 2

P P
Hy = — 4 ==, 9
A 2m T 2m ( )

Suppose also that each particle has spin 1/2, and
HS: ——’YBSITI—)\SI '82 ; (10)

where 8 = §,4-8; = 2(¢(V)+4(?) is the total spin, with o = (0z,04,0,),
and m is a fixed unit vector. The superscripts (1) and (2) refer to oper-
ators that, respectively, act on the Hilbert spaces of the two particles.
Physically, the first and second terms in Hg may correspond, respec-
tively, to subjecting the pair of particles to a homogeneous magnetic
field in the direction of m and a spin-spin interaction between the par-
ticles. These interactions are so chosen in order to make all the four
eigenstates of Hg non-degenerate.

Suppose that the pair of spins is in an eigenstate of Hs. We now
subject the first particle to a Stern-Gerlach magnetic field for which the
interaction Hamiltonian is

Hp = —pg(t) Z Lij:cg-l)ofl), (11)
1]

where L is a known non singular matrix. L;; is required to be Sym-
metric and traceless in order that the magnetic field B; = > ;i Lijz;
satisfly the Maxwell’s equations! divB = 0 and curlB = 0. Suppose
also that the measurement is adiabatic with respect to the time scale
h/AL, where AE > 0 is the smallest separation among the eigenval-
ues of /1s. Then the inhomogeneous magnetic field would not split the
wave packet. And the change of the mean values of the momenta P;

conjugate to x.. using (6). are
. I b

2

Ap; = gon D Lis 2 ler® <rlo b, >=gou Y Lij tr palV,  (12)

r=1

UFhe often made simplifying assumption that L;; are zero except for one diagonal
clement implies that divB # 0. 1t is for this reason that the above Li; was used in
(11), and the matrix M;; was introduced in (3).
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where p is the reduced density matrix of the spin degree of freedom of
the first particle.

Hence, by measuring Ap;, we can determine trpa,m. Since, p 1s
a 2 X 2 Hermitian matrix with trp = 1, p depends on three real param-
eters. Therefore‘by measuring Ap;,7 = 1,2,3, p may be determined
from a single ex@eriment. For instance, we may write

1

p=> a0+ 51
j=1

where a; are real. Then trpa,(l) = a;. Hence by measuring Ap;, a; and
therefore p is uniquely determined.

It is important to note that during these measurements the pro-
tective interaction given by Hg should be on. Otherwise the wave

packet would split into the eigenstates of 3, L,-jafl) like in the usual
Stern-Gerlach experiment. Then Ap; would have two possible out-
comes corresponding to these two eigenstates. We observe only one of
these two possibilities, and this outcome may only be predicted prob-
abilistically. The density matrix p then needs to be determined by
experiments on an ensemble, and p would therefore have a statistical
meaning. In contrast, in the above described protective measurement
there is only one possible deterministic outcome for Ap;. Therefore,
p may be obtained in this way by measurements on a single system,
instead of by measurements on an ensemble of systems. This gives a
new meaning to the density matrix by answering the question in the
introduction affirmatively.

3. QUANTUM ENTROPY

There are two ways of defining classical and quantum entropy. Sup-
pose we have a gas of classical molecules in a box. According to the
first definition that we shall discuss, if all the positions and velocities
of the molecules are known then the gas cannot have a non trivial en-
tropy. But suppose the box is now divided into many small cells and we
know only which cell each molecule is in. Similarly, the velocity of each
molecule is also known to some uncertainty. So, for each microstate
of the gas of molecules there is a unique “coarse-grained” macrostate.
The entropy of any macrostate is the logarithm of the number of mi-
crostates which have the given macrostate. Thus this entropy is defined
with respect to a coarse-grained observable, and will be called coarse-
grained entropy. Also, this entropy is associated with an ensemble of
microstates.

But in quantum mechanics, entropy maybe introduced without
coarse-graining. The results of all the measurements we could make on
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a system are determined by its density matrix p. If the measurements
are of the usual kind, then these results are probabilitites and therefore
need to be given physical meaning by means of a Gibbsian ensemble of
identical copies of the given system. If the measurements are protective,
as described earlier, then the results are definite values, e.g., pointer
readings of the measuring apparatus, and so do not require an ensemble
interpretation. In either case, p completely determines the results of
measurcments and therefore may be regarded as a complete description
of the system. Therefore, the quantum entropy defined in terms of p
by

S =~k tr plnp, (13)

where k 1s Boltzmann’s constant, does not require any coarse-graining.
Unlike the coarse-grained entropy, the above quantum entropy is not
defined with respect to any observable, coarse-grained or otherwise.
To summarize, quantum entropy is defined using only p, which has the
maximuimn possible information about the system.

A consequence of this difference is that even if the box of gas
considered above is isolated from the environment, the coarse-grained
entropy would remain the same or increase whereas the quantum en-
tropy (13) remains the same because p undergoes unitary evolution.
However, if we divide the gas into subensembles then the quantum en-
tropy of cach of them would in general increase as these subensembles
become more and more entangled as a result of the interaction between
the molecules. Thus quantum entropy i1s a measure of the degree of en-
tanglement of the system with the environment or the impurity of its
density matrix, whereas coarse-grained entropy has a very different
meaning, namely it is a measure of the loss of information. E.g., if the
gas of molecules were intially confined to a small part of the box, then
it is overwhelmingly likely that the gas would expand to fill the box .
This is accompanied by a corresponding increase in the coarse-grained
entropy which represents the decrease in information of the positions
of the classical molecules. But the quantum entropy of an expanding,
but isolated, gas of quantum molecules remains the same because of
the unitary evolution.

However, the usual interpretation of quantum entropy, like
coarse-grained entropy, needs an ensemble of identical systems for its
physical meaning. This is because p can be determined by the usual
measurements only statistically and therefore this is equally true for the
entropy (13). Indeed, this definition of entropy without coarse-graining
has been regarded by some as possible because of the intrinsic statistical
nature of quantum theory, whereas in classical physics coarse-graining,
or lack of complete information, is needed to introduce the statistical
element.

But the new result obtained in Sec. 2 is that p may be deter-
mined by protective measurements deterministically so that p may be
associated with a single system. It then follows that the quantum en-
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tropy (13) also may be associated with a single system. Therefore, the
entropy need not be given the usual statistical meaning, that acquires
physical meaning through an ensemble. But instead the entropy may
be regarded as a measure of the degree of entanglement of an individual
system with its environment. In general, all physical quantities com-
puted using ige density matrix will from now on have a new meaning
of being ass®iated with a single system because of the new meaning to
the density matrix we have given by associating it with a single system.
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