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A gedanken experiment is proposed for “weighing” the total mass of a closed system from within the
system. We prove that for an internal observer the time t, required to measure the total energy with
accuracy DE, is bounded according to tDE . h̄. This time-energy uncertainty principle for a closed
system follows from the measurement backreaction on the system. We generally examine what other
conserved observables are in principle measurable within a closed system and what are the corresponding
uncertainty relations.

PACS numbers: 03.65.Bz
Time and frequency are classically two conjugate
variables. Nevertheless, the interpretation of the con-
sequent quantum time-energy uncertainty relation is
not straightforward as for the case of other conjugate
variables. Aharonov and Bohm have shown that within
quantum theory there is no fundamental restriction on the
minimal time needed to measure the total energy with
given accuracy [1]. If the Hamiltonian of the system
is known, one can in principle set up a measurement
(by an apparatus external to the system) of the energy
associated to that Hamiltonian, with arbitrary accuracy, at
any time interval as short as we please. Instead, Dt in the
time-energy relation

DtDE $ h̄ (1)

can be interpreted as the uncertainty generated in the in-
ternal time t of the system due to the measurement.

The Bohr-Einstein weighing gedanken experiment [2]
illustrates this interpretation. The total mass of a closed
box (before and after the emission of the photon) is there
measured by weighing the system in an external gravita-
tional field. The energy of the box is then deduced from
the equivalence of mass and energy. Bohr has shown that
the process of weighing introduces a quantum uncertainty
in the location of the box in the external gravitational field.
The uncertainty in the gravitational potential leads in turn
to an uncertainty in the internal time t of the clock within
the box relative to the external time t [3].

The purpose of this Letter is to offer another interpre-
tation of the time-energy uncertainty relation. As long as
the energy is measured with respect to a clock external to
the system, there is no fundamental restriction on the dura-
tion of the measurement. Suppose that an observer within
a closed system measures the total energy. We will argue
the following: The internal time, t, needed to measure the
total energy of an isolated system, within a precision DE,
from within the system, satisfies tDE $ h̄. Here t is in-
terpreted as the time shown by a physical clock within the
system and E is the total energy of the system including
the internal clock.
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To illustrate this we first consider a gedanken experi-
ment for measuring the total energy of an isolated system,
by employing gravity as in the Bohr-Einstein weighing ex-
periment. Let the system be a spherical shell of radius R,
and mass M, with an internal clock dynamical variable t.
At a certain clock time, a test particle of mass m ø M is
ejected radially outwards with an initial radial velocity y0
and after traversing a distance zmax ø R is observed to fall
back to the shell surface at time t. Classically, the mass
of the shell can then be deduced from M � 2R2y0�Gt,
where G is Newton’s constant.

Let us evaluate the effect of the test particle on the
gravitational potential. For simplicity we will replace this
test particle by a spherical test shell, initially uniformly
smeared out over the radius R and then ejected upwards
while keeping its spherical shell shape. The equivalence
of energy and weight implies that the clock rate must be
affected by the test shell:

t�z� � t

µ
1 1

f�z�
c2

∂
, (2)

where f�z� is the gravitational potential at the position of
the clock inside the test shell and z denotes its dependence
upon the test shell’s height (c is the velocity of light). Note
that f�z� is a function of the height, z � rtest shell 2 R, of
the test shell. Particularly, the potential for a clock located
anywhere within the shell changes by

df�z� � f�z� 2 f�z � 0� �
Gm
R2 z (3)

when the test shell moves from z � 0 to a height z ø R.
If the radial location of the test shell has a quantum un-
certainty Dz, the above relation implies a quantum uncer-
tainty Dt in the clock time. For weak gravitational fields,
f�c2 ø 1, and

Dt

t
�

Gm
R2

Dz
c2 . (4)

The uncertainty Dz in the location of the test shell can-
not be too small, because then the uncertainty of the radial
momentum of the shell becomes large. To find an ex-
act bound on Dz suppose we measure the mass with an
© 2000 The American Physical Society
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accuracy DM. Then, the change in the impulse, dp �R
F dt � Ft, attributed to DM during the time t must

be larger than the quantum uncertainty in the momentum
of the test shell

GmDM
R2 t . Dpz . (5)

Combining the last two equations we obtain

DtDM .
1
c2 DzDpz .

h̄
c2 . (6)

Finally, using the relation DE � DMc2, and the require-
ment, t . Dt, that the measurement be accurate we arrive
to

tDE . h̄ . (7)

The time-energy uncertainty relation derived above fol-
lows from the gravitational time dilation caused to the
clock. We will now show that this conclusion follows gen-
erally, irrespective of the details of the mechanism used,
whenever the total energy including the internal clock en-
ergy, is measured with respect to the internal clock time.

Let us consider an isolated “box” described by a Hamil-
tonian Hc 1 Hbox, where Hc describes a clock and Hbox
describes the rest of the system in the box. To describe a
measurement we will couple the total energy to a measur-
ing device with coordinate z and conjugate momentum p.
For simplicity, we can take the Hamiltonian of the measur-
ing device as HMD � 0. The total Hamiltonian including
the von Neumann measurement interaction is

H � Hc 1 Hbox

1
1
2 �g�t�Hc 1 Hcg�t� 1 2g�t�Hbox�z . (8)

g�t� is the coupling function that is nonzero during the
measurement and is normalized:

R
g�t� dt � 1. Since

Hc � 2ih̄
≠

≠t an appropriate ordering was assumed to keep
the Hamiltonian Hermitian.

Suppose that the total system is in an energy eigenstate,

HC � E0C . (9)

Hence the stationary wave function C does not depend on
the external time and the dynamics seems “frozen” with
respect to an external observer. Nevertheless, since our
ideal clock Hamiltonian is taken to be conjugate to t, we
will be able to restore with respect to this internal time t

a standard Schrödinger-like equation [4].
With the substitution

C � c�t�m�z�uE , (10)

where HboxuE � EuE and m�z� is the wave function of
the pointer in the z basis. We get that

≠c

≠t
�

"
2

1
2

z�dg�dt�
1 1 zg

2 i
E
h̄

1 i
E0�h̄

1 1 zg�t�

#
c

(11)
and

c�t� �
1p

1 1 g�t�z
e2i Et

h̄ e
i E0

h̄

R
t dt0

11g�t0�z . (12)

It can now be shown that only if

g�t�z ø 1 (13)

is satisfied, the solution c�t� describes a measurement. In
this particular case

C � e2i �E2E0 �t
h̄ e2i E0z

h̄

R
g�t0� dt0

uEm�z� . (14)

Indeed the last term, exp�2izE0

R
g�t0� dt0�, shifts the

measuring device momentum p by

dp � E0

Z
g�t0� dt0 � E0 . (15)

If the duration of the measurement is t0 the magnitude of
the coupling function is g�t� � 1�t0. Since the accuracy
DE0 of the measurement is related to z by DE0 � Dp $

h̄�Dz � h̄�z, we finally obtain that Eq. (13) implies

t0DE0 ¿ h̄ . (16)

Therefore the measurement succeeds only if the duration
t of the coupling satisfies the above uncertainty relation.

In passing let us compare the gravitational weighing
experiment and the von Neumann measurement discussed
above. In both cases the measurement affects the rate of
the clock. In the latter case, during the measurement the
effective clock Hamiltonian changes Hc ! Hc�1 1 zg�.
Let us denote by t the time shown by another undisturbed
clock which corresponds in the gravitational weighing
experiment to the time shown by a clock at r ! `.
Therefore, the clock rate during the measurement changes
according to t � t�1 1 gz�, and we see that gz plays
here the role of the gravitational potential f�z��c2. The
uncertainty of the clock caused by the test shell is here
due to the uncertainty of the coordinate z conjugate to
the measuring device “pointer” p. In both cases the
uncertainty relation is due to the measurement back-
reaction on the clock. However, a distinctive feature in
the von Neumann measurement is that for a too small
duration, t , h̄�DE, the interaction does not yield the
proper correlations with the measuring device, i.e., the
von Neumann measurement procedure fails [5].

Finally, a more general perspective is provided by
considering the general question of the observability of
conserved quantities from within a closed system. The
weighing measurements discussed here and the conse-
quent time-energy uncertainty relation are one special
important case. However, what is the general class of
conserved observables, and what are the respective uncer-
tainty relations? We suggest that every scalar quantity
within a closed system is in principle measurable and
generally gives rise to analogous uncertainty relations.

Consider first a closed nonrelativistic system. The sym-
metry generators of Galilean boosts and rotations are G
and L and of space and time translations are P and H.
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All four generators are constants of the motion; however,
they are not all measurable within a closed system. As is
well known, observables such as position, velocity, angu-
lar momentum, etc., both in classical mechanics as well as
in quantum mechanics, are relative observables. Indeed,
we never measure the absolute position of a particle, but
the distance in between the particle and some other ob-
ject. Similarly, we never measure the angular momentum
of a particle along an absolute axis, but along a direction
defined by some other physical objects. Therefore the an-
gular momentum of a closed system can be measured only
with respect to a point within the system, say the location
of the center of mass, and along a direction defined by con-
stituents of the system. With respect to the center of mass
of a closed system

L � Lcm 1 Li , (17)

H � Hcm 1 Hi , (18)

P � Pcm 1 Pi . (19)

Since Li (along a certain direction) and Hi are scalars
and since they are defined exclusively in terms of internal
variables they are internally measurable. By definition Pi

must identically vanish.
Let us consider in more detail the analogous uncertainty

relation in a nonrelativistic measurement of Li . For sim-
plicity let our system be a rotating rigid disk of mass M.
The axis of rotation can be located as the axis on which
the centrifugal forces vanish. Since distances are measured
relative to this axis, the moment of inertia, �I �

P
mir

2
i �,

can also be measured. Therefore, by measuring the an-
gular velocity v one can deduce what is the angular mo-
mentum from Li � Iv. To this end we will consider a
measurement of the centrifugal force on a test particle of
mass m ø M. We let m slide along a radial track with
u � const, with respect to the disk, and measure the accel-
eration a � v2r . Classically this enables us to determine
the angular momentum.

For a quantum test particle, we note however that a
quantum uncertainty in its radial position r introduces an
uncertainty in the contribution of the test particle to the to-
tal moment of inertia DI � 2mrDr . This in turn causes,
via the conservation of angular momentum, an uncertainty
Dv � �v�I�DI in the angular momentum. Hence af-
ter time T the relative angle of the disk becomes uncer-
tain with respect to an external frame of reference by the
amount

Du � TDv . (20)

On the other hand, we cannot have very small Dr be-
cause then the uncertainty in the radial momentum Dp be-
comes large. Indeed, we must also require that the change
in the impulse,

R
F dt � mv2rT , when v is measured

with precision Dv, must be larger than the uncertainty in
the radial momentum of the particle

2mvrTDv . Dp . (21)
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Combining the last two equations and using
DL � IDv � vDI , we finally obtain

DuDL . h̄ . (22)

Hence a measurement of L with accuracy DL causes a
minimal uncertainty Du . h̄�DL in the relative angle of
the disk and an external frame. That is in complete analogy
with our previous discussion; there, weighing the system
has caused an uncertainty in the internal time.

In a relativistic theory the ten generators of boosts,
rotations, and space-time translations, form the Poincaré
group. The observables in a closed system must be scalars
with respect to the Poincaré group. It is well known that
the group has two Casimir invariants C1 � PmPm � m2,
where Pm is the energy-momentum four-vector, and C2 �
WmWm � 2m2s�s 1 1�, where Wm is the Pauli-Luban-
ski pseudovector. The mass and spin are two scalars.
Hence in a relativistic system, the nonrelativistic internal
energy Hi becomes the rest mass m �

p
E2 2 p2, and

the internal angular momentum corresponds to the spin s.
Similarly in our weighing experiment the total energy is
measured with respect to the rest mass of the shell system;
hence, what we have measured is the rest mass of a closed
system.

In conclusion we have shown that the energy of a closed
system can be measured from within the system. However,
while quantum theory poses no limitation on the duration
of the measurement of energy in an open system, from
within a closed system the duration of the measurement
satisfies a time-energy uncertainty. Similar uncertainty
relations can be found for other conserved observables.
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