The Mean King’s Problem: Spin 1
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1. Introduction

About a dozen years ago, one of us (YA) co-
authored a paper [1] with the somewhat provocative
title “How to ascertain the values of o, 0y, and o, of
a spin-% particle”. It reports the solution of what has
later become known as The King’s Problem:

the king will tell her which spin component
had been measured by his men. To save her
neck, the physicist must then state correctly
the measurement result that the king’s men had
obtained.

Much to the king’s frustration, the physicist
rises to the challenge — and not just by sheer

A ship-wrecked physicist gets stranded on
a far-away island that is ruled by a mean king
who loves cats and hates physicists since the
day when he first heard what happened to
Schrédinger’s cat. A similar fate is awaiting
the stranded physicist. Yet, mean as he is, the
king enjoys defeating physicists on their own
turf, and therefore he maliciously offers an ap-
parently virtual chance of rescue.

He takes the physicist to the royal labora-
tory, a splendid place where experiments of any
kind can be performed perfectly. There the king
invites the physicist to prepare a certain silver
atom in any state she likes. The king’s men
will then measure one of the three cartesian
spin components of this atom — they’ll either
measure o, 0, Or 0, without, however, telling
the physicist which one of these measurements
is actually done. Then it is again the physicist’s
turn, and she can perform any experiment of
her choosing. Only after she’s finished with it,

luck: She gets the right answer any time the
whole procedure is repeated. How does she
do it?

Readers who don’t know the answer should try to
figure it out themselves rather than consult the said
reference. There is a lesson here about the wonderful
things entanglement can do for you.

It is worth mentioning that this thought experiment
of 1987 has not been realized as yet. Very recently,
however, a quantum-optical analog has been formu-
lated [2], and it is hoped that experimental data will
be at hand shortly.

The present paper deals with a generalization of
the king’s problem. Instead of the traditional spin—%
atom, we consider the situation of a spin-1 atom. The
two main questions are then: What are the appropriate
spin-1 analogs of the spin-—é— observables o, 0y, 7,7
And, how does the physicist save her neck now?

The first question is answered in Sect. 2 in terms
of a complete set of mutually complementary observ-
ables. The answer to the second question is given in
Sect. 3; it employs essentially the same strategy that
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works in the spin—% case, so that we have a genuine
generalization indeed. Further generalizations to even
higher spins will be discussed in [3].

2. Mutually Complementary Observables

The three spin-3 observables o, ,, 0. are com-
plete in the sense that the probabilities for finding their
eigenvalues as the results of measurements specify
uniquely the statistical operator that characterizes the
spin—% degree of freedom of the ensemble under con-
sideration. They are not overcomplete because this
unique specification is not ensured if one of the spin
components is left out.

In addition to being complete, the observables o,
oy, 0 are also pairwise complementary, which is to
say that in a state where one of them has a definite
value, all measurement results for the other ones are
equally probable. For example, if o, = 1 specifies the
ensemble, say, then the results of &, measurements are
utterly unpredictable: +1 and —1 are found with equal
frequency; and the same applies to o, measurements.

What is essential here are not the eigenvalues of
0., 04, 05, but their sets of eigenstates. It is familiar
that they are related to each other by

P

lo, = +1)=272(Jo, = +1) £ |0, = 1)),
(1

lo, = +1) =273 (Jo, = +1) £ i|o. = = 1)),

if the usual phase conventions are adopted. The fact
that the transition probabilities

1
(o = %10, = £1)[* = >

1

(o, = £lo. = £1)|" = 7, )
2 1
(o2 = £1]ow =+1)|" = 2,

do not depend on the quantum numbers %1, is the
statement of the pairwise complementary nature of
0., 0y, and o,. Their algebraic completeness is then
an immediate consequence of the insight that a spin-%
degree of freedom can have at most three mutually
complementary observables [4].

Analogously, there can be no more than four such
observables for a spin-1 degree of freedom. Let’s call

them Ag, A, Az, and As, and to be specific, we take
their eigenvalues to be 0, 1, and 2. We denote by |m;,)
the eigenstate of A4,, to eigenvalue £, and we express
the eigenstates of A|, A», A3 in terms of those of Aj.
With

T = ciz'””, ‘p (3)

the basic cubic root of unity, it is a matter of inspection
to verify that the choice

x ]
(1o}, 111),112)) = (100}, 101}, |02))%(1 x l), (4)

l 1z
1 zt 1}
20),121),122)) = (00),101),(02) ) — x? ,
(o) ) 21) = (100 100 f0a) 5 1#° 1
111
(3, 32, 1323) = (00, 00, 102)) 75 | 1 = +2) .

1s indeed such that
5kk' if m= m’,

2
= : 5
{ -{- if m#m, ®)

| {m |mfv)

so that each set consists of 3 orthonormal states, as it
should, and any two different sets are complementary.
Repeated measurements of the observables A,,, (on
identically prepared spin-1 systems) eventually de-
termine the probabilities pifm) for finding their eigen-
states |my ). As aconsequence of their mutual comple-
mentarity, knowledge of the probabilities for one A,,
contains no information whatsoever about the proba-
bilities for any other one. These 12 probabilities repre-
sent 8 parameters in total, since pg”) + p(lm) + pg’“) =
for each of the four A,,s. The statistical operator that
characterizes the ensemble of identically prepared

spin-1 systems,

3 2
= (B - )l ©)

m=0 k=0

is therefore uniquely determined by the probabilities
P = (my|p|my). Indeed, the A,,s constitute a com-
plete set of mutually complementary observables for

the spin-1 degree of freedom.
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3. Spin-1 Version of the Mean King’s Problem

Accordingly, in the spin-1 version of The King's
Problem cither one of Agy, 41, A>, or A, is measured
by the mean king’s men, on a spin-1 atom suitably
prepared by the physicist. Without knowing which
measurement was done actually, the physicist per-
forms a subsequent measurement of her own, and
— after then being told which A,, was measured by
the king’s men — she has to state correctly what they
found: Oor I or 2.

The physicist solves the problem by first preparing
a state |¥,) in which the given spin-1 atom is entan-
gled with another, auxiliary, spin-1 atom. Two-atom
states in which the given atom is in state |m,) and
the auxiliary atom in |m)},} are denoted by |m,m},).
Then

o) =377 (]0000) +10,01) +[0,02))

=373 (J120) + [1121) +1122,))

374 ([2010) + 2011) + 2212)

o

3_-(|303())+|3132)+|323|)) (7)

are alternative ways of writing the state she prepares.
Their equivalence is easily verified with the aid of the

transformation laws (4).
If the king’s men then measure A,, on the given

atom and find the value £, the resulting two-atom
state is the respective |m, m;,) component of |%).
After their measurement, there are thus all together
4 trios of possible two-atom states. We write them
compactly as

(10000), 10101), 10202)) = (|%0), |1}, [#2))U,
(1020}, [1121), [1222)) = (|%0), [#3), |¥a)) U,
(12010), 12011),2212)) = (%), [¥s), 1¥6) ) U,

(13030), 13132), 13231)) = (%), [¥2), %)) U, (8)

where the 3-rows on the right are multiplied by the
unitary 3 x 3 matrix

o

U=—|1z2%], (9

which we met in (4) as well. Since the members of
each trio are orthogonal to each other, the 8 two-atom
states |¥), ..., |¥s) introduced here are orthogonal
to |¥) by construction, It is equally immediate that
the paired states |¥,nq1), [P2m+2) are orthogonal to
cach other for m = 0, 1,2, 3. That, more generzﬂly,
the orthonormality relation (g

(!pj|l.pk)=(5jk fOI’j,k'—‘O,...,8 (10)
holds also for states from different trios can be
checked explicitly (or one recognizes a special case
of a more general statement [3]).

The physicist will be able to state correctly the
measurement result found by the king’s men if she can
find a two-atom observable P with a set of eigenstates
| Po), ..., | Ps) such that each | P;) is orthogonal to two
members each of the four trios on the left of (8). It is
convenient to specify such states by indicating which
members they are not orthogonal to, so that

Hkok hoka]) (I

has the defining property of being orthogonal to the
two-atom states that result when measurements of A4,
do not give the eigenvalue k,,,.

In order to see how this enables her to infer the
measured value, suppose the physicist finds the two-
atom system in state |[[1012]). She then knows that
if the king’s men had measured Ay, Ay, A3, or Az,
the respective results must have been I, O, 1, and
2, because she would never find |[1012]) for other
measurement results,

Accordingly, all that is needed to complete the so-
lution of the spin-1 version of the mean king’s prob-
lem 1s the demonstration that we can have a complete
orthonormal set of two-atom states of the kind (11).
First note that the expansion of |[kok kzk3]) in the
;) basis is given by

|
[[kok1kak3]) = §|!I’0) (12)

3
1 Z : :
+ _3" (|w2rn+l):1:“k‘”l +|W2m+2>m_k"’.) .

m=0

Then observe that

3
] < ]
([kok ko k]| Lk k1 kaka]) = 3 Z O, &, — 3 (13)
m=0
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so that two such states are orthogonal if k,, = k],
for one and only one m value. Therefore, a possible
choice of basis states for the physicist’s final mea-
surement is

| Po) = [100001), |Pr) = [[0111]), |Py) = ][0222]),

| P3) = [[1012]), |Py) = [[1120]), |P5) = |[1201]),

|P6) = [[2021]), [P) = |(2102]), |P&) =|[2210]).
(14)

After being told which measurement the king’s men
performed on the given atom, she can then infer their
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measurement result correctly, and with certainty, in
the manner described above for | P3) = [[1012]).
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