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Abstract
The answer to the question ‘when does the AB effect occur?’ is elusive,
for in every gauge the relative phase between the two wave packets
evolves differently. Considering gauge-invariant modulo momentum, i.e., the
displacement operator e

i
h̄
( �p− e

c
�A)· �L or its Hermitian counterpart cos 1

h̄

( �p− e
c

�A)· �L,
it is found that when the external particle’s two wave packets become co-linear
with the solenoid, an abrupt nonlocal exchange of the conserved quantity
occurs. Using the Heisenberg picture, we show that this exchange is responsible
for the shift of the interference pattern of the AB effect. We also describe a
gedanken experiment that shows that our prediction can, in principle, be tested
experimentally. Finally, this exchange gives new insight into the famous two-
slit quantum interference experiment.

PACS number: 03.65.−w

1. Introduction

Below we describe a nonlocal dynamical exchange of a gauge-invariant quantity that is
responsible for the shift of the interference pattern of the AB effect.

The AB set-up [1] consists of a very long solenoid enclosing a flux �, surrounded by an
impenetrable barrier, and a charged external particle confined to the field-free region beyond
the barrier. Classically as well as quantum mechanically, no local measurement performed
on the external particle will disclose the presence of the solenoid, since the fields are the
only gauge-invariant locally observable quantities. But with a quantum particle, prepared in
a superposition of two wave packets moving on the two sides of the solenoid, a shift of the
interference pattern which is proportional to the flux is observed, thus revealing the presence
of the solenoid. We regard this shift of the interference pattern as a nonlocal phenomenon,
since the external particle is confined to the non-simply connected region which does not
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contain the solenoid. Classically, such an experiment is of course impossible, since a classical
particle cannot move on both sides of the solenoid at once.

There is no way to describe quantum interference in the Heisenberg picture, the reason
being that in this picture the state of the system is fixed to be the initial state. Thus there
is no way to account for changes of the relative phase of a superposition. This gap is filled
by modulo momentum [2, 3], represented here by the displacement operator e

i
h̄

�p· �L or its

Hermitian counterpart cos �p· �L
h̄

. Modulo momentum is the dynamical variable which describes
quantum interference in the Heisenberg picture. As such, it is a key to the understanding
of the quantum two-slit interference experiment, as well as to the solution of the problem of
which-way measurements. It is a conserved quantity and changes under a nonlocal equation
of motion.

The AB effect is a semi-classical electromagnetic phenomenon (since only the external
particle, but not the field, is quantized) as well as an inherent feature of all gauge theories.
Therefore we focus on the gauge-invariant modulo momentum e

i
h̄
�v· �L = e

i
h̄
( �p− e

c
�A)· �L. We find

that an abrupt, nonlocal change of the gauge-invariant modulo momentum of the external
particle occurs when the line connecting the two wave packets crosses the solenoid [3].
Equivalently, one can say that the velocity distribution of the external particle changes abruptly
as it passes by the solenoid. Moreover, we find that this change of the velocity distribution
is the only gauge-invariant change occurring throughout the entire evolution of the external
particle. Thus it is the only candidate to explain the shift of the interference pattern.

Using the Heisenberg picture we show that the change of the velocity distribution manifests
itself later on as the shift of the interference pattern of the external particle. In other words,
the shift of the interference pattern in the AB effect can always be traced back to a change
of the velocity distribution occurring when the charged particle passes by the solenoid or to a
nonlocal exchange of the gauge-invariant modulo momentum.

Finally, we describe a gedanken experiment that shows that our prediction can, in principle,
be tested experimentally.

2. Modulo momentum

Let us consider a particle in a superposition of two non-overlapping wave packets of width
�x each, with a relative phase α and separated by a distance L:

�α = ψ1 + eiαψ2 = ψ(x) + eiαψ(x − L). (1)

In search of a dynamical variable describing quantum interference, we first note that the
average position and momentum 〈x〉, 〈p〉 do not depend on the relative phase α. Thus also
the averages of all polynomials in x and in p do not depend on α.3 But the average of the
displacement operator does depend on the relative phase4:

〈�α| e
i
h̄
pL|�α〉 = eiα

2
, (2)

3 Evaluating 〈�α |axn + bxn|�α〉 note that only the cross terms of the form 〈ψ1|axn + bxn| eiαψ2〉 depend on α.
Since ψ1 and ψ2 by hypothesis do not overlap in space, and the action of any finite polynomial in x and in p on them
does not change that fact, these terms will vanish.
4 Note also that �α is a non-analytic function of x, and therefore

〈
e

i
h̄
pL

〉
=

〈∑
n

(
ipL
h̄

)n

n!

〉
�=

∑
n

〈(
ipL
h̄

)n〉
n!

.
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Figure 1. Modulo momentum.

since e
i
h̄
pLψ(x) = ψ(x + L) or e

i
h̄
pLψ2 = ψ1. Similarly for the Hermitian counterpart of the

modulo momentum 〈�α| cos pL

h̄
|�α〉 = cos α

2 . Thus this is the dynamical variable that describes

quantum interference. Note that for L′ − L � �x, e
i
h̄
pL′ = e

i
h̄
p(mod h

L′ )L′ ≡ e
i
h̄
p(mod p′

0)L
′

is
completely uncertain. By definition, p(mod p′

0) is completely uncertain if the probability
Pr [p(mod p′

0)] = constant for all 0 � p(mod p′
0) � p′

0. p(mod p′
0) is similar to an angle

θ̄
def= θ(mod 2π). Complete uncertainty of θ̄ then means that all directions are equally

probable. A necessary and sufficient condition for a constant probability Pr [p(mod p′
0)] is

that 〈e i
h̄
npL′ 〉 = 0 for n �= 0.5 Note that the eigenstates of the displacement operator e

i
h̄
pL are

also the eigenstates of the modulo momentum p mod p0 (see figure 1) defined by

p(mod p0) = p − Np0, (3)

and so that its eigenvalues satisfy

0 � p(mod p0) � p0. (4)

N is an operator having integer eigenvalues and

p0 = h

L
. (5)

Modulo momentum has two important attributes. First, it has a nonlocal equation of
motion. With the Hamiltonian given by H = p2

2m
+ V (x) we have,

d

dt
eipL = i[V (x), eipL] = i[V (x) − V (x + L)] eipL (6)

using eipLV (x) e−ipL = V (x + L). The change of modulo momentum is proportional
to a nonlocal potential difference. A periodic step potential, with step width of L i.e.
V (x + L) = V (x) + V0, (see figure 2), induces a change of the momentum modulo h

L
or

the relative phase,

eipL(t) = ei(pL−V0t). (7)

Modulo momentum is also a conserved quantity. Consider a collision between two
particles. π1 and π2 are their respective modulo momenta:

π1 = cos p1L

π2 = cos p2L.
(8)

5 Switching to θ we have 〈einθ 〉 = ∫ 2π

0 Pr(θ) einθ dθ , where Pr(θ) is periodic in −∞ � θ � ∞. Pr(θ) can therefore
be expanded in a Fourier series Pr(θ) = ∑∞

n=−∞ an einθ . The above condition then means that for a constant Pr(θ),
all the Fourier coefficients an = 1

2π
〈e−inθ 〉 except a0 vanish, with Pr(θ) = a0 = 1

2π
.

3
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Figure 2. The periodic step potential with step width L induces a change of the momentum modulo
h
L

of the particle.

Figure 3. Conservation law for modulo momentum.

In the collision, modulo momentum is exchanged on an ellipse, and the system shifts from
point a to point b6 (see figure 3):

π2
1 + π2

2 − 2Cπ1π2 = 1 − C2, (9)

where

C = cos(p1 + p2)L. (10)

Finally, note that modulo momentum is the only way to describe interference in the
Heisenberg picture. The reason for this is that in this picture the state of the system is the
initial state. So there is no way to account for changes of the relative phase, unless one uses
modulo momentum.

3. The AB effect

We now apply modulo momentum to the AB effect. In this context we have to consider the
gauge-invariant modulo momentum ei( �p− e

c
�A)· �L. Below we show that an abrupt change occurs

in the gauge-invariant modulo momentum of the external particle when the line connecting the
two wave packets crosses the solenoid. See figure 4. We then proceed to show that this change
of the gauge-invariant modulo momentum is responsible for the shift of the interference pattern
of the AB effect.
6 Momentum conservation, here in the x-direction, means p1 + p2 = p′

1 + p′
2, from which cos[(p1 + p2)L] =

cos[(p′
1 + p′

2)L] follows, and from which (11) follows.
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Figure 4. An abrupt change of the gauge-invariant modulo momentum or the velocity distribution
of the external particle occurs when the wave packets pass by the solenoid.

Figure 5. By crossing the potential line, the external particle acquires a relative phase e−i e�
c . Here

�v is the average velocity of the wave packet.

The abrupt change of the modulo momentum of the external particle follows immediately
in the singular Shelenkov gauge. See figure 5. Here, the vector potential is non-vanishing
only on the positive y-axis and is proportional to the flux:

A1x = �θ(y)δ(x)

A1ys ≡ 0,
(11)

where θ(y) is the step function.
If the external particle is initially prepared in a superposition of the two wave packets ψ1

and ψ2 (see figure 5), i.e. its state before crossing the potential line is

� = ψ1 + ψ2, (12)

then by crossing the potential line it acquires a relative phase that equals the full AB phase,
and its state after the crossing is given by

� ′ = ψ1 + e−iαψ2, (13)

5
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Figure 6. In this gauge, the relative phase does not change when the wave packets pass by the
solenoid. And yet, the gauge-invariant modulo momentum changes just there. Here �v is the
average velocity of the wave packet.

α = e�
h̄c

≡ e�
c

. Note also that in this gauge, both before and after crossing the potential line,
the gauge-invariant modulo momentum is equal to the canonical momentum i.e. m�v = �p.
It follows that to calculate the change in the gauge-invariant modulo momentum, one need
only to consider the usual modulo momentum. Thus, when the external particle passes by the
solenoid, its modulo momentum changes by

δ〈eimvyL〉 = δ〈eipyL〉 = 1
2 (e−iα − 1). (14)

Note also that the velocity distribution of the external particle changes when it passes by
the solenoid. This is so since the average modulo momentum is the Fourier transform of the
velocity distribution:

〈eimvyL〉 =
∫

Pr(vy) eimvyL dmvy. (15)

Our result appears perhaps even more surprising in the gauge where the potential line lies
along the positive x-axis (see figure 6). In this gauge, the relative phase does not even change
when the wave packets pass by the solenoid. And yet the velocity distribution changes just
there. In this case we have to calculate the change of 〈eimvyL〉 using

eimvyL = e−i e
c

∫ y+L

y
Aydy eipyL. (16)

With �A2, the line integral to the right of the flux line yields �, while the line integral to its left
is equal to zero. Thus we obtain again the same result as before i.e. (15) above.

The most general expression for the change of modulo momentum or the velocity
distribution is given by

δ〈eim�v· �L〉 = 1
2

(
e−i e

c

∮ �A· �dl − 1
) = 1

2

(
e−i e�

c − 1
)
, (17)

following from

ei( �p− e
c

�A)· �L = e−i e
c

∫ �r+�L
�r �A· �dlei �p· �L (18)

and Stokes’s theorem. ei( �p− e
c

�A)· �L is a gauge-invariant translation by �L operator. �r is the
particle’s position operator. The path of the integral on the rhs of (17) is a straight line joining
the positions �r and �r + �L. Above, we have shown that the velocity distribution changes near
x = 0, where the particle passes by the flux line. From (18) it follows immediately that the

6
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Figure 7. After the external particle has passed by the solenoid, the two wave packets are brought
together to interfere.

velocity distribution changes nowhere else. This is so since at all other parts of the particle’s
trajectory the closed line integral of the vector potential encloses no flux. Thus, the change of
the velocity distribution in the vicinity of the flux line is the only candidate to explain the shift
of the interference pattern.

Note also that the abrupt change of the velocity distribution occurs via a nonlocal
interaction with the flux line from which the external particle is excluded. In the previous
section, a scalar potential analog of such an interaction has been shown, namely (8), (9)
above.

In the above, we have assumed a very thin solenoid, its diameter tending to zero, as
well as very small wave packets. For this case we obtained the abrupt change of the
velocity distribution. When the solenoid has a finite diameter or the wave packets finite
width, the change occurs continuously since the flux and the probability are additive in the
direction of motion. To see how this works in detail consider a modification from one thin
solenoid to a distribution of thin solenoids, and take the special case of two thin solenoids.
Apply our above considerations to one solenoid after the other. Similarly we deal with a
finite wave packet as a sum of many very small wave packets. Thus, when the solenoid
and wave packets have finite width, the exchange takes a time �t = W

v
, where W is the

width of the wave packets and solenoid combined. This must be compared to the time of
excursion of the particle throughout the experiment ∼T1. We have here two time scales with
�t 
 T1.

Next, we show that the change of the velocity distribution is responsible for the shift of
the interference pattern of the AB effect. We now relate to that part of the evolution when the
wave packets are brought together to interfere. The two wave packets are accelerated in the
y direction, acquiring velocities ± h̄k0

m
respectively. See figure 7. In the gauge �A1 that we are

considering, we now have a free Hamiltonian, H = p2

2m
. Note that the time t = 0 is defined

as the time when the two wave packets start to move toward each other. This occurs after
the particle has passed by the solenoid. This means that at t = 0, the modulo momentum
has already changed. T is the time when the wave packets meet. L(t) is the instantaneous
separation between the packets.

We now transfer to the Heisenberg picture, and, in particular, we shall consider the motion
in the y direction only. The Heisenberg state is the initial state �(0) which, in this gauge, has

7
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already acquired the AB relative phase:

�(0) = ψ1 + e−iαψ2 (19)

= ψ

(
y +

L

2

)
eik0y + e−iαψ

(
y − L

2

)
e−ik0y. (20)

�(0) is an eigenstate of the function of modulo momentum given by

A(0) = cos[pyL + 2k0y(0)]. (21)

The evolution of the position operator in the Heisenberg picture is given by y(t) = y(0) + py

m
t .

Substituting y(0) = y(t) − py

m
t in (22) and defining the instantaneous separation L(t) =

L − py

m
t , we obtain

A(0) = cos[pyL(t) + 2k0y(t)] = A(t). (22)

A is a constant of the motion since both the momentum py and y(0) are constants. The time
evolution of A is given by A(t). Note that it is proportional to the instantaneous modulo
momentum cos[pyL(t)] since L(t) is the instantaneous separation. By the time T = mL

2k0
, A

has transformed into the local function A(T ) = cos 2k0y(T ) describing interference in the
Heisenberg picture. We have

〈A(0)〉 = cos α

2
, (23)

where A is a constant of the motion. This means that A(T ) = A(0) or that cos 2k0y(T ) = A(0).
It follows that

〈cos 2k0y(T )〉 = cos α

2
(24)

which means a shift of the interference pattern. We have thus seen that the change of modulo
momentum, which occurred when the external particle passed by the solenoid and the two
wave packets were still apart, manifests itself later on as a shift of the interference pattern of
the AB effect. And conversely, the shift of the interference pattern of the AB effect can always
be traced back to a change of the velocity distribution that occurred earlier on, when the wave
packets passed by the solenoid.

We now relate briefly to modulo angular momentum. See figure 8. For a full discussion
of this subject, the reader should refer to [3]. Note that in the figure, the motion is described in
the rest frame of the external particle. The gauge-invariant modulo angular momentum about
the z-axis changes abruptly when the solenoid enters the circle, and again as it leaves it:

〈eiIvθ π 〉 = 1 → 1 + e−iα

2
→ cos α. (25)

Here I is the moment of inertia and vθ is the angular velocity.

4. The gedanken experiment

Finally, we describe a gedanken experiment that shows that our prediction can, in principle,
be tested experimentally. Consider the set-up described in figure 9. Initially, the charged
particle, the ‘ball’, is in the wave packet ψ(y1), at rest, and the uncharged external particle is
in a superposition of the two incoming wave packets φ1(y2) and φ2(y2):

�initial = (φ1 + φ2)ψ(y1). (26)

8
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Figure 8. View from the rest frame of the external particle. The gauge-invariant modular angular
momentum about the z-axis of the external particle changes abruptly when the solenoid enters the
circle, and again as it leaves it.

(a) (b) (c)

Figure 9. The gedanken experiment. The collision between the external, uncharged particle (in
φ1 and φ2) and the charged particle, the ‘ball’ (in ψ), occurs at an uncertain time. (a) Initial state.
(b) Set-up at an intermediate time. After φ1 has hit the ball and before φ2 has hit it, the solenoid
passes between the two wave packets of the charged particle, ψ(y1) and ψ(y1 −L). (c) Final state.

See figure 9(a). When the external particle hits the ball, the latter moves for a distance
L and then stops, ending up in the wave packet ψ(y1 − L).7 Because the external particle

7 The external particle exerts a force on the ball twice. First the ball is accelerated, shortly afterwards it is decelerated.
This can be done with the help of a suitable square well potential describing the interaction between the particles.
V (|y2 − y1|) = −V0 for |y2 − y1| � L′, and = 0 otherwise.

9



J. Phys. A: Math. Theor. 43 (2010) 354012 T Kaufherr and Y Aharonov

Figure 10. Time evolution of the charged particle.

hits the ball at an uncertain time, there is an intermediate time interval during which the
charged particle is in the two wave packets ψ(y1) and ψ(y1 − L). The two particles are then
entangled:

�intermediate = 1√
2
[φ1 eip1Lψ(y1 − L) + φ2ψ(y1)]. (27)

See figure 9(b). p1 is the momentum of the wave packet ψ . It is uncertain with �p1 ∼ h̄
�y1

. This

introduces an uncertainty �ϕrel = �p1L ∼ h̄ L
�y1

, into the relative phase of the intermediate
state. At this stage, the solenoid, coming in from the left with velocity v in the x-direction,
passes between the two wave packets ψ(y1) and ψ(y1 − L) of the charged particle, the latter
thus acquiring an additional definite relative phase e−iα due to the AB effect:

�
′
intermediate = 1√

2
[φ1e−iαeip1Lψ(y1 − L) + φ2ψ(y1)]. (28)

After the solenoid has passed between the two wave packets of the charged particle, the second
wave packet of the external particle, φ2, hits the ball. The ball ends up at y1 = L. The particles
are now disentangled and the external particle is back in a coherent superposition of the two
wave packets φ1 and φ2:

�final = (φ1 + eiαφ2)ψ(y1 − L). (29)

See figure 9(c). Note that the AB phase eiα has been transferred to the external particle, and
can be measured later, in an interference experiment performed on it. Note also that while the
relative phase was uncertain when the particles were entangled, in the final state the relative
phase of the external particle is definite.

We now proceed to consider the time evolution of the charged particle. It is described in
the y-t plane, specifically the plane x ≡ 0. See figure 10. Now the solenoid, in its motion
along the x-axis, crosses this plane at a definite time, say t = 0. Because of its motion in the x
direction, the solenoid encloses also an electric field in the y direction, Ey = Bzv. Thus, when
the solenoid crosses the y-t plane, there appears at the origin an electric flux that is equal to �.
Thus, the charged particle experiences an electric AB effect, and it acquires a relative phase

10
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that is equal to e�
c

. This occurs in the plane x ≡ 0. Thus its modulo momentum has changed
abruptly. This change of the modulo momentum is observable as a shift of the interference
pattern of the external particle. As we have seen, it cannot but have happened at a definite x,
i.e. when the solenoid passed between the two wave packets of the charged particle.

Note that, owing to the finite width of the solenoid and wave packets, the above y-t plane
is not a geometric plane but has a finite, but very small, thickness. This does not impair the
validity of our argument. A full analysis of the gedanken experiment is beyond the scope of
this paper and will be published separately.

5. Conclusions

Above, we have taken a dynamical approach to the AB effect. We have shown that the shift of
the interference pattern is a manifestation of an abrupt, nonlocal exchange of gauge-invariant
modulo momentum that occurred earlier on, when the external charged particle passed by the
solenoid. We also described a gedanken experiment that shows that our prediction can, in
principle, be tested experimentally. In the gedanken experiment, the exchange is viewed in
the rest frame of the charged particle. Here, the exchange occurs at a definite time, when the
solenoid passes between the two wave packets of the charged particle. The implication of
this is that we have here a new kind of a ‘quantum leap’. But, unlike the abrupt exchange of
momentum and energy carried locally through spacetime by a photon, this exchange occurs
nonlocally. The connection of modular momentum to the two-slit interference experiment has
been discussed in [4].
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