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We discuss the consequences of the Aharonov-Bohm �AB� effect in setups involving several charged par-
ticles, wherein none of the charged particles encloses a closed loop around the magnetic flux. We show that in
such setups, the AB phase is encoded either in the relative phase of a bipartite or multipartite entangled photons
states, or alternatively, gives rise to an overall AB phase that can be measured relative to another reference
system. These setups involve processes of annihilation or creation of electron-hole pairs. We discuss the
relevance of such effects in “vacuum birefringence� in QED, and comment on their connection to other known
effects.
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I. INTRODUCTION

In the usual setup of the Aharonov-Bohm effect �AB� �1�,
a charged particle encircles a flux tube of total magnetic flux
�, and collects the phase

�AB =
e

�c
�

C

A� · dl =
e�

h̄c
. �1�

The AB phase, �AB, has two important features. It depends
only on the topology of the trajectory via the winding num-
ber n. Additionally the effect is “nonlocal”; at any interme-
diate point along the trajectory, the magnetic fields vanish,
and hence the presence of the flux is locally undetectable.
This is consistent with the fact that the line integral of the
vector potential is gauge invariant only along closed trajec-
tories.

We shall discuss some interesting consequences of the AB
effect in setups involving several charged particles, none of
which encloses a complete loop around the flux. Under such
circumstances, the AB effect has different manifestations: the
AB phase is encoded in the relative phase of a bipartite and
multipartite entangled state. The AB topological nonlocality
gets transformed here into the nonlocal property of the re-
sulting entangled state.

Alternatively, the AB effect can give rise to an overall
phase of the system, which can be measured with respect to
another reference system. An electron-hole–positron pair is
formed at one location, and recombines at another location
after encircling a flux. The resulting photon then carries an
overall AB phase.

In a related idea �2�, the AB phase has been recently
manifested in current-current correlations of electrons in a
Hanbury-Brown-Twiss interferometer. In this proposal, how-
ever, the effect is based on the indistinguishability of the
interfering electrons.

II. TRANSLATING THE AB PHASE TO ENTANGLED
STATES

Consider an electron and a hole that approach the fluxon
from opposite upwards and downwards directions and pass

through beam splitters, as depicted in Fig. 1. The beam split-
ter transforms the electron and the hole to a superposition of
left and right movers. The electron and hole can recombine
into a photon either on the left side or the right side. Adding
up the phases collected in each of the four parts of the circle
in Fig. 1, we find that the two parts of the photon wave
function have a relative phase equal to the full AB phase.
The postselected state with no electron or hole, namely when
a photon was created, is then

�1L0R� + ei�AB�0L1R� , �2�

where �nLnR� is the state with nL photons on the left and nR
photons on the right parts. Thus the flux becomes encoded in
the relative phase of a maximally entangled state.

It is instructive to compare between the usual measure-
ment of the AB phase in the standard setup and the present
case. In our case, the final photon state can be converted
to a bipartite entangled state of a pair of two atoms.
�1/�2���e ,g�+ei�AB�g ,e��. The flux can then be used to con-
trol nonlocally the relative AB phase. This phase cannot be
observed by performing measurements on only one atom. It

FIG. 1. The electron and the hole each completes half a loop and
annihilate to a photon. The photon can be absorbed by either the left
or the right atom. The bipartite entangled atom’s final state depends
on the AB phase.
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is manifested, however, in the correlations between the re-
sults of the measurements performed locally on both atoms.

From the quantum information point of view, this setup
provides an interesting method to encode a classical bit into
an entangled state �3�. For example, the observer that con-
trols the enclosed flux can encode “0” in �+= �1/�2���e ,g�
+ �g ,e�� and “1” in �+= �1/�2���e ,g�− �g ,e�� by changing the
enclosed flux from �0=0 to �1=hc /2e.

The above scheme can be extended to n electrons and n
holes. For example, in Fig. 2, two electrons and two holes
approach the flux from four different directions. If a pair
recombines then the two neighboring pairs cannot recom-
bine, thus either two opposite photons are emitted or the
other two opposite photons are emitted. The output state is
then �1010�+ei�AB�0101�, where 0 and 1 designate the Fock
state of the four output channels of the photons.

In order to compute the resulting states in the above and
similar setups, we make the following assumptions. The dy-
namical evolution of the system at the creation and annihila-
tion vertexes can be obtained by applying creation-
annihilation operators to the wave function. In particular, in
the vertex where a photon creates an electron hole pair, or
when an electron hole creates a photon, we have aphotonae

†ah
†,

and aeahaphoton
† , respectively. In these process, the net energy

and momentum exchange of the charged particle with with
the matter can be made small enough, so that the coherence
of the process is maintained. In order to calculate the effect
of the AB flux on the different charged particle trajectories, it
is useful to use a particular gauge. In the singular gauge, the
vector potential vanishes except along a singular line that
emanates from the fluxon. In this gauge, only a charged par-
ticle that crosses the line accumulates a phase, for example,
ae

†→ae
†e−i�, ah

†→ah
†ei�.

III. AB EFFECT WITH PHOTONS

In a different variant the AB phase is transferred to a
photon as depicted in Fig. 3. The photon creates an electron

and a hole. The latter can move on both sides of the flux and
then annihilate back into a photon carrying the topological
phase. The symmetry between electron-up, hole-down and
electron-down, hole-up could be broken using an external
electric field. To measure this phase we need the two beam
splitters and mirror shown in Fig. 3 yielding two alternative
paths for the photon, only one of which is affected by the AB
phase. This yields a final output signal with small modula-
tions periodic in the flux due to interference.

IV. VACUUM BIREFRINGENCE

The well-known “vacuum birefringence” in QED can be
related to the above setups. Thus �PVLAS experiment �4��
envision laser light propagating in vacuum along the z direc-
tion, say in a transverse B field. The virtual electron box
diagram generates for the low energy �E��mec

2� an effec-
tive Euler-Heisenberg Lagrangian �5–7� �in naturalized
Gaussian units �=c=1�:

Lef f =
2�2

45�4��2m4 ��E2 − B2�2 + 7�EB�2� �3�

with the four E ,B factors representing external fields and or
photons. Lef f generates in particular vacuum birefringing,
namely a relative phase between the x and y polarizations of
the photon. Can we heuristically understand this in a manner
emphasizing the role of an AB-type phase? The photon can
virtually convert into an electron-positron pair which after
free propagation �in configuration space� recombine back
into the original photon. If a B flux threads the path closed
jointly by the electron and positron then the amplitude picks
up an extra AB phase. For the case of a uniform B field
�AB=AB sin 	 with 	 the angle between the “plane” where
e+e− move and B with A the “net” signed area enclosed.
During their lifetime 
t=h /2mc2, the electron and positron
travel distances l=h /mc and A= l2= �h /mc�2. The “dipole”
interaction Ephoton�p+− p−� tends to create or annihilate the
pair in the polarization plane of the photon. The amplitude of
polarization perpendicular to the B field picks an AB phase
relative to the other, orthogonal, polarization adding a small
circular polarization to the primarily linearly polarized light
or a small “ellipticity.” The above argument fails, however.
The explicit Euler-Heisenberg effective Lagrangian and more
generally Furry’s theorem �8,9� forbid trilinear photon cou-
pling or polarization changes linear in B external. Indeed for

FIG. 2. The two electrons and the two holes each complete
quarter of a loop and together collect the topological phase which is
encoded in the phase of the emitted photons. The final state has
either two photons in arms 1 and 3, or in arms 2 and 4.

FIG. 3. The photon creates an electron and a hole and collects
the topological phase on recombination. The process takes place in
one of the arms of a Mach-Zender interferometer.
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every loop traversed by the e+ and e− in a given sense there
is loop of equal amplitude with e+↔e− traversed and the
opposite AB phase! A finite effect ensues in next order: The
U=�B interaction with the loops’ magnetic moment: �
=eA�=eAmc2 /h enhances the probability amplitude of one
orientation of the loop relative to the other by U /mc2, i.e., by
BA	B�h /mc�2 avoiding the above cancellation of the AB
phases and yielding a net effect of the correct form e4B2 /m4.

V. SOME COMMENTS ON THE AB ZEEMAN AND AB
FARADAY EFFECT

In Secs. II and III above different variants of the AB effect
where no single charge particle encircles the flux were uti-
lized to transfer the AB phase to photons. Here we note that
aloso the conventional AB effect can yield such a phase
transfer via an “AB Faraday” effect. For extended B fields
the “classical,” nonanomalous Zeeman and Faraday effects

are well understood: the �� ·B� gl�·B� interaction splits the m
sublevels. The resonant absorption frequency of left and
right circularly polarized light separate by 2gB and the cor-
responding indices of refraction differ accordingly by nR
−nLgB
 /�, with B
 the �say z� component of B parallel to
the light propagation. Along a distance L this does in turn
rotate the initial plane �of the linearly polarized light� by
�nR−nL�L /� �� is the wavelength divided by 2��.

In the AB effect the electron picks up the magnetic-field-
induced phase despite being at all times in the B=0 region.
The “AB Zeeman” effect is the energy shift of such a par-
ticle. Let a cylindrical shell of inner or outer radii r, R be
threaded by a flux � along its �z� axis. The states of nonin-
teracting electrons in this shell where a cylindrically sym-
metric potential exists �k,m,n have energies Ek,m,n depending
on the z components of the linear and angular momenta k
= pz /h, m= lz /h and a remaining “radial” quantum number n.
The introduction of the flux shifts changes the angular mo-
mentum quantum number: lz�= lz−�. It leaves the single val-
ued wave functions changing the energies via the substitution
Ek,n,m→Ek,n,m+�. The AB flux is a “modular” variable and
the levels cross for ���=1/2, hence the shift above is by the
smaller of noninteger part of the flux or its complement to an
integer.

The Zeeman shift is linear in B �for “small” B� and is not
periodic. The AB Zeeman effect is periodic in the flux and,
for fixed area of fluxons, in the field B. When the field is
uniform and the sample continuous we find that the AB shift
becomes the Zeeman effect. It is interesting to note that in a
cylindrical sample with mobile electrons �and/or holes� with
a common �small� radius a, the levels corresponding to paths
enclosing the hole with radii peaked near r=a, and a periodic
dependence on B, see Ref. �12�.

This is illustrated in excitonic states at the rim of the holes
bound by modified Coulomb 1/ �	−	�� potential. This is
equivalent to looking for bound states in the one-dimensional
problem on an interval �0,2�a� where for say the even par-
ity sector we demand that ���0�=���2�a�=0 which can be
solved with and without the fluxon the introduction of which
changes the d / id	 into d / id	−� /2� �10�.

The second setup �Fig. 3� can be manifested in a photon
exciton system �11� wherein angular momentum conserva-
tion simplifies the calculations. In semiconductors when a
photon creates an exciton an R photon creates an X+ exciton
and an L photon creates an X− exciton �where L, R are or-
thogonal circular polarizations and X− and X+ are orthogonal
states of the exciton with different angular momentum�. Each
exciton collects the phase with a different sign since in the
relative coordinates the charge rotate in a different direction.
Thus for the proper choice of flux the relative phase between
X+ and X− is 180o. Since the angular momentum is in the
direction of the propagation of the photon, in this setup the
magnetic field should be parallel to the momentum of the
photon. Hence a photon with polarization in the x direction
would change polarization to the y direction. In this scheme
the AB phase is manifested in the rotation of polarization.

The AB Faraday effect is the rotation of polarization plane
for light propagating in the z direction i.e., along the fluxon
and axis of the cylindrical sample. For the exciton the idea is
the same as for the normal effect except that the energy shifts
are of the exciton and not of the electron. The energy shift
explanation is valid for weak magnetic fields, for stronger
magnetic fields the reason for the rotation is analogous to the
explanation of the AB rotation of polarization. To avoid a
strong decline of the effect with the distance from the above
axis or fluxon, the wavelength of the light can be of order of
the radius of the cylinder.

In order to estimate the magnitude of the effect we calcu-
late the regular AB Faraday effect for a charged particle con-
densate constrained to a narrow ring, with a flux passing
through the ring axis. Let � be the angle on the ring, ��� , t�
be the condensate wave function on the ring, and assume the
form

���,t� = �ne�i/h�S��,t�, �4�

where n is a constant particle density, integrating to a total
number of particles N on the ring. We assume a flux �
=��o along the z axis, and an incident circularly polarized
electromagnetic plane wave along the same direction,

A� inc = A±�̂±ei�kz−�t�, �5�

where �̂±= �1/�2��x̂± iŷ�. In a low-density approximation,
the phase satisfies the Hamilton-Jacobi equation

− Ṡ =
1

2m
� 1

R

�S

��
−

e

c
A��2

, �6�

where A� is the � component on the ring of the total vector

potential A� tot= �1/2�R���o�̂+A� inc. Note that �e /2�c��o

=��, so that, assuming linear response to Ainc, we get re-
sponse components S�� , t�=S±e−i�t±i�t,

S±��� =
1
�2

� eR

c
� ��o

��o ± �
A±, �7�

with �o=� /2mR2. The associated current densities on the
ring are
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J�± = ± i
ne2

mc
� �

� � ��o
�A±

�2
�̂ . �8�

The scattered fields preserve the incident polarization, result-
ing in forward scattering amplitudes f±��=0�
= �N /2��e2 /mc2��� / �����o��. Designating by r0=e2 /mc2

the classical radius of the electron, using the dimensionless s
matrix

S± = 1 + if±k = 1 +
ir0�

��� ± ��0�
�9�

and specializing to the limit case of N=1, i.e., a single elec-
tron in the ring, we finally find a rotation angle of order


	=
S= �r0� /R2��� /mc�	��10−24 cm3� /R2; for R=�
	10−4 cm the angle is very tiny, 
		10−15.

In conclusion, we have discussed some interesting fea-
tures of the AB effect, and showed that the AB phase can
manifest itself without any loops being closed by a single
particle. We have discussed several variations of this idea,
and showed that the nonlocal AB phase can be stored either
in an entangled bipartite or multipartite state, or in the over-
all phase of photons or in the direction of polarization.
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