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A system consisting of two neutral spin-1/2 particles is analyzed for two magnetic field perturbations:(1) an
inhomogeneous magnetic field over all space, and(2) external fields over a half space containing only one of
the particles. The field is chosen to point from one particle to the other, which results in essentially a one-
dimensional problem. A number of interesting features are revealed for the first case: the singlet, which has
zero potential energy in the unperturbed case, remains unstable in the perturbing field. The spin-zero compo-
nent of the triplet evolves into a bound state with a double well potential, with the possibility of tunneling.
Superposition states can be constructed which oscillate between entangled and unentangled states. For the
second case, we show that changes in the magnetic field around one particle affect measurements of the spin
of the entangled particle not in the magnetic field nonlocally. By using protective measurements, we show it is
possible in principle to establish a nonlocal interaction using the two particles, provided the dipole-dipole
potential energy does not vanish and is comparable to the potential energy of the particle in the external field.
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I. INTRODUCTION

It is of fundamental interest to investigate the properties
of elementary systems in quantum physics. We have consid-
ered a system consisting of two neutral spin-1/2 particles that
interact through the spin-spin potential. This distinctly quan-
tum system displays many of the characteristic features of
quantum systems, including entanglement, tunneling, bound
states, decaying states, and spontaneous symmetry breaking.
A similar system, consisting of harmonically trapped alkali-
metal ions that may be entangled through the dipole-dipole
potential, has been proposed for use in quantum computing
[1–3]. Hence there is practical as well as fundamental inter-
est in the model we consider. We wanted to investigate a
system of two entangled particles that interact through a po-
tential that vanishes at infinity. One purpose of the model is
to allow us to investigate the behavior of one portion of an
entangled system when we adiabatically perturb the other
portion, and thereby to investigate the coupling between the
separate portions of the entangled system as a function of the
distance between them. As mentioned, the properties exhib-
ited may find application in quantum computing. In our
model, we find a coupling between portions of an entangled
state that in principle allows one to send signals by the
modulation of the magnetic field provided the potential en-
ergy from the dipole potential does not vanish. The maxi-
mum separation possible is probably of the order of mi-
crometers or less and depends on the maximum modulation
frequency of the signal. In principle, protective measure-
ments[4,5] can be done in one region of the system to de-
termine the elements of the reduced density matrix, some-
thing which would not be possible using conventional
measurements unless an ensemble of identical systems was

available[6]. The use of protective measurements would per-
mit the entanglement to remain. The adiabatic perturbation in
the protective measurement can be as large as desired, so
long as the state evolves continuously and the instantaneous
energy eigenvalue does not cross that of other levels.

Other interesting features of this spin-spin coupling model
are apparent when we apply an adiabatic perturbation that is
an inhomogeneous magnetic field over all space. We find the
initial singlet evolves into an unbound state and the triplet
develops a double hump potential, suggestive of spontaneous
symmetry breaking. For the latter case, it is possible for one
particle to tunnel across the barrier to the other side. Also, we
are able to study a system in which a superposition evolves
continuously in time, with the wave function changing from
entangled to unentangled and back to entangled. When we
eliminate a spatial cutoff and allow the dipole-dipole poten-
tial to become infinite, spontaneous symmetry breaking oc-
curs in the degenerate ground state.

The paper is organized as follows. A model for entangled
states via spin-spin interaction is constructed in Sec. II. We
study this model for an inhomogeneous magnetic field over
all space in Sec. III, and for a constant and inhomogeneous
magnetic field over a half space containing only one of the
particles in Sec. IV. We discuss the possibility of the protec-
tive measurement in our model in Sec. V. We summarize our
results in Sec. VI. Two Appendixes include another possible
model and detail calculations outlined in the text.

II. THE MODEL

We will assume that we have a pair(designated 1 and 2)
of identical, uncharged, spin-1/2 particles with coordinates
x1 andx2 (and corresponding momentap1 andp2). We will
apply a magnetic field and determine the evolution of the
system in the impulsive approximation, in which we assume
the kinetic energy of the system does not change as we apply*Deceased
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the magnetic field. We will consider two cases: case 1, an
inhomogeneous magnetic field is present throughout all
space, and case 2, the magnetic field is present only in the
region to the right of the origin.

For both cases, the Hamiltonian without external fields for
our system is

H0 =
p1

2

2m
+

p2
2

2m
+ Usux1 − x2ud s1d

and the potential energyU for two interacting magnetic di-
polesms1 andms2 located atx1 andx2, respectively, is

U = m2s1 · s2 − 3ss1 ·ndss2 ·nd
ux1 − x2u3

−
8p

3
m2dsx1 − x2d s2d

wheren is a unit vector in the directionsx1−x2d. The first
term is the usual dipole-dipole interaction while the second
term is the hyperfine interaction term.

In our paper, we will first analyze the model with the
approximation that the changes in the kinetic energy, poten-
tial energy, and the relative position of the particles are all
negligible when we turn on a perturbing magnetic field(im-
pulsive approximation) [7]. In this approximation, the posi-
tion of the particle does not change significantly during the
interaction. This approximation is in the same spirit as the
Born-Oppenheimer approximation in which the electronic
motion about the nuclei of a diatomic molecule is much
more rapid than the vibrational motion of the nuclei. Thus it
is possible to obtain the eigenfunction for the nuclear motion
using the energy eigenvalue for the electronic motion as the
potential. On the other hand we assume that during the ap-
plication of the magnetic field the spins evolve adiabatically.
This approximation is based on the observation that the spin
precession for the states is much faster than the translational
motion. With this impulsive approximation, there is no
change in the potential energy or the relative position of the
particles and in this sense the states act as if bound. To de-
termine if the states are in fact bound, one would have to
treat the separation as a dynamical variable, and include the
potential and kinetic energy terms in solving Schrödinger’s
equation. If the potential energy eigenvalues obtained with
the impulsive approximation are positive, then it is very un-
likely that the state is in fact bound. Only states with nega-
tive potential energy eigenvalues could be bound.

Under these assumptions we can choose the coordinates
system so that the particles are separated along thez direc-
tion, andz1 and z2 have opposite signs. Therefore we can
rotate the coordinate system such thatsx1−x2d→ sz1−z2dn
wheren is a unit vector in thez direction. With this coordi-
nate transformations the termsi ·n si =1,2d becomesszi

. Us-
ing s1·s2=2S2−3 and neglecting the hyperfine interaction
term which is relevant only at short distances(see the dis-
cussion in Appendix A), we can approximateU as

Usuzud = m2
s2S2 − 3d − 3sz1

sz2

uzu3
, z= z1 − z2. s3d

The classical dipole force will always be in thez direction,
and therefore the separation will always be along thez axis,

and we have essentially a one-dimensional problem. For two
classical dipoles oriented along thez axis, the interaction
would result in an attractive(repulsive) force if the dipoles
were parallel(antiparallel).

We will study the effects of applying an adiabatically per-
turbing magnetic field also in thez direction. With this spe-
cial choice of field, the problem remains a one-dimensional
problem since the magnetic force on each particle is also in
the z direction.

The spin components of the eigenstates ofH0 will be
simultaneous eigenstates of the total spinSand the total spin
in the z direction, Sz=Sz1

+Sz2
. These states comprise the

usual singlet state withS=0, Sz=0 corresponding touSl, and
the triplet spin eigenstates withS=1; Sz=−1, 0, +1, corre-
sponding touTSz

l= uT−1l , uTl , uT1l. Thus the dipole-dipole po-
tential results in entangled states[2]. Because of the indis-
tinguishability of the particles, it is not possible to describe
which particle is on the left or right; instead quantum me-
chanics indicates there is a superposition of both. The spatial
part of the wave functions is chosen so the total wave func-
tion is antisymmetric with respect to the interchange of par-
ticles 1 and 2. Introducing the symmetrized(antisymme-
trized) wave function by

c±sz1,z2d =
1

Î2
fcRsz1dcLsz2d ± cLsz1dcRsz2dg, s4d

wherecRszid si =1,2d represents the wave function for par-
ticle i on the right side of the originszi .0d, andcLszid on the
left side szi ,0d, the singlet state is

uSl =
1

Î2
su + l1u− l2 − u− l1u + l2dc+sz1,z2d. s5d

The spin-1 triplet states forSz=0, +1,−1, respectively, are

uTl =
1

Î2
su + l1u− l2 + u− l1u + l2dc−sz1,z2d, s6d

uT1l = u + l1u + l2c−sz1,z2d, s7d

uT−1l = u− l1u− l2c−sz1,z2d. s8d

Using the following relations

s1 · s2uSl = − 3uSl, s9d

s1 · s2uTil = uTil for all i , s10d

sz1
sz2

uSl = − uSl, s11d

sz1
sz2

uTl = − uTl, s12d

sz1
sz2

uT±1l = uT±1l, s13d

the spin-spin interactionU can be represented with the basis
stateshuT−1l , uT1l , uTl , uSlj as follows:
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U = fsrd3
− 2 0 0 0

0 − 2 0 0

0 0 4 0

0 0 0 0
4 , s14d

where we define

fsrd =
m2

r3 , r = uz1 − z2u. s15d

The unperturbed potential energies corresponding to the
eigenstatesuT−1l, uT1l, uTl, uSl are −2f, −2f, 4f, 0, respec-
tively. The statesuT−1l, uT1l could be considered as analogous
to classical systems in which the two magnetic moments are
parallel to each other, leading to attractive forces between the
particles, whereas theuTl, uSl states could be considered
analogous to classical systems in which the magnetic mo-
ments are antiparallel resulting in repulsive forces. It is in-
teresting that the singlet state has zero energy for the spin-
spin interaction and therefore is not expected to be a bound
state. There is no classical analog to this unique quantum
mechanical result of zero potential energy for the singlet
which follows from the properties of quantized angular mo-
mentum. The triplet states characterized by a negative energy
are the only states that might be bound if the kinetic energy
were included. In any event, the separation will not change
significantly as we apply the magnetic field perturbation.

At time t=0 we assume we turn on the interaction Hamil-
tonianHI:

HI = − mfsz1
Bsz1,td + sz2

Bsz2,tdg. s16d

We assume that we turn on theB field slowly (adiabatically)
in the z direction, so that the spin system can adjust to the
new field and therefore remain in an eigenstate of the instan-
taneous Hamiltonian(adiabatic theorem) [7]. The total re-
duced HamiltonianHR (neglecting kinetic energy terms) is
now

HR = m2
s1 · s2 − 3sz1

sz2

r3 − mfsz1
Bsz1,td + sz2

Bsz2,tdg,

s17d

whereBsz1,td is the value of the magnetic field, which al-
ways points along thez direction, atsz1,td. As noted previ-
ously, this choice of field is done for simplicity and is not the
most general field that can be applied. We also note that in
general this field is not consistent with the requirement that
the divergence of the magnetic field vanish[8]. To meet this
requirement for an inhomogeneous field in thez direction,
we need to also have a large constant magnetic field in thez
direction. In order to determine the evolution of the initial
singlet or triplet state when the magnetic field is applied, we
find it convenient to decompose the interaction term as

HI = − msS− + S+d, s18d

where we define

S− =
1

2
ssz1

− sz2
dfBsz1,td − Bsz2,tdg, s19d

S+ =
1

2
ssz1

+ sz2
dfBsz1,td + Bsz2,tdg. s20d

There are two cases of magnetic fields that we will consider.
In the first case, an inhomogeneousB field is proportional to
z everywhere. In the second case the external magnetic field
is present on the right side of the origin onlysz1,z2.0d.

III. CASE 1: INHOMOGENEOUS MAGNETIC FIELD
IN THE z DIRECTION PRESENT IN ALL SPACE

The time independent magnetic field is defined by

Bszid = B0 + bzi, i = 1,2, s21d

whereB0 and b are constants satisfying the condition men-
tioned earlier. For this choice of the magnetic field we first
apply the large constant field impulsively so that there will
be no transitions among the states. Then we turn on the in-
homogeneous part adiabatically[9]. In this case we can show
that the total HamiltonianHT=H0+HI is separable into two
commuting terms that depend, respectively, on the center of
mass coordinateZ and the relative position coordinatez. We
define the center of mass coordinateZ= 1

2sz1+z2d, with con-
jugate center of mass momentumP=pz1

+pz2
, and the rela-

tive position coordinatez=z1−z2, with conjugate momentum
p= 1

2spz1
−pz2

d. Sincefp,Zg=fP,zg=0 andfP,Zg=fp,zg=−i,
we obtain the Hamiltonian(the reduced mass ism/2 for two
identical particles)

H0 =
P2

2m
+

p2

m
+ Usuzud. s22d

Using the decomposition(18) the total Hamiltonian is rewrit-
ten

HT = H1sP,Zd + H2sp,zd, s23d

where the term depending on the center of mass coordinateZ
is

H1 =
P2

2m
− mssz1

+ sz2
dsB0 + bZd s24d

and the term depending on the relative coordinatez is

H2 =
p2

m
+ Usuzud − m

b

2
ssz1

− sz2
dz. s25d

In the subspace spanned byuSl and uTl we can show that
fs1·s2,sz1

+sz2
g=0. The commutators with only terms in

sz1
andsz2

vanish, sofH1,H2g=0, and the total energy is the
sum of the energy eigenvalues forH1 andH2.

First we find that the total reduced HamiltonianHR is
expressed in the basishuT−1l , uT1l , uTl , uSlj as
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HR = U + HI s26d

= fsrd3
− 2 0 0 0

0 − 2 0 0

0 0 4 0

0 0 0 0
4

+ 3
2msB0 + bZd 0 0 0

0 − 2msB0 + bZd 0 0

0 0 0 − gz

0 0 − gz 0
4 , s27d

whereg=bm /2 is introduced.
Next this reduced Hamiltonian can be represented in the

uSl, uTl subspace as

H2
R = 4fsrdF1 0

0 0
G − gzF0 1

1 0
G . s28d

We express it in terms of the Pauli matrices

H2
R = 2fsrdI + b · s, s29d

whereI is the identity operator andb=(−gz,0 ,2fsrd). Then
the eigenvalues are given in terms of the anglev which is
defined by

tanv =
bx

bz
=

− gz

2f
=

− bzr3

4m
s30d

and we choose the branch

sinv =
− gz

Îg2r2 + 4f2
=

− bzr3

Î16m2 + b2r8
. s31d

Physically tanv represents the ratio of the energy of the
dipole in the external inhomogeneous magnetic field to the
energy due to the dipole-dipole coupling. Solving for the
eigenvectors and eigenvalues ofH2

R, we obtain

u− al = − sin
v

2
uTl + cos

v

2
uSl, s32d

E−
R = 2f − ubu = 2fs1 − secvd, s33d

and

u + al = cos
v

2
uTl + sin

v

2
uSl, s34d

E+
R = 2f + ubu = 2fs1 + secvd. s35d

If the magnetic field, which is proportional tob, vanishes,
then sinv→0 and u−al→ uSl, u+al→ uTl, as expected. For
u−al, the effective potentialE−

Rszd is negative and always
concave down so no stable singlet states are expected(Figs.
1 and 2). For u+al the effective potentialE+

Rszd is a positive
double hump potential which suggests stable states as shown
in Figs. 3 and 4. The peak nearz1<z2<0 is due to the rapid
increase in the dipole-dipole potential, and the slopes of the
flat portions ofE+

R on either side of the peak are proportional

to b, the derivative of the inhomogeneous magnetic field.
It is interesting to determine the nature of the spin wave

functions foru±al for large and small values of separationr
when a magnetic field is present. For larger sz.0d⇔ r
→`ssinv→−1d:

u− al → 1
Î2

suTl + uSld = u + l1u− l2, s36d

E−
R → − gr, s37d

u + al → 1
Î2

suTl − uSld = u− l1u + l2, s38d

E+
R → + gr, s39d

and for smallr ⇔ r →0 ssinv→0d:

u− al → uSl, E−
R → −

b2

16
r5, s40d

FIG. 2. E−
Rsz1,−z1d for an inhomogeneous field over all space.

This is the same as the contour withz1+z2=0 in Fig. 1.

FIG. 1. E−
Rsz1,z2d for an inhomogeneous field over all space

plotted for systems in which the particles are on opposite sides of
the origin. The system could be represented by a point in the near
quadrant, in which casez1.0 andz2,0. If particle 1 and particle 2
are interchanged, then the system would be represented by a point
in the far quadrant obtained by a reflection across the linez1=z2.
For E−

R the energy is monotonically decreasing as either particle
moves away from the origin and there is no stable state. All the
energies are scaled byE0=mB0 and the coordinates are scaled byr0

which is defined byE0=2fsr0d⇔ r0=s2m /B0d1/3.
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u + al → uTl, E+
R → 4m2

r3 . s41d

For large separations, the energy eigenvalue is dominated by
the effect of the inhomogeneous field, whereas for small
separations, the eigenvalue is dominated by the dipole-dipole
interaction. As the relative positionz of two particles goes
from −` to 0 to +̀ , the state corresponding tou+al goes
from an unentangled state, namely,u−l1u+l2, to an entangled
triplet uTl state, and then back to the unentangledu−l1u+l2.
By superposition of states with different momenta, we could
form a state that would oscillate in time between entangled
and unentangled states[11].

We need to avoid energy levels crossing each other during
the application of the adiabatic perturbation. Otherwise tran-
sitions between the levels may occur. From the reduced
Hamiltonian(26) one can easily find the energy levels for the
other members of the tripletsuT±1l to be −2fsrd±2msB0

+bZd. Therefore, under the assumption that the two particles
are on the opposite sides of the originsZ<0d, we require the
following equalities to avoid crossing of energy levels:

− 2fsrd + 2mB0 . E+
R . E−

R . − 2fsrd − 2mB0, s42d

which are obeyed provided the energy contribution from the
constant magnetic fieldB0 is significantly greater than the
contributions from either the inhomogeneous field or the di-
pole potentialfmB0.3fsrd+guzu /2g [12].

Independently we also need a condition in order for the
adiabatic evolution to proceed(see, e.g.,[7]); namely, we
need to turn on the magnetic field(inhomogeneous part)
slowly, and the condition for the time periodT for this
switching is

T @
"sgzd2

s4fd2Îsgzd2 + s2fd2
s43d

or

T @
"b2r11

32m3Îb2r8 + 16m2
. s44d

Therefore the greater the separation, the more slowly the
inhomogeneous field needs to be applied.

Use of Born-Oppenheimer approximation
to the tunneling effect

So far we have neglected the kinetic term under the as-
sumption that the characteristic frequencies of the spin pre-
cession are much greater than those of the translational mo-
tion of the two particles. This assumption is strictly true, for
instance, for the NMR case where particles are part of the
molecules and hence they are always bound.

In contrast, we want to consider a situation where the
particles are essentially free. For the eigenstateu+al, a graph
of the corresponding eigenvalueE+

Rszd is a positive double
hump function which describes two bound particles, one on
either side of the origin. The potential permits tunneling
across the barrier. In this tunneling process the two particles
would be exchanged. First we note that the Schrödinger
equation for the center of mass motion as well as the relative
motion is invariant under the transformationz1→z2 and z2
→z1 which corresponds to the tunneling transition. Insz1,z2d
space, this transformation corresponds to a reflection across
the line z1=z2. The corresponding states are degenerate in
energy. The Hamiltonian is also invariant under the parity
transformationz1→−z1, z2→−z2.

In order to analyze this process, we can utilize a Born-
Oppenheimer approximation and we can separate two de-
grees of freedom by the use of an average potential in the
Schrödinger equation for the relative motion of the particles.
Thus the problem is reduced to a one-body problem with the
potential for the relative coordinates. The appropriate poten-
tial is in fact the energy eigenvalueE+

Rszd which was ob-
tained in the previous section:

Vszd = E+
Rszd =

2m2

uzu3
+Îg2z2 +

4m4

z6 . s45d

Therefore this approximation yields

HBOuEl = EuEl, s46d

HBO =
p2

m
+ E+

Rszd. s47d

As is usual a singular potential proportional tor−n sn.2d
the barrier becomes infinitely high at the origin. To estimate

FIG. 3. The positive eigenvalueE+
Rsz1,z2d for an inhomoge-

neous field over all space. We see that stable states can occur in this
case.

FIG. 4. E+
Rsz1,−z1d for an inhomogeneous field over all space.

The rapid increase is due to the divergence of the dipole-dipole
potential.
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the tunneling probability we introduce a cutoff for smallr
defined byrc. Figure 5 shows a typical shape of the potential
barrier after this regularization.

Since the Hamiltonian(47) commutes with the parity op-
erator, the eigenstates of it are also eigenstates of the parity,
namely, they are either symmetric or antisymmetric. Let us
denote these states byufSl and ufAl, respectively. Then in
general we knowESøEA, whereES sEAd is the eigenvalue of
ufSl sufAld. Now we consider a state in which the particle is
located on either the right side of the barrier or the left side
and express these states byufRl and ufLl, respectively. No-
tice that they are not eigenstates of the Hamiltonian(47) in
general. Obviously we have the following relations:

ufSl =
1

Î2
sufRl + ufLld, s48d

ufAl =
1

Î2
sufRl − ufLld, s49d

up to a phase factor. Therefore if we choose the initial state
at t=0 asufRl, then after simple calculations we get the state
at time t as follows:

ufRstdl ~ cosSDt

"
DufRl + i sinSDt

"
DufLl, s50d

whereD=sEA−ESd /2 and we omit an overall time dependent
phase factor which is irrelevant right now. Therefore we ob-
serve that the state is oscillating between a configuration in
which the particle is on the right side and a configuration in
which the particle is on the left side. In terms of the original
variables, the positions of two particles are being exchanged
in time.

To know the characteristic frequencyD /" we need to
know the eigenvalues and the states of the Hamiltonian using
the relation D=−kfRuHBOufLl. This requires knowledge
about the solution to the Schrödinger equation(46). Instead
we can use the WKB approximation to examine the possibil-
ity of this effect.

Using the WKB method we calculate the probabilityw for
a particle at rest around one minimarm of the potential to
tunnel across the potential barrier to the other minimum:

wsE = 0d . expF− 8Îmm2

"2 S 3
Îrc

−
2

Îrm
DG . s51d

A cutoff distance of 10−15 m was chosen forrc, approxi-
mately the Compton wavelength of the neutron. This value
for rc and the value ofrm from Appendix B yield an estimate
for w,e−0.94,0.39. It suggests the possibility of the tunnel-
ing effect, namely, the exchanging of the two particles
through the barrier. We summarize these calculations in Ap-
pendix B.

Two remarks are in order. When the potential barrier be-
comes infinite the ground state will be degeneratesES

=EA⇔D=0d. This means there are no oscillations at all, and
hence there exist the statesufRl and ufLl separately. Al-
though these states are not eigenstates of the parity operator,
because of the degeneracy they are allowed states. This is an
example of spontaneous symmetry breaking. To examine the
possibility of the exchanging effect more precisely we also
need to include the hyperfine interaction term in the original
potential(2), which becomes important at short distances.

IV. CASE 2: MAGNETIC FIELD PRESENT
ON THE RIGHT SIDE OF THE ORIGIN ONLY

We assume the magnetic fieldBszd is in the z direction
and that it is nonzero only in some region on the right side of
the originsz1,z2.0d. Outside of this region, for example, on
the left, the magnetic field vanishes so, for example,
Bsz1dcLsz1d=0, Bsz2dcLsz2d=0, etc. This magnetic field
breaks the translational symmetry of the field present in case
1. Using these properties we can show that

S+uSl = S+uTl = 0, s52d

S−uSl = − BTuTl, s53d

S−uTl = − BTuSl, s54d

where we define

BTsz1,z2d = Bsz1d + Bsz2d. s55d

Note that for our model, either particle 1 or 2 will be on the
left side of the origin so eitherBsz1d or Bsz2d will vanish.
Thus for the special case of a constant fieldB0 on the right
side, we haveBT=B0. With our assumptions we can express
BTsz1,z2d in the following way:

BTsz1,z2d = Bsz1dusz1 − z2d + Bsz2dusz2 − z1d. s56d

In the impulsive approximation, these results yield a rep-
resentation ofHI using the basis stateshuTl , uSlj:

HI = mBTF0 1

1 0
G . s57d

We notice that theBT field causes transitions between the
singlet and triplet states like the inhomogeneous field in all
space. This suggests that even the simplest case(a constant
field B0 on the right side) will do this. This transition might
be of interest, in particular, in applications of quantum com-

FIG. 5. Potential energy barrierE+
Rsz=z1−z2d after the

regularization.
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putation. Similar discussion were done by several authors
(see Ref.[3] and references therein). However, the transition
between the singlet and the triplet was not discussed there.

The remaining components of the triplet also transform
among themselves, which follows from

S+uT±1l = ± BTuT±1l, s58d

S−uT±1l = 0. s59d

The interaction Hamiltonian in the basishuT−1l , uT1lj is

HI = mBTF1 0

0 − 1
G . s60d

In terms of the basishuT−1l , uT1l , uTl , uSlj, the total reduced
HamiltonianHR can therefore be written as

HR = fsrd3
− 2 0 0 0

0 − 2 0 0

0 0 4 0

0 0 0 0
4 + mBT3

1 0 0 0

0 − 1 0 0

0 0 0 1

0 0 1 0
4 .

s61d

After applying the magnetic field perturbation, theuT−1l
and uT1l components still do not mix with any other compo-
nents. The total reduced Hamiltonian is diagonal in the sub-
space spanned byuT−1l and uT1l, and the corresponding en-
ergy eigenvalues areE−1

R =−2f +mBT andE1
R=−2f −mBT.

We now consider in detail the subspace spanned by
uTl , uSl which is not diagonal. In the same manner as in the
previous section we express the total reduced Hamiltonian
H2

R in terms of the Pauli matrices as

H2
R = 2fsrdI + a · s, s62d

where the vectora=smBT,0 ,2fd. Define the angleu by

tanu =
ax

az
=

mBTsz1,z2d
2f

=
BTr3

2m
, s63d

and the quadrant is specified by

sinu =
mBT

Îm2BT
2 + 4f2

. s64d

Solving for the eigenvectors and eigenvalues ofH2
R, we ob-

tain

u− al = − sin
u

2
uTl + cos

u

2
uSl, s65d

E−
R = 2f − uau = 2fs1 − secud s66d

and

u + al = cos
u

2
uTl + sin

u

2
uSl, s67d

E+
R = 2f + uau = 2fs1 + secud. s68d

To avoid the crossing of energy levels, we require
E−

R.E−1
R which implies that

2mBT , 3fsrd. s69d

Also from the adiabatic theorem we get

T @
"smBTd2

s4fd2ÎsmBTd2 + s2fd2
. s70d

Using the above condition(69) we estimate the lower limit
of the timeTmin as

Tmin ,
9

80

"

fsrd
. 0.11"f−1. s71d

The restriction of Eq.(69) severely limits possible modu-
lation frequencies of the field being applied adiabatically. We
briefly mention a procedure, similar to that used in case 1,
which results in a much larger bandwidth. We first apply the
large constantB0 field impulsively over all space[14]. Then
we apply the inhomogeneous field adiabatically over the
right side only. With this procedure, the restriction on the
energy levels to avoid crossings is similar to Eq.(42), but the
levels uT−1l and uT+1l are also shifted by the inhomogeneous
field ±mBTuB0=0. The quantitymBTuB0=0 is always positive
since the inhomogeneous field is on the right side, so the
requirement for no level crossing is less stringent, and is met
simply if mB0.4f. The corresponding requirement for the
validity of the adiabatic approximation is the same as Eq.
(44), with r replaced by the positive value of the pairhz1,z2j.

A. Homogeneous field on the right side only

We can consider several different magnetic field strengths
BTsz1,z2d. For the simplest case, in whichBT is a constant on

FIG. 6. E−
Rsz1,z2d for a constant magnetic field on the right side,

plotted for particles on opposite sides of the origin.

FIG. 7. E−sz1,−z1d for a constant magnetic field This curve is
obtained by plotting the functionE−sz1,z2d for the contourz1+z2

=0.
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the right side, we find thatE−
Rsz1,z2d is a negative potential

(Figs. 6 and 7) that does not confine the particles so no stable
states are expected, whileE+

Rsz1,z2d is a positive potential
that also does not confine particles(Figs. 8 and 9).

B. Inhomogeneous field on the right side only

Next we shall consider an inhomogeneous fieldsBT=B0

+bZ+br /2d on the right side. The graphs forE−
Rsz1,z2d (Figs.

10 and 11) are plotted with the same parameters as Figs. 1–4
for comparison. Similar results are obtained in this case.

The positive energyE+
Rsz1,z2d has a double hump struc-

ture (Figs. 12 and 13) with two potential wells for quasi-
bound states separated by an energy peak. We note that, un-
like in case 1, there is no symmetry with respect to reflection
across the linez1+z2=0 so the forces acting on the particles
are not equal. The force due to the magnetic field acts only
on the particle on the right side. Here we define the effective
forces through partial differentiations of the effective poten-
tials E±

R with respect toz1 andz2.

C. Summary

In summary, with adiabatic evolution of spins when we
apply the magnetic field on the right side, we find that the
initial singlet ground state singletuSl has evolved into an
eigenstate given by a linear combination of singlet and triplet
states:

u− al = − sin
u

2
uTl + cos

u

2
uSl. s72d

In this adiabatic evolution, the reduced energy goes from 0
for uSl to 2fs1−secud for u−al. Since u−al is a spin eigen-

state of the total Hamiltonian, there is an overall time depen-

dent phase factore−iE−
Rt/" for this state, which we have omit-

ted.
The eigenstatesu±al have the property that, for any value

of u, the spins of the particles in thez direction are always
correlated:

sSz1
+ Sz2

du ± al = 0. s73d

This result, which follows sincefHT,Sz1
+Sz2

g=0, indicates
that the spins of the two particles remain correlated if an
inhomogeneous magnetic field is applied only to the particle
on the right side of the origin.

V. COMPUTATION OF THE DENSITY MATRIX FOR AN
ADIABATIC CHANGE IN THE MAGNETIC FIELD

ON THE RIGHT SIDE ONLY

In this section we shall study case 2 in further detail. One
convenient way to consider the effect of the magnetic field
(which is present only on the right side) on the state of the
system on the left side(where the magnetic field vanishes) is
to predict the results of a measurement of an observableA
which is defined only on the left side. The predictions can be
done by means of the reduced density matrixrsL ,−ad on the
left sideL for the stateu−al [15]:

rsL,− ad = Trright sideu− alk− au. s74d

In order to compute this reduced density matrix foru−al, we
first compute the reduced density matrices for the basis states

FIG. 8. E+sz1,z2d for a constant magnetic field on the right,
plotted only for particles on opposite sides of the origin.

FIG. 9. E+sz1,−z1d plotted for a constant magnetic field on the
right side of the origin.

FIG. 10. E−sz1,z2d for an inhomogeneous field on the right side,
plotted for particles on opposite sides of the origin. All parameters
for Figs. 10–13 are chosen the same as for Figs. 1–4.

FIG. 11. E−sz1,−z1d for an inhomogeneous field on the right side
only.
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uSl anduTl. For an observableA which is defined only on the
left side we haveAcRsz2d=0, etc. The result of a measure-
ment ofA for the stateuTl is defined as

TrrsL,TdA = kTuAuTl s75d

and can be computed using the expression foruTl:

kTuAuTl =
1

4
f1k+ LuAu + Ll1 + 1k− LuAu− Ll1 + 2k− LuAu− Ll2

+ 2k+ LuAu + Ll2g , s76d

where we have defined

u ± Ll1 ; u ± l1cLsz1d, s77d

u ± Ll2 ; u ± l2cLsz2d. s78d

The corresponding reduced density matrix on the left side is

rsL,Td =
1

4
fu + Ll11k+ Lu + u− Ll11k− Lu

+ u + Ll22k+ Lu + u− Ll22k− Lug. s79d

By a similar calculation we find that the reduced density
matrix for uSl has the same value as foruTl:

rsL,Sd = Trright sideuSlkSu s80d

=rsL,Td. s81d

We also compute

rsL,TSd = Trright sideuTlkSu =
1

4
fu + Ll11k+ Lu − u− Ll11k− Lug

f + u + Ll22k+ Lu − u− Ll22k− Lug s82d

and find that

rsL,TSd = rsL,STd. s83d

Using the preceding results, we can write an expression
for rsL ,−ad using the definition of the stateu−al:

rsL,− ad = sin2 u

2
rsL,Td + cos2

u

2
rsL,Sd

− 2 sin
u

2
cos

u

2
rsL,TSd s84d

=rsL,Sd − rsL,TSdsinu. s85d

This last result can be written in matrix form in the basis
hu+Ll1, u−Ll1, u+Ll2, u−Ll2j:

rsL,− ad =
1

43
1 − sinu 0 0 0

0 1 + sinu 0 0

0 0 1 − sinu 0

0 0 0 1 + sinu
4 .

s86d

One can contemplate making standard quantum mechani-
cal measurements in which a superposition collapses to an
eigenstate[16]. Alternatively we consider the use of a pro-
tective Stern-Gerlach measurement, in which there is an
adiabatic interaction between the pointer and the system
[4,5,17]. We want to examine the possibility of the protective
measurement in our model under the assumption that we will
work in a decoherence-free subspace. In previous discussions
of protective measurements, only the case of a small pertur-
bation was considered in order to minimize the change in the
wave function of the state to be measured. In our system,
such restrictions are not necessary. As long as the interaction
is adiabatic, the state will evolve continuously as an eigen-
state of the instantaneous Hamiltonian, without any transi-
tion provided there is no degeneracy in the energy. If the
magnetic field is applied adiabatically, the field can become
large, resulting in a large change in the wave function. Be-
cause the changes are adiabatic, they are reversible as the
magnetic field is reduced. Since a protective measurement of
the spin for our two-particle system does not change the state
of the system, the protective measurement does not end the
entanglement.

In the spin-spin model, the statesu−al and u+al into
which uSl anduTl evolve when a magnetic field is applied on
the right side are nondegenerate so a protective measurement
of the reduced density matrix should be possible. Indeed, all
four basis statesu−al, u+al, uT1l, anduT−1l are nondegenerate
providedf Þ0 andBÞ0 so a protective measurement should
be possible of the density matrix[6]. As a consequence the

FIG. 12. E+sz1,z2d for an inhomogeneous field on the right side,
plotted for particles on opposite sides of the origin.

FIG. 13. E+sz1,−z1d for an inhomogeneous field on the right
side.
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result of a protective measurement of an observableA that
acts only on the left side can be written as the trace over the
reduced density matrix:

kAlsL,−ad = TrfrsL,− adAg. s87d

Note that herekAl represents the result of a single protec-
tive measurement on a single system. It doesnot have the
usual meaning of the expectation value ofA, which is based
on the measurement of the observableA for an ensemble of
identically prepared systems. Since the elements of the den-
sity matrix depend onu, it is clear that changes inu, result-
ing from changes in eitherB or sz1−z2d, will affect the mea-
sured values of observablesA. In other words, in this model
with a finite separation, by changing the value of the mag-
netic field on the right side, it is possible to detect the effect
on the left side nonlocally. Note that nowhere do we use the
specific form of the potential. Indeed, we could use the for-
malism presented with any function of the separation.

To illustrate the application of a protective measurement,
we could measure the total spin in thez direction for both
particles using local measurements on the left side only. We
assume we use a Stern-Gerlach analyzer with an inhomoge-
neous field in thez direction and we observe the deflection of
the wave packet corresponding to a particle. We assume we
have calibrated our apparatus so that we can determine the
spin of a particle on the left side by observation of the de-
flection in thez direction at a certain point in the experiment.
Since the particles are indistinguishable, a single protective
measurement of the spin of a particle on the left will yield a
deflection corresponding to the result

kSz1
+ Sz2

lleft side= trsrfSz1
+ Sz2

gd = −
1

2
sinu, s88d

where the value ofu is determined by the magnetic field on
the right side and the distance between the particles. The
corresponding total spin in thez direction measuredon the
right side is 1

2 sinu. Since this protective measurement has
not collapsed the wave function, we could do additional
measurementson the same stateto determine the rest of the
density matrixrsL,−ad in the uTl , uSl subspace. If we used
Stern-Gerlach analyzers with fields in thex andy directions
for two additional experiments, respectively, we would find

kSx1
+ Sx2

lleft side= kSy1
+ Sy2

lleft side= 0. s89d

These components of the spin vanish because we chose the
magnetic field on the right side to be in thez direction.

It is interesting to contrast the protective measurement of
Sz1

+Sz2
with the ordinary measurements. In a standard quan-

tum mechanical measurement the wave function collapses
and an eigenvalue of the operator is measured. To determine
the expectation value of the operator, one needs to make a
statistically significant number of measurements on an en-
semble of identically prepared systems. In our model, since
the particles are indistinguishable, for each standard mea-
surement on a different identically prepared system, a deflec-
tion in the Stern-Gerlach apparatus will be measured that
corresponds to spin of +12 or −1

2. If enough measurements are
done, it will be determined that the probability of measuring

+1
2 is 1

2s1−sinud and the probability of measuring −1
2 is

1
2s1+sinud. Using these probabilities, the standard measure-
ments will determine that the expectation value of the opera-
tor Sz1

+Sz2
on the left side is −12 sinu, in agreement with the

singleprotective measurement.
This comparison of the two methods illustrates some of

the advantages of protective measurements and some of the
disadvantages of standard measurements.

VI. CONCLUSION AND DISCUSSION

A system was considered in which two neutral spin-1/2
particles interact through a diple-dipole potential. The poten-
tial leads to singlet and triplet entangled states which are
modified when we apply a magnetic field over all space(case
1), or over just the region to the right of the origin(case 2).

For case 1 we showed that the singlet state is essentially
unstable and it tends to separate. However, the spin-zero
component of the triplet will have a double hump shape en-
ergy which implies the particles will tend to stay near the
minima with high probabilities and form a bound state. Also
we showed that it is possible to have a tunneling effect in this
case. Such an effect might have applications in quantum
computation.

For case 2 we observed that although the external field is
applied only in one part of the system, the other part will be
affected by it due to the entanglement of the system. This
manifests the nonlocality of the entanglement in quantum
mechanics. It appears that protective measurements can be
used to determine the density matrix without ending the en-
tanglement. As discussed above for the case of finite separa-
tion, one limitation in the signaling between the two regions
of space in this model lies in the requirement that we must
have an adiabatic perturbation or transitions will occur be-
tween states. When the magnetic field is turned on, it must be
done slowly enough so that no transitions are induced be-
tween the initial state and other states. Although the specific
restrictions depend on the manner in which the perturbations
are applied, they require that the potential due to the dipole-
dipole interaction does not vanish.
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APPENDIX A: MODEL WITH CONFINING POTENTIALS

In this appendix we will examine our model with addi-
tional confining potentials(for instance, created by the opti-
cal laser). For simplicity we approximate this potential by a
harmonic potential around a certain pointx0 with character-
istic frequencyV, namely,Vsxd= 1

2mV2sx−x0d2. We choose
the center of the potential in such a way that two particles
will be separated by a distancez0. Under these conditions the
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ground state energy of the particles is3
2V (we use"=1 in the

Appendixes) and the corresponding states are

cRsxid = S j

p
D3/4

e−jfxi
2+yi

2+szi − z0/2d2g/2, sA1d

cLsxid = S j

p
D3/4

e−jfxi
2+yi

2+szi + z0/2d2g/2, sA2d

for i =1, 2, where the parameterj=ÎmV is introduced. To
have a stable ground state in our model we require the en-
ergy levels to be well separated, or the parameterj is large.
(Similarly we can assign these wave packets for the free
particle case too.) After we obtain the spatial wave functions
for the singlet and the triplets[18], we can estimate the effect
of the hyperfine interaction term in the dipole-dipole poten-
tial (2). We evaluate the expectation values of thed function
as follows:

kdsxdlS= 4S j

2p
D3/2

s1 + ejz0
2/2d−1, sA3d

kdsxdlT = 0. sA4d

Therefore, under our assumptions the contribution from the
hyperfine interaction is negligible in our model because of
the exponential factor in Eq.(A3). However, in contrast, this
term plays an important role in a situation where the distance
becomes very small and we need to add this contribution too.
This regime is discussed in the literature, for instance, see
Ref. [2] and references therein.

Next we estimate the change in the positions of the par-
ticles and their kinetic energy. From simple calculations it is
easy to see that the expectation values of the relative position
and the center of mass are zero. Similarly we obtain for the
expectation value for the center of mass kinetic energy

K P2

2m
L

S

=K P2

2m
L

T

=
j

2m
sA5d

and for the relative kinetic energy we have

K p2

m
L

S
=

j

4mS1 −
jz0

2

ejz0
2/2 + 1

D sA6d

K p2

m
L

T
=

j

4mS1 +
jz0

2

ejz0
2/2 − 1

D . sA7d

Again, the second term inside the parentheses is negligible
by our assumptions. And hence we see that the corrections
due to the motion of the particles are small.

APPENDIX B: CALCULATION OF THE TUNNELING
PROBABILITY (51)

To estimate the tunneling probability we simplify our
model as follows. First we calculate the minimumrm of the
potential(45); this is easily found as

grm = 2Î15fsrmd ⇔ rm = S240m2

b2 D1/8

. sB1d

Then we evaluate the the tunneling probability between two
minima through the dipole-dipole interaction barrier assum-
ing that the potential is mainly dominated by this interaction
in small distance. We use the WKB method[13] to get the
probability wsEd for the particle with the kinetic energyE
=k2/m (the mass ism/2), that is,

wsEd . exp1− 2* E
−rm

rm

ÎmfVszd − Egdz*2 . sB2d

In our case the simplified potential isVszd=4m2/ uzu3. As we
mentioned earlier we introduce the cutoff atrc to get rid of
the divergent integral. Under these assumptions and defining
the momentakm and kc corresponding to the minimum and
the cutoff, respectively, i.e.,km

2 /m=Vsrmd and kc
2/m=Vsrcd,

the integral inside the exponent of Eq.(B2) is evaluated as
below:

− 2Îkm
2 − k2rm − krmSkm

k
D1/3

B5/6,1/2S k

km
D + 3Îkc

2 − k2rc,

sB3d

where Ba,bsxd is the incomplete beta function defined by
Ba,bsxd=e0

xta−1s1−tdb−1dt and we neglect the positive orders
of rc (in the rc/ rm!1 limit). Therefore for the rest particle
sk=0d at the minimum, a rough estimate for the tunneling
probability is

wsE = 0d . expf− 4s3kcrc − 2kmrmdg, sB4d

which is given in the text after substitutingkm and kc. An-
other case is for the particle having the minimum potential
energysk=kmd:

wfE = Vsrmdg . expH− 4F3kcrc − BS5

6
,
1

2
DkmrmGJ ,

sB5d

whereBs 5
6 , 1

2
d.2.24 is the usual beta function. Hence we see

that this is the same order as Eq.(B4).
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