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A system consisting of two neutral spin-1/2 particles is analyzed for two magnetic field perturbéticens:
inhomogeneous magnetic field over all space, @dkxternal fields over a half space containing only one of
the particles. The field is chosen to point from one particle to the other, which results in essentially a one-
dimensional problem. A number of interesting features are revealed for the first case: the singlet, which has
zero potential energy in the unperturbed case, remains unstable in the perturbing field. The spin-zero compo-
nent of the triplet evolves into a bound state with a double well potential, with the possibility of tunneling.
Superposition states can be constructed which oscillate between entangled and unentangled states. For the
second case, we show that changes in the magnetic field around one particle affect measurements of the spin
of the entangled particle not in the magnetic field nonlocally. By using protective measurements, we show it is
possible in principle to establish a nonlocal interaction using the two particles, provided the dipole-dipole
potential energy does not vanish and is comparable to the potential energy of the particle in the external field.
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I. INTRODUCTION available[6]. The use of protective measurements would per-
) ) ) ] . mit the entanglement to remain. The adiabatic perturbation in
It is of fundamental interest to investigate the propertieshg protective measurement can be as large as desired, so
of elementary systems in quantum physics. We have consigng as the state evolves continuously and the instantaneous
ered a system consisting of two neutral spin-1/2 particles thaénergy eigenvalue does not cross that of other levels.
interact through the spin-spin potential. This Qistinctly quan- - other interesting features of this spin-spin coupling model
tum system displays many of the characteristic features ofe apparent when we apply an adiabatic perturbation that is
quantum systems, including entanglement, tunneling, boungdy, jnhomogeneous magnetic field over all space. We find the
states, decaying states, and spontaneous symmetry breakifigiia| singlet evolves into an unbound state and the triplet
A S|m|I.ar system, consisting of harmonically trapped alkall- develops a double hump potential, suggestive of spontaneous
metal ions that may be entangled through the dipole-dipolgymmetry breaking. For the latter case, it is possible for one
potential, has been proposed for use in quantum computingyticle to tunnel across the barrier to the other side. Also, we
[1-3. Hence there is practical as well as fundamental intery e aple to study a system in which a superposition evolves
est in the model we consider. We wanted to investigate @ontinuously in time, with the wave function changing from
system of two entangled particles that interact through a POntangled to unentangled and back to entangled. When we
tential that vanishes at infinity. One purpose of the model i$y|iminate a spatial cutoff and allow the dipole-dipole poten-
to allow us to investigate the behavior of one portion of anj5| 1o become infinite, spontaneous symmetry breaking oc-
entangled system when we adiabatically perturb the otheg s in the degenerate ground state.
portion, and thereby to investigate the coupling between the Tpe paper is organized as follows. A model for entangled
separate portions of the entangled system as a function of thgates via spin-spin interaction is constructed in Sec. II. We
distance between them. As mentioned, the properties exhily,qy this model for an inhomogeneous magnetic field over
ited may find application in quantum computing. In Our 4 space in Sec. Ill, and for a constant and inhomogeneous
model, we find a coupling between portions of an entangleghagnetic field over a half space containing only one of the
state that in principle allows one to send signals by theyarticles in Sec. IV. We discuss the possibility of the protec-
modulation of the magnetic field provided the potential en-ye measurement in our model in Sec. V. We summarize our
ergy from the dipole potential does not vanish. The maxi-egyits in Sec. VI. Two Appendixes include another possible

mum separation possible is probably of the order of mi-nq4e| and detail calculations outlined in the text.
crometers or less and depends on the maximum modulation

frequency of the signal. In principle, protective measure-

ments[4,5] can be done in one region of the system to de- Il. THE MODEL

termine the elements of the reduced density matrix, some- We will assume that we have a paitesignated 1 and)2

thing which would not be possible using conventlonalof identical, uncharged, spin-1/2 particles with coordinates

measurements unless an ensemble of identical systems W)"E‘f’andxz (and corresponding momenga andp,). We will
apply a magnetic field and determine the evolution of the
system in the impulsive approximation, in which we assume

*Deceased the kinetic energy of the system does not change as we apply
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the magnetic field. We will consider two cases: case 1, amnd we have essentially a one-dimensional problem. For two
inhomogeneous magnetic field is present throughout altlassical dipoles oriented along tlzeaxis, the interaction
space, and case 2, the magnetic field is present only in theould result in an attractivérepulsive force if the dipoles

region to the right of the origin. were parallelantiparalle).
For both cases, the Hamiltonian without external fields for We will study the effects of applying an adiabatically per-
our system is turbing magnetic field also in thedirection. With this spe-
5 ) cial choice of field, the problem remains a one-dimensional
Ho= Pz + P2 +U(|xq = X)) (1) problem since the magnetic force on each particle is also in
2m 2m the z direction.

The spin components of the eigenstatesHyf will be
simultaneous eigenstates of the total spiand the total spin
in the z direction, S=5,+S,, These states comprise the
,01-0,—-3(ay-n)(0,-n) 87 usual singlet state witB=0, S,=0 corresponding t¢5), and
U=u Xy =X g d(X1=X2) (2)  the triplet spin eigenstates wits=1; S,=-1, 0, +1, corre-
ron2 sponding toTs)=[T_y),|T),|T1). Thus the dipole-dipole po-
wheren is a unit vector in the directiofix;—x,). The first  tential results in entangled statg®. Because of the indis-
term is the usual dipole-dipole interaction while the secondinguishability of the particles, it is not possible to describe
term is the hyperfine interaction term. which particle is on the left or right; instead quantum me-
In our paper, we will first analyze the model with the chanics indicates there is a superposition of both. The spatial
approximation that the changes in the kinetic energy, potenpart of the wave functions is chosen so the total wave func-
tial energy, and the relative position of the particles are altion is antisymmetric with respect to the interchange of par-
negligible when we turn on a perturbing magnetic figld-  ticles 1 and 2. Introducing the symmetriz¢dntisymme-
pulsive approximation[7]. In this approximation, the posi- trized) wave function by
tion of the particle does not change significantly during the 1
interaction. This approximation is in the same spirit as the _ =
Born-Oppenheimer approximation in which the electronic vul2120) = \EZWR(ZlW"(ZZ)i @)l @)
motion about the nuclei of a diatomic molecule is much ) .
more rapid than the vibrational motion of the nuclei. Thus itWhere ¥r(z) (i=1,2) represents the wave function for par-
is possible to obtain the eigenfunction for the nuclear motiorficle i on the right side of the origifg, > 0), andyy(z) on the
using the energy eigenvalue for the electronic motion as théft side(z <0), the singlet state is
potential. On the other hand we assume that during the ap- 1
plication of the magnetic field the spins evolve adiabatically. - = N -
This approximation is based on the observation that the spin & \;‘2(| Fhl=)2= 2l #0202 ®
precession for the states is much faster than the translational ] ) )
motion. With this impulsive approximation, there is no 'Nhe spin-1 triplet states fd8,=0, +1,-1, respectively, are
change in the potential energy or the relative position of the 1
particles and in this sense the states act as if bound. To de- Ty = —=(| +)1]= Do+ |- )1 +)2) (21,20, (6)
termine if the states are in fact bound, one would have to V2
treat the separation as a dynamical variable, and include the
potential and kinetic energy terms in solving Schrdédinger’s [T = +)1] + )2t (21,20), (7)
equation. If the potential energy eigenvalues obtained with
the impulsive approximation are positive, then it is very un-

and the potential energy for two interacting magnetic di-
polesuo, and wo, located atx; andx,, respectively, is

likely that the state is in fact bound. Only states with nega- IT-0) === )2y-(20,20).- (8)
tive potential energy eigenvalues could be bound. Using the following relations

Under these assumptions we can choose the coordinates
system so that the particles are separated along theec- o059 =-39), (9)

tion, andz; and z, have opposite signs. Therefore we can
rotate the coordinate system such ti@f—x,) —(z;-2)n
wheren is a unit vector in thez direction. With this coordi-
nate transformations the term-n (i=1,2) becomeszfzi. Us-
ing o,-0,=25%-3 and neglecting the hyperfine interaction 0,0,/9=-19, (11)
term which is relevant only at short distanasge the dis-

o 0'2|Ti> = |T|> for all i, (10)

cussion in Appendix A& we can approximate) as gzlgzzm =- T, (12
2(252 - 3) - 30,0,
U(z)) = EE v 2571 2. (3 0'21(722|TJ_,1) =|Ts1), (13

The classical dipole force will always be in tzedirection,  the spin-spin interactiod can be represented with the basis
and therefore the separation will always be alongzieis, states{|T_y),|T1),|T),|S} as follows:
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-2 0 00O 1
o] © 200 B S = S(0y,+ 03)[B(z,0) + B(zz0)]. (20
=f(r
0 0 40/
0 0 00 There are two cases of magnetic fields that we will consider.

In the first case, an inhomogenedi$ield is proportional to
where we define z everywhere. In the second case the external magnetic field
is present on the right side of the origin oz ,z,>0).

2
%
f(f)=ﬁ, r=z-z). (15

lll. CASE 1: INHOMOGENEOUS MAGNETIC FIELD
The unperturbed potential energies corresponding to the |y THE z DIRECTION PRESENT IN ALL SPACE
eigenstatesT_), |Ty), |T), |S are -&, —-2f, 4f, O, respec-
tively. The state$T_;), |T,) could be considered as analogous  The time independent magnetic field is defined by
to classical systems in which the two magnetic moments are
parallel to each other, leading to attractive forces between the B(z)=By+bz, i=1,2, (21)
particles, whereas théT), |S) states could be considered

analogous to classical systems in which the magnetic MQghereB, andb are constants satisfying the condition men-
ments are antiparallel resulting in repulsive forces. Itis in-joned earlier. For this choice of the magnetic field we first
teresting that the singlet state has zero energy for the spiny,|y the large constant field impulsively so that there will
spin interaction and therefore is not expected to be a bounge 1 transitions among the states. Then we turn on the in-
state. There is no classical analo_g to this unique qu_anturﬁomOgeneous part adiabatical8]. In this case we can show
me_chanlcal result of zero pot_entlal energy for the singletnat the total Hamiltoniam=Hy+H, is separable into two
which follows from the properties of quantized angular mo-commuting terms that depend, respectively, on the center of
mentum. The triplet states characterized by a negative energy,ss coordinat& and the relative position coordinateWe
are the only states that might be bound if the kinetic energyafine the center of mass coordinilel(zl+zz) with con-
were included. In any event, the separation will not change 2+ ’ )
significantly as we apply the magnetic field perturbation. ?t?vgeateosciﬁ?);e::c())cf)rzj?sZtSeT;TgmvﬁE%(1) n%zz,a?en(rjng;sernetljm
At time t=0 we assume we turn on the interaction Hamil- " & P : 2 1ug .
p=3(pz,~P,,). Since[p,Z]=[P,z]=0 and[P,Z]=[p,z]=-i,

tonianH;:
' we obtain the Hamiltoniafthe reduced mass /2 for two
Hy == pulo,B(z,t) + 0, B(z,1)]. (16)  identical particles
We assume that we turn on tBefield slowly (adiabatically P2 2
in the z direction, so that the spin system can adjust to the Ho= — + L8 +U(|Z)). (22
new field and therefore remain in an eigenstate of the instan- 2m m

taneous Hamiltoniarfadiabatic theorepn[7]. The total re-
duced HamiltoniarHR (neglecting kinetic energy termss  Using the decompositiofL8) the total Hamiltonian is rewrit-
now ten

o, 0,- 30,0
HR = u2 22 o, Bz + 0, B2 )], Hr=Hi(P,2) +Ho(p,2), (23

(17)  where the term depending on the center of mass coordihate

where B(z;,1) is the value of the magnetic field, which al- 1S

ways points along the direction, at(z;,t). As noted previ- )
ously, this choice of field is done for simplicity and is not the Hy=— - u(o, + 0,)(By+b2) (24)
most general field that can be applied. We also note that in 2m LR

general this field is not consistent with the requirement that

the divergence of the magnetic field vani§l. To meet this and the term depending on the relative coordirreite
requirement for an inhomogeneous field in thelirection,

we need to also have a large constant magnetic field iz the p? b

direction. In order to determine the evolution of the initial Hy=—+U(|2) - (0, — 032 (25
singlet or triplet state when the magnetic field is applied, we m 2

find it convenient to decompose the interaction term as
In the subspace spanned (8 and |[T) we can show that

Hi=-uE-+3)), (18)  [0y-0,0,+0,]=0. The commutators with only terms in
o,, ando,, vanish, sqH;,H,]=0, and the total energy is the
. sum of the energy eigenvalues fid; and H,.
- _ _ First we find that the total reduced Hamiltoni&® is
x-= 2(0Zl o;)[B@,0) - Bz, (19 expressed in the basfl_,),|T.),|T),|9)} as

where we define
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HR=U+H, (26)
-2 0 0O
0 -200
=f(r)
0O 0 40
0O 0 0O
2u(By+b2) 0 0 0
0 -2u(By+bz) O 0
' (B0t b2) L @7 . | _
0 0 0 -9z FIG. 1. EX(z;,2) for an inhomogeneous field over all space
0 0 -9z O plotted for systems in which the particles are on opposite sides of
the origin. The system could be represented by a point in the near
whereg=bu/2 is introduced. quadrant, in which casg >0 andz,<0. If particle 1 and particle 2
Next this reduced Hamiltonian can be represented in thare interchanged, then the system would be represented by a point
|S>, |T) subspace as in the far quadrant obtained by a reflection across the dirmez,.
For ER the energy is monotonically decreasing as either particle
HR:4f(r) 10 ~ 97 01 (28) moves away from the origin and there is no stable state. All the
2 00 1 0| energies are scaled IBy=uB, and the coordinates are scaledry

. _ _ which is defined byEy=2f(rg) = ro=(2u/Bg)*>.
We express it in terms of the Pauli matrices o of T Tomier o
HY=2f(nl + B o, (29)  to b, the derivative of the inhomogeneous magnetic field.
It is interesting to determine the nature of the spin wave
functions for|+a) for large and small values of separation
when a magnetic field is present. For largéz>0) = r

wherel is the identity operator an=(-gz,0,2f(r)). Then
the eigenvalues are given in terms of the anglevhich is

defined by —o(sinw——1):
- -bzrP
tanw=&:2—$z= - (30 1
P ’ =3 = S+ =] +)il)z. (36)
and we choose the branch v
- - bz
Sinw= ——2 = Z (31) ER— —gr, (37)

Vo2 + 42 162 + b8

Physically tanw represents the ratio of the energy of the 1

dipole in the external inhomogeneous magnetic field to the [+a)— =(T)=19)=[-) +)2 (39
energy due to the dipole-dipole coupling. Solving for the V2

eigenvectors and eigenvaluesl-dx?, we obtain

ER— +gr, (39
|—a>:—sin§|T>+cosg|S>, (32
and for smallr = r —0 (sinw—0):
ER=2f - |8/ = 2f(1 - secw), (33) o2
and |-a)—|9), ER — — —r5, (40)
16
|+a>:cos§|T>+sin§|S>, (39
1 2 Z
ER=2f + || = 2f(1 + secw). (35)

If the magnetic field, which is proportional tm vanishes,
then sino—0 and|-a)—|S), |+a)—|T), as expected. For
|-a), the effective potentiaER(z) is negative and always
concave down so no stable singlet states are exp€Etgs.

1 and 2. For |+a) the effective potentiaER(2) is a positive
double hump potential which suggests stable states as shown
in Figs. 3 and 4. The peak near=z,~0 is due to the rapid
increase in the dipole-dipole potential, and the slopes of the FIG. 2. ER(z;,~z) for an inhomogeneous field over all space.
flat portions ofER on either side of the peak are proportional This is the same as the contour with+z,=0 in Fig. 1.

-3.5
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Independently we also need a condition in order for the
adiabatic evolution to procee@ee, e.g.[7]); namely, we
need to turn on the magnetic fieldhhomogeneous part
slowly, and the condition for the time perio@ for this

switching is
h(g2)?
‘ (92) 43
(4H%\(g2? + (2f)?
or
FIG. 3. The positive eigenvalugR(z;,z,) for an inhomoge- T> hbrtt (44)
neous field over all space. We see that stable states can occur in this 32,u3\r’/b2r8 +16u?
case.
Therefore the greater the separation, the more slowly the
442 inhomogeneous field needs to be applied.
ra =D B - (41)

Use of Born-Oppenheimer approximation

. . . . to the tunneling effect
For large separations, the energy eigenvalue is dominated by

the effect of the inhomogeneous field, whereas for small SO far we have neglected the kinetic term under the as-
separations, the eigenvalue is dominated by the dipole-dipofedmption that the characteristic frequencies of the spin pre-
interaction. As the relative position of two particles goes C€ssion are much greater than those of the translational mo-
from —o to O to +», the state corresponding te-a) goes  tion of the two particles. This assumption is strictly true, for
from an unentangled state, namely};|+),, to an entangled instance, for the NMR case where particles are part of the
triplet |T) state, and then back to the unentangley|+),. ~ Molecules and hence they are always bound.
By superposition of states with different momenta, we could N contrast, we want to consider a situation where the
form a state that would oscillate in time between entangledarticles are essentially free. For the eigensta®®, a graph
and unentangled statgsd]. of the corresponding eigenvalig(z) is a positive double
We need to avoid energy levels crossing each other duringump function which describes two bound particles, one on
the application of the adiabatic perturbation. Otherwise tran€ither side of the origin. The potential permits tunneling
sitions between the levels may occur. From the reduce@cross the barrier. In this tunneling process the two particles
Hamiltonian(26) one can easily find the energy levels for the Would be exchanged. First we note that the Schrédinger
other members of the tripletfT.;) to be -Z(r)+2u(B, €duation for the center of mass motion as well as the relative
+b2). Therefore, under the assumption that the two particle§notion is invariant under the transformatiap— z, and z,

are on the opposite sides of the origit~0), we require the —Z which corresponds to the tunneling transition(2p, z,)
following equalities to avoid crossing of energy levels: space, this transformation corresponds to a reflection across
the line zy=z,. The corresponding states are degenerate in

energy. The Hamiltonian is also invariant under the parity
transformatiorg; — -z, z,— —2z,.

. . I In order to analyze this process, we can utilize a Born-
Which are obeyeq pr_owdeq thg energy contribution from theOppenheimer approximation and we can separate two de-
const.ant_magnenc f|elt$o IS s_|gn|f|cantly greatgr than the . grees of freedom by the use of an average potential in the
contributions from either the inhomogeneous field or the d"Schrt')dinger equation for the relative motion of the particles.

- 2f(r) + 2uBy > ER > ER > - 2f(r) - 2uB,, (42

pole potential uBo>3f(r)+g|2/2] [12]. Thus the problem is reduced to a one-body problem with the
potential for the relative coordinates. The appropriate poten-
E+ (221"21) tial is in fact the energy eigenvalugR(z) which was ob-
17 ? tained in the previous section:

1 ~ ~ 2/~L2 41“4
12. V(Z)—Ef(z)—W+ \/gzzz+?_ (45)

1

L=

Therefore this approximation yields

\/ HgolE) = EIE), (46)

2
4
2 2 Hao= - +EX). (47)

L
5] T

FIG. 4. ER(z;,~z) for an inhomogeneous field over all space. _ _ ) )
The rapid increase is due to the divergence of the dipole-dipole AS is usual a singular potential proportionalrf@ (n>2)
potential. the barrier becomes infinitely high at the origin. To estimate
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E+(z) 2 3 2
25 W(E=0)zexp{—8\/m—ﬂ(?—?)} (51)
h% \\re Ay

A cutoff distance of 10'°m was chosen for., approxi-
mately the Compton wavelength of the neutron. This value
for r. and the value of ,, from Appendix B yield an estimate
for w~e70994~0.39. It suggests the possibility of the tunnel-
ing effect, namely, the exchanging of the two particles
through the barrier. We summarize these calculations in Ap-
pendix B.
-4 -2 2 4 z Two remarks are in order. When the potential barrier be-
comes infinite the ground state will be degenergig
=E, = A=0). This means there are no oscillations at all, and
hence there exist the statéég) and |4 ) separately. Al-
though these states are not eigenstates of the parity operator,
the tunneling probability we introduce a cutoff for small  pecause of the degeneracy they are allowed states. This is an
defined byr.. Figure 5 shows a typical shape of the potentialexample of spontaneous symmetry breaking. To examine the
barrier after this regularization. possibility of the exchanging effect more precisely we also
Since the Hamiltoniait47) commutes with the parity op- need to include the hyperfine interaction term in the original

erator, the eigenstates of it are also eigenstates of the parifyotential(2), which becomes important at short distances.
namely, they are either symmetric or antisymmetric. Let us

denote these states Igs) and |¢,), respectively. Then in

general we knovEg=< E,, whereEg (E,) is the eigenvalue of IV. CASE 2: MAGNETIC FIELD PRESENT

|#s (|da)). Now we consider a state in which the particle is ON THE RIGHT SIDE OF THE ORIGIN ONLY

located on either the right side of the barrier or the left side We assume the magnetic fieR{z) is in the z direction

and express these states|ly) and|dy), respectively. No-  and that it is nonzero only in some region on the right side of
tice that they are not eigenstates of the Hamiltor{l) in  the origin(z;,2,> 0). Outside of this region, for example, on

FIG. 5. Potential energy barrieEX(z=z-2,) after the
regularization.

general. Obviously we have the following relations: the left, the magnetic field vanishes so, for example,
1 B(z)) ¢ (z1)=0, B(z)¢(z,)=0, etc. This magnetic field
by = —(|br) +| b)), (48) break§ the translatlona_l symmetry of the field present in case
J2 1. Using these properties we can show that
1 3,09 =3,T)=0, (52
| = — () = |41, (49)
M2 - 3.9 =-B4T), (53)
up to a phase factor. Therefore if we choose the initial state S Ty=-B9 (54)
att=0 as|¢g), then after simple calculations we get the state ST RTINS
at timet as follows: where we define
Br(z1,2)) =B(z1) + B(2). (59)

A A
) cod 2 g i 2 )i, (50

Note that for our model, either particle 1 or 2 will be on the
) _ left side of the origin so eitheB(z;) or B(z,) will vanish.
whereA=(E,~Eg)/2 and we omit an overall time dependent s for the special case of a constant fijgon the right

phase factor which is irrelevant right now. Therefore we ob-sige, we haveB;=B,. With our assumptions we can express
serve that the state is oscillating between a configuration ig_(z , z,) in the following way:

which the particle is on the right side and a configuration in
which the particle is on the left side. In terms of the original Br(z1,2)) =B(zy)8(z, - 25) + B(2)) 0(z, - z;).  (56)
variables, the positions of two particles are being exchanged
in time.
To know the characteristic frequenay/# we need to
know the eigenvalues and the states of the Hamiltonian using 01
the relation A=—(¢g/Hgo|). This requires knowledge H = MBTL 0] (57)
about the solution to the Schrddinger equatidf). Instead
we can use the WKB approximation to examine the possibil- We notice that thé; field causes transitions between the
ity of this effect. singlet and triplet states like the inhomogeneous field in all
Using the WKB method we calculate the probabilitfor ~ space. This suggests that even the simplest @senstant
a particle at rest around one minimg of the potential to field By on the right sidewill do this. This transition might
tunnel across the potential barrier to the other minimum: be of interest, in particular, in applications of quantum com-

In the impulsive approximation, these results yield a rep-
resentation oH, using the basis statd§l),|S)}:
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putation. Similar discussion were done by several authors
(see Ref[3] and references thergirHowever, the transition
between the singlet and the triplet was not discussed there.

The remaining components of the triplet also transform
among themselves, which follows from

2+|T¢1> =+ BT|Til>r (58)
3 _|T.) =0. (59
The interaction Hamiltonian in the basig-),[T,)} is FIG. 6. ER(z;,2,) for a constant magnetic field on the right side,
{1 0 ] plotted for particles on opposite sides of the origin.
H,=uB . 60
| = MBT 0 -1 (60)
_ 2uBr < 3f(r). (69)
In terms of the basi$|T_,),|T.),|T),|S}, the total reduced . .
HamiltonianHR can therefore be written as Also from the adiabatic theorem we get
— i(uB 2
2 0 00 1 0 00 . 2’(:U~T2) _ (70
HR= 1) 0 -200f 10-100 (4F)"V(uBr)”+ (2f)
=f(r .
0 O ol "o o 01 Using the above conditio(69) we estimate the lower limit
0O 0 0O 0 0 10 of the timeT,,, as
61 9
(61 Tmin~ ——— = 0.114f™1, (71)
After applying the magnetic field perturbation, th.) 80f(r)

and|T;) components still do not mix with any other compo-
nents. The total reduced Hamiltonian is diagonal in the sub
space spanned H¥_;) and|T,), and the corresponding en-

ergy eigenvalues a@?1:—2f+MBT and E§:—2f—,uBT.

The restriction of Eq(69) severely limits possible modu-
lation frequencies of the field being applied adiabatically. We
briefly mention a procedure, similar to that used in case 1,
| y X which results in a much larger bandwidth. We first apply the
We now consider in detail the subspace spanned by ge constanB, field impulsively over all spacgld]. Then

[T),|S which is not diagonal. In the same manner as in the,e” apply the inhomogeneous field adiabatically over the
previous section we express the total reduced Hamlltonlaﬂght side only. With this procedure, the restriction on the

HY in terms of the Pauli matrices as
HY=2f(Nl +a- o, (62)
where the vectow=(uBr,0, 2f). Define the angle by

Qx _ uB(21,25) _ Byr®

tang= , 63

an? ay, 2f 2u (63
and the quadrant is specified by
B

sin g = ———" (64)

VB2 + 4f2’

Solving for the eigenvectors and eigenvaluesH§f we ob-
tain

0 0

|-a)=-sin=|T) + cos=|9), (65)
2 2

ER=2f - |a| = 2f(1 - sech) (66)

and

0 .0

| +a)y=cos=|T) +sin=|S), (67)
2 2

ER=2f +|a| = 2f(1 + sech). (68)

energy levels to avoid crossings is similar to EtR), but the
levels|T_;) and|T,,) are also shifted by the inhomogeneous
field iMBT|BO:o- The quantity,uBT|30:0 is always positive
since the inhomogeneous field is on the right side, so the
requirement for no level crossing is less stringent, and is met
simply if uBy>4f. The corresponding requirement for the
validity of the adiabatic approximation is the same as Eq.
(44, with r replaced by the positive value of the péig,z,}.

A. Homogeneous field on the right side only

We can consider several different magnetic field strengths
Bt(z,,2,). For the simplest case, in whid@y is a constant on

E_(z1,-21)

Z1

FIG. 7. E_L(zy,~z;) for a constant magnetic field This curve is

To avoid the crossing of energy levels, we requireobtained by plotting the functio&_(z;,2,) for the contourz;+z,

ER>ER, which implies that

=0.
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FIG. 8. E,(z;,2) for a constant magnetic field on the right, FIG. 10. E_(z1,2) for an inhomogeneous field on the right side,

plotted only for particles on opposite sides of the origin. plotted for particles on opposite sides of the origin. All parameters
for Figs. 10-13 are chosen the same as for Figs. 1-4.

the right side, we find thaEX(z;,2,) is a negative potential
(Figs. 6 and ythat does not confine the particles so no stablestate of the total Hamiltonian, there is an overall time depen-
states are expected, Wh'@(zl'_ZZ) IS a positive potential dent phase fact(xe“EE{”ﬁ for this state, which we have omit-
that also does not confine particlgsgs. 8 and 9 ted.

The eigenstatels-a) have the property that, for any value
of 6, the spins of the particles in thedirection are always
correlated:

B. Inhomogeneous field on the right side only

Next we shall consider an inhomogeneous figBd=B
+bZ+br/2) on the right side. The graphs f&f(z;,2,) (Figs.
10 and 1} are plotted with the same parameters as Figs. 1-4 (S,+S)|xa=0. (73
for comparison. Similar results are obtained in this case. _ ) ) o

The positive energfER(z,,2,) has a double hump struc- This result,.whlch follows S|nc§HT,§1+§2]:O, |ndlcate§
ture (Figs. 12 and 18with two potential wells for quasi- Fhat the spins of the tvv_o partlples remain correlated |f.an
bound states separated by an energy peak. We note that, JUphomogeneous magnetic field is applied only to the particle

like in case 1, there is no symmetry with respect to reflectiorPn the right side of the origin.
across the ling; +z,=0 so the forces acting on the particles
are not equal. The force due to the magnetic field acts onIyV_ COMPUTATION OF THE DENSITY MATRIX FOR AN
on the particle on the right side. Here we define the effective ADIABATIC CHANGE IN THE MAGNETIC FIELD
forces through partial differentiations of the effective poten- ON THE RIGHT SIDE ONLY
tials EX with respect taz; andz,.
In this section we shall study case 2 in further detail. One
C. Summary convenient way to consider the effect of the magnetic field
In summary, with adiabatic evolution of spins when we (which is present only on the right siden the state of the

apply the magnetic field on the right side, we find that thesystem on the left sidevhere the magnetic field vanishas
initial singlet ground state singlé®) has evolved into an to predict the results of a measurement of an observAble
eigenstate given by a linear combination of singlet and tripletvhich is defined only on the left side. The predictions can be

states: done by means of the reduced density maifix, —a) on the
0 0 left sideL for the statd—a) [15]:
—a)=-sinZ|T)+cos—|S). 72
=& 2| : 2| ) (72 p(L,—a) = Trign; sigd— aX—al. (74)

In this adiabatic evolution, the reduced energy goes from On order to compute this reduced density matrix [fe&), we
for [S) to 2f(1-sec#) for |-a). Since|-a) is a spin eigen- first compute the reduced density matrices for the basis states

E+(Z]_,—Z;|_)

0 E_(z1,-21)

1715 -2 -1 1 2 Z1
. -1
125 2
0 -3
715 -4
5 -5
.5 -6
-2 -1 1 2 1 -7

FIG. 9. E.(z;,-z;) plotted for a constant magnetic field on the  FIG. 11. E_(z,-z;) for an inhomogeneous field on the right side
right side of the origin. only.
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1
p(L, TS = Trignt sigd TS = ZH +L)yy(+ L] = [ Lyp(- L

+ |+ Lo+ L| == Lo~ L[] (82
and find that

p(L, TS =p(L,ST). (83

Using the preceding results, we can write an expression

FIG. 12. E.(z,2,) for an inhomogeneous field on the right side, for p(L,-a) using the definition of the statea):
plotted for particles on opposite sides of the origin.

0 6
L,—a)=sir? —p(L,T) + cog —p(L,S
|S and|T). For an observablé& which is defined only on the ol ) 2p( ) 2p( )

left side we haveAyr(z,)=0, etc. The result of a measure-

. . .0 6
ment of A for the statgT) is defined as -2 smi cosép(L,TS) (84)
Trp(L, T)A= <T|A|T) (75)
and can be computed using the expression Tor =p(L,9) - p(L, T9sin 6. (85)

1 This last result can be written in matrix form in the basis
(TIAT = Z [ LA+ Dyt G LA= Dat - LAS L, {[+0, =0, [+0)2, =02k

+ o+ LIA[+L),], (76) 1-sind 0 0 0
; 1 0 1+sing@ 0 0
where we have defined p(L,-a)=" _
4 0 0 1-sin6d 0
| t L>1 = | * >1¢L(Zl)r (77) 0 0 0 1+ Sin0
86
| £ L)y =]+ )t (2)). (79) (86)

One can contemplate making standard quantum mechani-

The corresponding reduced density matrix on the left side i%al measurements in which a superposition collapses to an

1 eigenstatg16]. Alternatively we consider the use of a pro-
p(L,T) ==[| + L)yo(+ L| + |- L)o(- L] tective Stern-Gerlach measurement, in which there is an

4 adiabatic interaction between the pointer and the system

+ |+ Lo+ L| + |- Lyx—L|]. (79 [4,5,17. We want to examine the possibility of the protective

- . , ..__measurement in our model under the assumption that we will
By a similar calculation we find that the reduced density, o in a decoherence-free subspace. In previous discussions
matrix for |S) has the same value as fdn:

of protective measurements, only the case of a small pertur-
T bation was considered in order to minimize the change in the
PL.S) = Tright iad (S (80) wave function of the state to be measured. In our system,
such restrictions are not necessary. As long as the interaction
=p(L,T). (81) is adiabatic, the state will evolve continuously as an eigen-
We also compute state of the instantaneous Hamiltonian, without any transi-
tion provided there is no degeneracy in the energy. If the
B+ (zy,-2,) magnetic field is applied adiabatically, the field can become
2 large, resulting in a large change in the wave function. Be-
17. cause the changes are adiabatic, they are reversible as the
magnetic field is reduced. Since a protective measurement of
the spin for our two-particle system does not change the state
of the system, the protective measurement does not end the
entanglement.

In the spin-spin model, the statésa) and |+a) into
which |S) and|T) evolve when a magnetic field is applied on
the right side are nondegenerate so a protective measurement

z of the reduced density matrix should be possible. Indeed, all
four basis states-a), |+ay), [T,), and|T_,) are nondegenerate
FIG. 13. E.(z;,-7) for an inhomogeneous field on the right providedf# 0 andB+ 0 so a protective measurement should
side. be possible of the density matrj8]. As a consequence the

1

-4 -2 2 4
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result of a protective measurement of an observabtbat +% is %(1—sin0) and the probability of measuring%—is

acts only on the left side can be written as the trace over thé(1 +sing). Using these probabilities, the standard measure-
reduced density matrix: ments will determine that the expectation value of the opera-
(A -a = Trp(L,— @)A]. (87) torS, +S, onthe left side is % sin 6, in agreement with the
single protective measurement.

Note that herA) represents the result of a single protec-  This comparison of the two methods illustrates some of
tive measurement on a single system. It doeshave the the advantages of protective measurements and some of the
usual meaning of the expectation valuefgfwhich is based disadvantages of standard measurements.
on the measurement of the observaBlér an ensemble of
identically prepared systems. Since the elements of the den-
sity matrix depend o, it is clear that changes i@, result- VI. CONCLUSION AND DISCUSSION

ing from changes in eithe or (z,-2,), will affect the mea- A system was considered in which two neutral spin-1/2
sured values of observablés In other words, in this model papticles interact through a diple-dipole potential. The poten-
with a finite separation, by changing the value of the magyj| |eads to singlet and triplet entangled states which are
netic field on the right side, it is possible to detect the effecty,qqified when we apply a magnetic field over all spamse
on the left side nonlocally. Note that nowhere do we use thq)’ or over just the region to the right of the origicase 2.
specific form of the potential. Indeed, we could use the for- ~ £ case 1 we showed that the singlet state is essentially
malism presented with any function of the separation. unstable and it tends to separate. However, the spin-zero
To illustrate the application of a protective measurementcomponent of the triplet will have a double hump shape en-
we could measure the total spin in teirection for both  grgy which implies the particles will tend to stay near the
particles using local measurements on the left side only. Weinima with high probabilities and form a bound state. Also

assume we use a Stern-Gerlach analyzer with an inhomoggye showed that it is possible to have a tunneling effect in this
neous field in the direction and we observe the deflection of .5ce  Such an effect might have applications in quantum

the wave packet corresponding to a particle. We assume W&mputation.
have calibrated our apparatus so that we can determine the fqr case 2 we observed that although the external field is
spin of a particle on the left side by observation of the de-yppjied only in one part of the system, the other part will be
fIchon in thez.dlrecnon at a certain point in thg experiment. atfacted by it due to the entanglement of the system. This
Since the particles arellndlstmgwghable, a single Pro_teCt'Vﬁwanifests the nonlocality of the entanglement in quantum
measurement of the spin of a particle on the left will yield amechanics. It appears that protective measurements can be
deflection corresponding to the result used to determine the density matrix without ending the en-
1 tanglement. As discussed above for the case of finite separa-
(S, * Speett siae=U(p[S, + S, ) == 5 sind, (88) tion, one limitation in the signaling between the two regions
of space in this model lies in the requirement that we must
where the value of) is determined by the magnetic field on have an adiabatic perturbation or transitions will occur be-
the right side and the distance between the particles. Thisveen states. When the magnetic field is turned on, it must be
corresponding total spin in thedirection measuredn the done slowly enough so that no transitions are induced be-
right sideis %sin 6. Since this protective measurement hastween the initial state and other states. Although the specific
not collapsed the wave function, we could do additionalrestrictions depend on the manner in which the perturbations
measurementsn the same stat® determine the rest of the are applied, they require that the potential due to the dipole-
density matrixp, _, in the |T),|S subspace. If we used dipole interaction does not vanish.
Stern-Gerlach analyzers with fields in thendy directions
for two additional experiments, respectively, we would find ACKNOWLEDGMENTS
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tum mechanical measurement the wave function collapses

and an eiger_lvalue of the operator is measured. To determin@ ppeNDIX A: MODEL WITH CONFEINING POTENTIALS

the expectation value of the operator, one needs to make a

statistically significant number of measurements on an en- In this appendix we will examine our model with addi-

semble of identically prepared systems. In our model, sincgional confining potentialgfor instance, created by the opti-

the particles are indistinguishable, for each standard meaal lasey. For simplicity we approximate this potential by a

surement on a different identically prepared system, a defledyarmonic potential around a certain poigtwith character-

tion in the Stern-Gerlach apparatus will be measured thastic frequency(), namely,V(x):%mQZ(x—xo)z. We choose

corresponds to spin of%for —%. If enough measurements are the center of the potential in such a way that two particles

done, it will be determined that the probability of measuringwill be separated by a distangg Under these conditions the
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ground state energy of the particle%'@ (we useh=1in the APPENDIX B: CALCULATION OF THE TUNNELING
Appendixe$ and the corresponding states are PROBABILITY (51)
3/ To estimate the tunneling probability we simplify our
_ 2P (z — 2
Pr(Xi) = (;) g Ytz - 2272 (A1) model as follows. First we calculate the minimug of the
potential(45); this is easily found as
§3/4__2_2. 5 24021/8
P(x) = (77 g i v, (A2) Orm=2V15f(1) = = bz“ . (B1)

for i=1, 2, where the parametérym(} is introduced. To  Then we evaluate the the tunneling probability between two
have a stable ground state in our model we require the enninima through the dipole-dipole interaction barrier assum-
ergy levels to be well separated, or the paramétisrlarge.  ing that the potential is mainly dominated by this interaction
(Similarly we can assign these wave packets for the freg, small distance. We use the WKB methfiB] to get the

particle case top After we obtain the spatial wave functions propability w(E) for the particle with the kinetic energg
for the singlet and the triple{d.8], we can estimate the effect -2/ (the mass isn/2), that is,

of the hyperfine interaction term in the dipole-dipole poten-

tial (2). We evaluate the expectation values of thieinction fm
as follows: W(E) = exd - 2 J VmV@) -EldZ |. (B2
g 3/2 2 b
(8X))s= 4(2—) (1+e?), (A3) "
a

In our case the simplified potential \§z)=4u?/|z]°. As we
mentioned earlier we introduce the cutoffratto get rid of
(8(x))7=0. (A4) the divergent integral. Under these assumptions and defining

Therefore, under our assumptions the contribution from théhe momentek, andk. corresponding to the minimum and
hyperfine interaction is negligible in our model because ofthe cutoff, respectively, i.eky/m=V(ry,) and ki/m=V(ro),
the exponential factor in EGA3). However, in contrast, this the integral inside the exponent of E@?2) is evaluated as
term plays an important role in a situation where the distanc@elow:
becomes very small and we need to add this contribution too. K\ 173 K
This regime is discussed in _the literature, for instance, see - 2\k2 - K?r, - krm<—m> B5,6’1,2<—) + 3\s"k§— K%re,
Ref. [2] and references therein. k Km

Next we estimate the change in the positions of the par- (B3)
ticles and their kinetic energy. From simple calculations it is
easy to see that the expectation values of the relative positiofihere B,p(x) is the incomplete beta function defined by
and the center of mass are zero. Similarly we obtain for thd,p(x)=[§t3X(1-t)*"1dt and we neglect the positive orders
expectation value for the center of mass kinetic energy  of r. (in ther./r,<1 limit). Therefore for the rest particle

(k=0) at the minimum, a rough estimate for the tunneling
p2 P2 3 [l
— ) ={— ) == (A5)  probability is
2m/ g 2m/+ 2m

E=0) = exp— 4(3kytc — 2Kyl )], B4
and for the relative kinetic energy we have W ) = exXiL= 48k o = ZKnf )] (B4)

2 ézg which is given in the text after substitutirlg, and k.. An-
PPy ¢ =0 A6 other case is for the particle having the minimum potential
= (A6)
e +

energy(k=k.,):

p_2 _ & & W[E:V(rm)]zexp{—{Skcrc—B(?,l kmrm”,
<m>T_4m<1+e§z<2>’2—1)' (A7) ° 2)

(BS)

m/s 4m

Again, the second term inside the parentheses is negligible -
by our assumptions. And hence we see that the correction&hereB(g,5):2.24 is the usual beta function. Hence we see
due to the motion of the particles are small. that this is the same order as Eg4).

[1] For a general reference, see, for instance, M. A. Nielsen and I.[3] R. G. Unanyan, N. V. Vitanov, and K. Bergmann, Phys. Rev.
L. Chuang,Quantum Computation and Quantum Information Lett. 87, 137902(2001.
(Cambridge University Press, Cambridge, England, 2000 [4] Y. Aharonov, J. Anandan, and L. Vaidman, Found. Ph38.

[2] L. You and M. S. Chapman, Phys. Rev.82, 052302(2000. 117 (1996.

052114-11



AHARONOV et al. PHYSICAL REVIEW A 70, 052114(2004

[5] Y. Aharonov, J. Anandan, and L. Vaidman, Phys. Rev4A time development of this system is similar to the one discussed
4616(1993. in the text after Eq(50).

[6] J. Anandan and Y. Aharonov, Found. Phys. Let? 571  [12] This sufficient condition is obtained by using the inequality
(1999. x| +]y|= x?+y? andZ=0.

[7] A. Messiah,Quantum MechanicgNorth-Holland, Amsterdam,
1963, Vol. 2, pp. 739-759.
(8] S;r&g:i)i)rslsfe?.lg.r:gdt;ezgn Zg}r:jet:g;:lg &Ttitoi?n:zetrnem’w:lfxv el [14] The validi.ty of this impulsive approximation is guaranteed by
rents. In our case the simplest realistic inhomogeneous field the gqualltyTimp<2ﬁ/MBo [71- ) )
might be chosen a8=(0,-by,By+b2) which satisfies the [15] Similarly, we can. e\(aluate the reduced density matr.lx for the
Maxwell equations. This choice of the field and the assumption ~ Staté [+&) and it is found to bep(L,+a)=(1/4)diag1
|by|<By yields the same result as obtained by our chdice +sing,1-sing,1+sinf,1-sino).
=(0,0,By+b2) [Eq. (21)]. See also the discussion in Rgf0].  [16] A. Peres,Quantum Theory: Concepts and Methagduwer,
[9] This application of the field eliminates the non-level-crossing ~ Dordrecht, 1995
condition(42). On the other hand, if we apply both parts of the [17] Y. Aharonov and L. Vaidman, Phys. Lett. A78 38 (1993.
magnetic field adiabatically, we will have a more restrictive [18] The spatial wave functions for the singlet and the triplets
condition which limits the capabilities of our model. would not be normalized by the factor {2 if we used these
[10] J. Anandan, Found. Phys. Let, 503(1993. wave packetsAl) and(A2). This is because there is overlap-
[11] We can imagine two identical particles moving toward each ping of two wave packets, and we need to renormalize the
other, represented by Gaussian wave packets which are super- spatial wave functions after forming E¢4). Therefore these
positions of the different momenta of the plane waves. The  wave packets are approximated trial wave functions.

[13] L. D. Landau and E. M. Lifshitz,Quantum Mechanics
(Butterworth-Heinemann, London, 1981

052114-12



