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Summary. — In a previous article we have suggested the experiment of
Wu-SuakNov on the annihilation radiation of positronium as a test for
the paradox of Einstein, Podolsky and Rosen. In this article, we answer
certain criticisms of our conclusions, raised by Peres and Sixger. These
criticisms are shown to be erroneous, being based on an incorrect inter-
pretation of the polarization of electromagnetic radiation in the quantum
domain. ‘

1. — Introduction.

In a previous paper (*), we have discussed the paradox of EiNsTEIN, Po-
DOLSKY and ROSEX (%?), and we have shown that the WU-SHAKNOV exper-
iment (*) on the polarization of the annihilation radiation of positronium pro-
vides an experimental confirmation of the features of the quantum mechanisms
which are at the basis of the above paradox. In a recent article, PErRES and
SINGER (°) criticize our conclusions and state that this experiment does not
actually provide such a confirmation. We shall show with the aid of a2 more
detailed analysis of the meuning of polarization of nhotons in quantum mechan-

(1} D. Boum and Y. Anaroxov: Phys. Rev., 108, 1070 (1957).

(3) A. EiNsTEIN, B. Poporskt and N. RosEx: Phys. Rev., 47, 777 (1935).
(*) W. H. Furry: Phys. Rev., 79, 393, 476 (1936).

(%) C. 8. Wu: Phys. Rev., T7, 136 (1950).

%) PerEs and P. SINGER: Nuoro Cimento, 15, $02 (1960).
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I'URTHER DISCUSSION OF POSSIBLE EXPERIMENTAL TESTS FOR THE PARADOX ETC. 965

ics that their conclusions are erroneous, being based on an unpermissible
use of classical conceptions concerning the electromagnetic field in the quantum
domain. '

2. — Summary of essential features of paradox of Einstein, Podolsky and Rosen.

PerFs and SINGER accept, as a legitimate example of the paradox of
E.P.R., the case of the disintegration of a molecule consisting of two atoms
having opposite spin, by some method which does not alter the total spin of
the system (°). We shall start therefore by summarizing briefly the main features
of this example of the paradox, and we shall show later that there is no es-
sential ditfference between it and the Wu-Shaknov experiment.

Tn such a system, the spin state is given, even after the particles are sep-
arated, by

(1) v =27y (A1) y-(B) —p_(4)p(B)],

where p.(4d)y-(B) refers to the state in which the particle A bas spin +A/2
and B has spin —A/2, ete. This means that the spins of the two particles
are correlated in a manner peculiar to the quantum theory. If the component
of the spin of particle A is measured in any direction (for example z) then the
same component of the spin of particle B is known to be opposite; and since
the two particles are far from each other and do not interact, this information
has been obtained without in any way disturbing particle B. In classical theory,
such a correlation would be easy to undevstand, because all three components
of the spins of each particle are defined simultaneously, and remain opposite
to each other, so that the measurements of the spin of A simply gives infor-
mation about a property already existent and well defined in B. In the
quantum theory, however, only one component of the spin of each particles
can be defined at a time, and the other two must be ambiguous (subject to
uncontrollable « quantum fluctuations »). Therefore, before the spin of par-
ticle A in some direction is measured, we cannot suppose that all components
of the spin of B are already well defined. On the other hand, it is possible,
as we have seen, to choose to measure an arbitrary .compon,ent of the spin of
particle A, and in this way to determine the same component of the spin of B,
without any interaction between B and A or between B and the measuring
apparatus (after which the other two components of the spin of B will, of
course, like those of A, be completely ambiguous). Such a result evidently

() See D. Bomx: Quattum Theory (New York. 1951), Chap. XXIiI.
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966 D. BOHM and Y. AHARONOV

contradicts the notion, commonly a;ccep‘ted Jbefore the paradox of E.P.R. was A
proposed, that the uncertainties of quantum mecharfics represent only the
effects of disturbances due to the measuring apparatus.

From a discussion of the prf)perties described above, EINSTEIN, PODOLSKY
and ROSEN (*) came to the conclusion that the quantum mechanics must be
an incomplete theory. In doing this, -they proposed the following criterion
for an element of reality: «If, without in any way disturbing the system,
we can predict with certainty the value of a physical quantity, then there
exists an element of reality corresponding to this physical quantity ». In the
example of the spins, this criterion implies that in a complete theory, there
would have to be a set of «elements of reality » corresponding to the simul-
taneous definition of all three components (and indeed of any component) of
the spin of particle B. These elements of reality cannot be described in the
quantum theory, because the different components of the spin do not comnwute.
Therefore, some new theory is needed, which would give a more nearly com-
plete description, in the sense that it contained these additional elements of
reality.

The above argument was answered by BoHR (7), who showed that quantum
mechanics implies an inseparability of observing apparatus and observed ohject
which contradicts the criterion of E.P.R. for elements of reality.

3. — A more detailed analysis of the experiment of Wu-Shaknov.

In order to demonstrate that the experiment of Wu-Shaknov is also a valid
example of the paradox of E.P.R., we shall first briefly review the discussion
of this experiment given in our previous article, and then we shall add a more
detailed mathematical analysis, which will help to c¢larify our answers to the
criticisms of PERER and SINGER.

This experimnent tests for the correlation of polarization of pairs of photons
emitted in the annihilation of positronium. In order to write the wave function
for this problem, we first consider a single photon moving in the +-z direction.
Let % rvepresent the wave function of such a photon, with wave vector L,
and linearly polarized in the 2 direction, v} the same for the y direction. Then
the wave function of a photon polarized in an arbitrary direction is

(2) v Y = "111/’:'*"02"/’;a

where a, = cosx and «, = sin«. There is a formal analogy here to the spin
problem, an analogy that we shall develup in detail presently. Thus, the two

() N. Bonr: Phys. Rev., 98, 696 (1935).



FURTHER DISCUSSION OF POSSIBLE EXPERIMENTAL TESTS FOR THE PARADOX ETC. 967

states ypy and o} correspond to the two opposite spin states g, and ¢- in some
direction, say z. The wave function for a spin defined at an arbitrary angle
relative to z (in the z -~z plane) is

(2" _ (Dﬂ-——cosgd5++ sinédi_
so that @® corresponds to 2.

It is clear that a rotation, §=180° of the spin vector corresponds to a.
rotation, o = 90°, of the polarization vector. Therefore, what corresponds to
the two possible spin states of an atom are two perpendicular possible direc-
tions of polarization of the photons; and just as the component of the spin
in the direction § does not, in general, commute with that in the = direction,
so the component of the polarization in the direction « does not, in general,
commute with that in the z or y directions.

As stated in our article, the wave function of the pair of photons from the

annihilation of positronium takes the form
(3) @ = 2" Hyyl — vivi)

where k represents the wave vector of photon A and &’ that of photon B (in
a direction opposite to that of A).

From the similarity of (1) and (3), one can conclude that there will be a
type of correlation in the polarization directions of the two photons7 which is
analogous to that of the spin directions. We can measure the polarization of
photon A in a pair of directions, say « and y. If there is’'a single photon, then
it will be found to be polarized either in the direction xz or y. Whatever the
direction is, we can deduce that photon B will be polarized in the other di-
rection. This is analogous to measuring one component of the spin of par-
ticle A and deducing that the same component of B is opposite. But we ecan,
instead, rotate the pair of axes (¢, y) through some angle x and once again
we will obtain the same kind of correlation between photons A and B for
polarization observables that do not commute with the original set. This is
analogous to measuring the spin of particle A in a direction at angle g = 2z.
and obtaining the corresponding correlation to the rotated spin operators for
particle B. .

At first sight, there may seem to be a difficulty in the above formal anal-
ogy between polarization and spin. If one applies the classical idea of a well
defined polarization vector too literally, one comes to the conclusion that when
the linear polarization in the # and y directions is defined, ‘then the state of
.polarization cannot be ambiguous. As a result it might seem inconsistent to
state that when we rotate the apparatus, new polarization operators not com-
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968 D. BOQHM and Y. AHARONOV

muting with original ones will arise, which represent uncertainties in the po-
larization vector. It seems likely, indeed, that this problem is at the root of
the main criticism of PERES.and SINGER (as we shall explain in the next section).
In order to clarify this point, we shall therefore develop here a further analysis
of how the polari’zation vector must be described in quantum mechanics.

To show exactly what operators of the electromagnetic fields are measured
when a polarization experiment is done, we first write the well known. expan-
sion for the vector potential operator, from which the fields can be derived.

{4) A(x, 1) = V2me Y (Cy,exp [i(k-x — ot)]+ Cf; exp [— i(k-x — w1)]) E]\"; ,

ka

where ¢, is a unit vector normal to k and where ¢ has two values, corre-
sponding to two possible directions of polarization of the k-th wave. (', and
€., satisfy the commutation relation

{3) [Chis Cpyl = 0,00k — K.
If one introduces the Hermitean operators

, *
Cri+ Ckae Cri— Crs

{6) Qri = T ’ Pri =

vz o

which satisfv the commutation relations

() (Prir Qril = — ik .
We obtain

(8) A(x, 1) = 2V7e S [qas cos (k-5 — ot) + phqsin (k-x — ot)] % .
< !

A linearly polarized photon is represented in the above equation as &
superposition over a small range of k with ¢ given a certain value. This leads
to a wave packet describing the localization of the electromagnetic energy
associated with the photon. If in the Wu-Shaknov experiment, the two pho-
tons are far enough apart, we can use wave packets with a broad range of 2z ’
and therefore with a very small range of k. We can then simplify the problem
by approximating the packet by a plane wave having a definite k (as is in
fact done in all calculations concerning this experiment). The only part of ‘
the vector potential that is relevant for our problem is then a sum of two
operators, one for %, the other for %' (which is opposite to k). Let us consider

T



FURTHER DISCUSSION OF POSSBILE EXPERIMENTAL TESTS OFR THE PARADOX ETC. 969

one of these operators,

9 /55
{9) A%, 1) = 7{‘”0 [l_(j,'.l cos (k-x — wt) + py, sin (k- x — @) ey, +
(G, €08 (k- x — w) -+ 7),‘2si11(k-x—r:)t))e,,=] R

which represents a photon of direction k polarized in an arbitrai'y direction.

In classical theory 4,; and p,; can be simultaneously well defined, so that
the polarization vector for a given k can be specified unambiguously by spec-
ifying the four numbers, ¢,, 9., €, and p,. Note that ¢, and p,, de-
termine both the intensity of the wave I, = (¢},+p%)/2 and its phase ¢,, =
= tg! ¢,./Pu- With general values of ¢i, p., one obtains elliptical polariz-
ation, which reduces to linear, if only one of the I, is not zero, and to circular,
it I, =1, and @, —@, == /2.

In the quantum theory, ¢.; and p,; do not commute so that they cannot
be defined simultaneously. Thus, as in the case of the spin, the direction of
the polarization vector is, in general, ambiguous. In addition, with polariz-
ation, we must take into account the phase of the wave, which is also, in gen-
eral, ambiguous.

Although it would, in principie, be possible to measure ¢i;, or p;; or some
linear function of them, by measuring the Fourier components of the electro-
magnetic field, this would require that the number of photons became inde-
terminate. Such an observation is not what is actually done, when polar-
ization is measured optically, nor is it what is done in the Wu-Shaknov exper-
iment. Rather, what is done is to make measurements under conditions
in which the number of photons is well defined, so that ¢;; and p,, must be
to some extent ambiguous. What is usually called the «direction of polar-
ization » then correspond only to a kind of average orientation of the field
vector itself. In fact, what is measured is I,; which is proportional to the
energy of the part of the wave associated with the direction 4. Thus, we meas-

ure the commuting pair of operators,

2 a2
I, = Pr, = qu
Fy T 5

-

C 2t
qk,

+
2

(10)
1, =&

Classically, I, and I, are always well defined numbers with a continuous
range of possible values (from 0 to oo). Quantum-mechanically they need
not, in general, be well defined (i.e. unambiguous bechuse they are operators),
but if the system is an eigenstate of these operators, their values are discrete
and restricted to (n-+%)h. )

In the experiment that we are discussing, we need consider only two pos-
sible values of I, and of I, viz., h/2 and 3h/2. The value k2 corresponds

63 - I Nuovo Cimento.
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970 : D. BOHM and Y. AHARONOV

to the ground state (i.e., the v@cuum)7 while 3h/2 corresponds to the first ex-
cited state (i.e., one photon is present). It must be emphasized, -however,

that the I,;, are not components of vectors, rather they are components of

tensor of the second rank. Theijr relation to the field vector is rather indirect.
Indeed, when the I,; are defined, the field vector still has a considerable am-
biguity, not only in direction, but also in phase, so that it may be thought
of as having an indeterminate degree of elliptical polarization. This follows
basically from the fact that even the components of A, with no photon in it
still has a «zero point» energy of hj2. As a result, the component of A, is
still not zero, but may be said to «fluctnate» in the guantum mechanical
sense about an average value of zero. Although this fluctuation is associated
with the vacuum properties of the field, it is, nevertheless, of experimental
significance, since it would be detected, if a precise measurement of the Fourier
component of the field were actually made.

1t is clear then that as we have already stated, I,, reflects only some average
property of the polarization. In the classical limit, when the number of photons
can be very large, the zero point fields can be neglected and the polarization
vector approaches a well defined direction. This justifies the usual procedure
in the classical domain of identifying the direction of polarization. with the
orientation of the apparatus by which I,; is measured. In the quantum do-
main, however, we must be careful not to become confused by the loose ap-
plication of classical language, which, for the sake of brevity, has customarily
been carried over into the description of quantum mechanical experiments.

The fact that after I, and I, are measured the polarization vector A4,
is still ambiguous, is reflected in the experiment in which one measures the
operators I;, and I;z which represent the average polarization along a pair
of axes, rotated at an angle « relative to the original set. If the first measure-
ment of T ¥, and I r, Were able to determine the polarization vector, 4., un-
ambiguously (as is suggested by the uncritical application of the classical lan-
guage), then there could be no uncertainty in this vector, so that the result
of the measurement in the second set of axes would have been determined
without any ambiguities. Actually, however, as we shall now show, the oper-
ators, I;.‘ and I;»-, do not commute with 7, and I,. They are therefore not
determined by I, and I, without uncertainty. To show this, we recall that A,
transforms as a vector under rotation, so that (g, ,q,) and (p,, p,) each
separately behave as a vector. We therefore have

' ! .
G, = qy, COS X+ @, SINQ
i, = Qi COS2— g sina
(10) " ;o
’ D, = Py, COS &+ Py SIN &

! ! .
Di, = Py, COS X — Py, SID &
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FURTHER DISCUSSION OF POSSIBLE EXPERIMENTAL TESTS FOR THE PARADOX ETC. 971

and from this, we obtain

ra 9
I, — B+ G) _ I, cos® o + Iy sin® o0 4 sin 20(pe, e, + Pi,4x,) ,

. 5
{(11) 2 g
I, = "=—2'—" == 1, sin®« + Iy, cos® & — sin 2a(py, 9, + P, qx,) -

(Note that the I,, do not transform as a vector.)

It is clear that I, and I, , which both contain the operators (p, g, +2.4.),
do not commute with I, and I, . This demonstrates that the measurement of
what is usually called «polarization» in a pair of orthogonal directions does
not completely determine the result of a similar measurement in another pair
of orthogonal directions.

In our original article, we have indicated this property of the polarization (*)
but without going into as much detail as we did here. As we pointed out there
one could already infer this property from equation (2) of the present article
which states that the wave function (and not the I, operator) transforms as
a vector. Whenever any measurement whatsoever yields two possible results,
corresponding to orthogonal wave functicns, then o linear combination of these
wave functions represents an eigenstate of another operator, (or commuting
set of operators), which fails to commute with the first operator, (or commuting
set of operators). Since the polarization measurement in a rotated frame leads
to just such a linear combination of wave functions, we concluded that the
measurement of what is usually called linear polarization in the rotated frame
corresponds to a set of operators that do not commute with the original set.
A more familiar case of this behaviour is found with spin, where as equation (1)
shows, the measurement of a given component of spin in a rotated frame leads
to a similar linear combination of eigenfunctions corresponding to measure-
ments in the original frame.

On the basis of the above discussion, we see that the experiment of Wu-
Shaknov is an example of the paradox of E.P.R. As in the case of spins, we
can here measure what 'is usually called the «linear polarization » of one of
the photons, say A, and from this, we conclude that B has an orthogonal
«linear polarization ». This can be done with the orthogonal pair of directions
(z,y), equivalent to finding that the spin is 4 /2 in the z-direction; or else
is can be done in any rotated pair of orthogonal directions (equivalent to
" measuring the component of the spin along a rotated axis). Since the operators
corresponding to these sets of measurements do not commute, we have again

(") See reference ('), p-, 1073, first and second paragraph after equation (4).
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972 D. BOHM and Y. AHARONOV

the same kind of quantum mechanical correlation which was described in
Section 2 in connection with the spin, and which is-at the basis of the paradox
of E.P.R. ’

4, — Discussion of criticism of Ferez and Singer.

As we stated in the introduction to this article, the criticisms of the con-
clusions of our previous paper by PEREs and SINGER are based on an erro-
neous application of classical conceptions of polarization of electromagnetic
waves in the quantom domain. This is brought out most clearly in their main
criticism (*), which occurs near the beginning of Section 3 of their article (%).
They state that «linear polarization is useless (for the purpose of representing
the paradox E.P.R. in terms of photons) because the two directions of linear
polarization are similar to the two values of the spin in some given direction.
Thus, obviously there can exist no uncertainty relations for linear polarization
alone. »

The above quotation clearly implies that PERES and SINGER regard the
usual linear polarization experiments as capable of determining the direction
of linear polarization unambiguously.

As we have shown in Section 3, however, such an implication is erroneous,
because these experiments do not measure the field vector, but only certain
functions I, and I, , which still leave a great deal of ambiguity in the phase,
magnitude, and direction of this vector, as well as in the degree of ellipticity .
of the polarization. This ambiguity is reflected, as we have shown, in the
fact that measurements of «linear polarization » in some other pair of directions
does not commute with that in the original pair. ' .

Because of the above misconception concerning the nature of polarization
in the quantum domain, PERES and SINGER went on to suggest an alternative
formulation of the paradox E.P.R. for photons, which they (also erroneously)
claimed to be inadmissible. To do this, they introduce what are called « Stokes
operators » which satisfy commutation rules (**) similar to that of spin. One
of these operators corresponds to the circular polarization of a photon, and

(") PerEes and SINGER begin this section with a statement that we «have over-
looked the important fact that the polarization of photons is physically different from
the spin of fermions, as photons have zero at mass, their spin... is always oriented in
-the direction of propagation.» Since we have never attempted to formulate the para-
dox of E.P.R. by considering directly the spin operator of photons, the above state-
ment has no connection with our article, and is indeed quite irrevelant to the point
at issue. :

("*) See reference (°), equation (7).
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another to its linear polarization. Because these operators do not commute,
one can obtain the result already known by other methods that linear and
circular polarization cannot be defined together. They then assert that this
set of operators cannot be used to provide an example of the paradox of E.P.R.
For precisely defined elements of reality would then have to exist in photon B,
corresponding to the simultaneous definition of the states of linear and eir-
cular polarization. This, they say is « non-sensical because if the circular polar-
ization of a photon is precisely defined, its linear polarization cannot be pre-
cisely defined, and vice-versa.» Thus, they conclude that the attempt to
regard the Wu-Shaknov experiment as an example of the paradox of E.P.R.
« does not lead to a paradox, but to an inconsistency ».

The above argument is likewise based on the unjustifiable use of the clas-
sical description of polarization in the quantum domain. Indeed, from their
statement that there can exist no uncertainty relations for linear polarization
alone, it would follow that once the wave is defined as «linearly polarized »,
its field vector would have a well defined direction, so that by definition it
cotld not at the same time be circularly polarized. The error in this point of
view is, as we have already pointed out, that the measurement of «linear
polarization » does not define the field vector without uncertainties, but leaves
a residual fluctuating part of undefined phase and amplitude. In other words,
a better idea of this field vector is obtained by regarding it as elliptically po-
larized, with an indeterminate degree of ellipticity, and with an arerage polar-
ization in the direction of the measnrement. Clearly, such an elliptically
polarized wave ean be regarded as made up of w linearly polarized wave plus
a circularly polarized wave. In the classical limit, both could be well defined
and measured together, so that it would have meaning to specify the inten-
sities and phases of both, without any self-contradiction. Quantum-mechan-
ically, however, the two kinds of polarization cannot, as we shall see, be
measured together, so that if one ix well defined the other must be ambiguous.

We shall now discuss this problem more formally. In order to define the
field veetor completely, we need (as shown in Section 3) four operators, of
which only two can be defined together. Instead of the original set (py,, ),
we can take the intensities, I, and I, , correspouding to «linear polarization »
and another set, I, and I, , corresponding to « circular polarization ». These
latter are defined by

] I = [(le—‘ Vi)t + (s, + pk‘)2] _ I+ I, + (Pe e, — Dry Ox,)
e 2 N 2 -
(10) \ -
\ [ [(qk. + PV A+ (D, — qk._.)~] L Ly~ (9 G, — Pr, Q)
= 2 B 2

It is clear that I, and I, do not commute with [, and I,_.
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974 . D. BouM and Y. AHARONOV  °.

On photon A, we can then measure either the set I, and I, or the set
I, and I, (which classically could, of course, be defined together). Thus,
as in the case of spin, we have a set of non-commuting operators, subject to
correlations at long distances, without any interactions. The analogy is that
when «linear polarization » is measured, the «circular polarization» is inde-
terminate and viée-versa; while with spin, when one component is measured,
the others are indeterminate and vice-versa. The fact that there are three
components of the spin and only two for polarization is evidently not rele-
vant here, nor is it relevant that polarization has phase as well as ampli-
tude, while spin has no phase.

Affer discussing the above described example, PERES and SINGER stabe
further that «it scems that the impossibility of constructing an E.P.R. para-
dox for photons is connected with the impossibility of describing them without
second quantization, while this paradox can be raised only for that part of quantum
mechanics harving a classical counterpart. »

With reference to the above statement, we would like to emphasize that
the essential characteristic of the paradox of E.P.R. is that there must be
two or more non-interacting dynamical systems separated in gpace so that it
will be certain that if one of these variables is measured, the other is not dis-
turbed in any way. Then, if the properties of the above systems are correlated
in the way that has been described (such that the nieasurement of one of a
set of non-commuting observables of one of them provides the value of the
corresponding observable in the other), then we have an example of the para-
dox. In the example of the Wu-Shaknov experiment, we describe the systems
in termis of a pair of wave packets of the vector potential operator, repre-
senting photons, which are clearly very distant from each other in space, and
which are not connected with each other in any way, while the measurements
under discussion are taking place.

Finally, it should be stated that the quantum theory of the eclectromag-
netic field, (i.e., the theory involving second quantization) does evidently have
a classical counterpart, namely, the classical theory of this field. Indeed, in
defining our polarization operators we were guided by the classical limit, re-
placing dynamical variables of the field vectors by operators, etc. The only
difference between our example and that given in the original paper of E.P.R.
is that we have used a field example, while there, a particle example was used.
But as shown above, this difference is not relevant.

Elsewhere in their article (*), PERES and SINGER criticize our conclusions
along a different line, claiming that our analysis of the Wu-Shaknov exper-
iment would, in any case, not be of importance, because the conclusions that

() Seo reference (°), section (2).
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we drew could have been obtained immediately by considering the problem
of parity conservation in electrodynamics.

Briefly, this point is concerned with the Furry hypothesis (%), which was
aimed at avoiding the « paradoxical» features of the quantum mechanical
treatment of this problem. This hypothesis involved the assumption that
the many-body Schrédinger equation is correct for atomic orders of distance
(where it has been tested quite well), but breaks down in a fundamental way
at macroscopic distances (where the paradox of E.P.R. is relevant and where
there has previously been no clear experimental test). Briefly, FURRY con-
siders the possibility that in the latter case, the wave function for the system
becomes a product of the wave functions of the parts, with no superposition,
but with a certain probability that a particular product will appear. In our
original article we calculated the results of the Wu-Shaknov experiment accor-
ding to the Furry hypothesis with all possible assumptions concerning the
' polarization states with which the system separates, and we have shown that they
are all inconsistent with the results of the experiment (which were already
known to agree within experimental error with the predictions of the quantum
theory).

PEREs and SINGER remark thut for the case of a pair of photons, the Furry
hypothesis would lead to non-conservation of parity. They then assert that
if parity were not conserved, this would have been noticed long ago, because
quantum electrodynamics allows experiments of the highest accuracy.

Tt must be stated, however, that no test of conservation of parity in electro-
dynamics with regard to macroscopic orders of distances was possible, pre-
vious to the Wu-Shaknov experiment (and similar experiments). First of all,
it is evident that no purely classical observations of the electromagnetic field
can possibly test for the conservation of parity. For the parity is defined as
a reflection property of the ware function of the whole system (in this case the
electromagnetic field). Since the wave function does not appear in the clas-
sical limit, no eclassical property can depend on the parity of this function.
The fact (to which PERES and SiNGER have alluded) that parity is a discrete
quantum number, for which there is no meaning to statistical conservation,
is therefore not relevant in the classical limit.

Thus far, parity conservation has been tested most accurately in spectro-
scopy, but here the many-body systems (e.g. atoms) have not extended over
very long distances, so that these experiments do not test for the possibility
of a breakdown of conservation of parity in the case of the paradox of EP.R.
The only way to test for this breakdown is to comsider an experiment carried
out to a quantum-mechanical level of accuracy on a many-body problem, in

(") See reference (*).
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which there is a correlation of the properties of systems at a macroscopic order
of distance; and as we have already stated, experiments of the general type
that we have described here are the first case where such a test can be made.

RIASSUNTO ()

In un lavoro precedente abbiamo suggerito come prova per il paradosso di Einstein,
Podolsky e Rosen, l'esperimento di Wu-Smakxov sulla radiazione di annichilazione
del positronio. In questo articolo rispondiamo ad alcune critiche alle nostre conclu-
sioni, avanzate da PERES e SINGER. Si mostra come queste critiche siano erronee,
essendo basate su una scorretta interpretazione della polarizzazione della radiazione
elettromagnetica nel dominio quantistico.

*) Tradusione « cura della Lieduzione.

5184



