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Any clectromagnetic signal is representable, in the guantum mechanical
description, by a suitable combination of photon states. We consider the
question of which of the infinite number of possible combinations should cor-
respond to a classical signal. The characteristic classical criterion we adopt is
the indistinguishability of the radiation in two separate channels, whether it
has been produced by independent sources or by a single source whose output
is divided between the channels. For a quantum source a distinetion is in gen-
eral possible. We prove that the unique guantum state for which a distinction
is not possible is the pure state characterized by Glauber as maximally co-
herent. The connection of this indistinguishability property with charac-
teristic differences between classical and quantum measurements is empha-
sized.

L INTRODUCTION—THE PROBLEM

Sources of electromagnetic radiation emit photons. Nounetheless, a description
of the emitted radiation by meaus of Maxwell’s equations ignoring the photon
aspect has proved adeguate for most cases encountered in practice. Certainly
the adequacy of a classical wave description of the electromagnetic radiaticu
produced by macroscopic oscillations at radio frequencies is well established.
Although the underlving photon picture is commonly accepted in this case there
is no need to use it to account for any experimental result. On the other hand
since the photon was introduced in connection with experiments on the emission
and absorption of light from mucroscopic oscillators one expects that considera-
tion of photons will be essential in the optical {requency range. For example, in
experiments in which photons are counted the photon isan indispensable concept.
However, the only role which the photon plays i most analyses is to carry dis-
erete amounts of energy and momentum. As Franken has stated “it is possibile
to reproduce all the well-known results for the interaction of light and matrer
by postulating that quantum mechanies applies only to the matter and not to
thie light.”? This is an affirmation of the utility of the conventional semiclassical
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radiation theory, in which the radiation is treated classically prior o its detec-
tion, at which point the appropriate number of photons is a,ssoci_fited with the
field. In this theory the electromagnetic field is taken to be a prescribed cxternal
classical field for the purpose of calculating transition matrix elements between
atomic states. .

The proper description of the state of the radiation field, as’distinct from its
interactions, entails considerably more quantum mechanies than the mere asso-
ciation of the photon with a packet of energy and momentum, In most optieal
experiments the proper quantum mechanical description is indistinguishable in
practice from a classical wave description (2) in which the amplitude has a
simple probability distribution. This apparent equivalence of two vastly different
types of description results from the paucity of the set of measurements so far
considered for the radiation field and not from an intrinsic unity of the descrip-
tions. By making the field amplitude a stochastic variable with a simple prob-
ability distribution one can easily extend the classical radiation theory to pro-
vide an adequate description of the state of the radiation field for most of the
optical experiments conducted thus far.?

To any classical description of the radiation field in terms of low order mo-
ments (correlation functions, ete.) there corresponds an infinite number of
possible quantum mechanical states having the same moments. The insensitivity
of this kind of classical description to the detailed quantum structure of the
radiation state is largely responsible for its success. In view-of the diversity in
the possible choices of quantum states to correspond to a given classical state
it is natural to ask whether one can find a simple physical eriterion which makes
the association between the two types of state unique. To make the problem
simple we shall attempt to find such a eriterion when the classical field is a
prescribed nonstochastic function of time.

This question has been considered by Glauber (3, 4). His criterion is to choose
the quantum state of the electromagnetic field to be that produced by a classi-
cally prescribed current. In this prescription the current is assumed to suffer
no reaction from the emitted radiation and is therefore taken to be a ¢-number
in the quantum caleulation of the radiation field. if one restricts the electro-
magnetic field to one mode, one can easily show that the quantum mechanical
state vector for the field is given by the Glauber state | a):

w

la) = exp (=25 [a ) 2 [n)a"/v/nl (1)

7=

=)

In Eq. (1) the vectors | n) denote states with » photons in the zelected mode,
and « is a coniplex number related to the corresponding classical field amplitude.

2 Tor a comiprehensive survey of the relevant experiment and theory see (2).
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This eriterion is rooted in the method of generation of the field. One can ask for
an alternative criterion which makes no reference to the generation of the field,
but which refers instead only to operations on the field itself. Glauber has given
a formal criterion of this kind; it also specifies that the quantum mechanical
state vector is the | a) of Eq. (1). Glauber has also given several other criteria
intended to single out special quantum states to correspond with classical radia-
tion fields; these criteria are satisfied by the states | «) but there are additional
states which satisfy them. His formal criterion is that the quantum state | «)
corresponding to a classical field in one mode with amplitude « is the eigenstate
of the photon destruction operator a for that mode:

- ala) = ala) (2)
A criterion more closely related to possible measurements of the field is that
there exist a function e(z) such that each member G (ay, -+ -, Z3.) of the

infinite sequence of correlation functions factors as follows:

™

¢ e,y ) =[] @elanes). (3)
This property of the G“s is used to define maximal coherence for a quantum
mechanical state of the field. With this definition the Glauber states | «) are
maximally coherent, but they are not the onlv maximally coherent states.

The principal result of this paper 1s a simple physical criterion for the unigue
quantum state corresponding to a presgribed classical electromagnetic field. This
eriterion, which refers only to simple operations on the field itself, singles ou:
the Glauber state, and thus provides an alternative characterization of it.

In Section II we shall present our simple physical criterion, the reasoning
which suggested it, and some of its consequences. We shall show that the Glauber
state is the only pure quantum state which satisfies our criterion. We shall then
generalize our argument to apply to mixed quantum states possessing a P-repre-
sentation (9). Tinally in Section ITT we shall consider some simple examples
whiech illustrate characteristic features of the theory of quantum measurement,
features which naturally arise when we take into account the difference between
measurement of classical and quantum systems—the criterion we propose is
based on a consideration of the characteristic differences between measurements
made on pure quantum and pure classical states.

II. A SPLIT SOURCE VS. INDEPENDENT SOURCES
Suppose we consider a pair of radio transmitters B and €' separated by many
wavelengths of their basice carrier radio wave. We shall examine two distinet wavs
in which thege transmitters mayv be driven. In case 1 the two transmitters are
antennas fed by a common signal source A connected to B and € by radio fre-
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quency transmission circuits such that the radio signals from B,and ¢ will be
identical, except possibly for an overall amplitude ratio which depends on the
way the signal from A is divided between the circuits carrying it to B and .
Suppose the signal from A is the carrier modulated at audio frequencies by a
recording of Sibelius’ Violin Concerto.

In case 2 the transmitters B and (' are independent of each other; each has
its own radio frequency oscillator and its own program of audio frequenecy
modulation. Suppose that B and C' both decide to play recordings of Sibelius’
Violim Concerto; suppose the recordings are identical. Then according to classical
physics there Is no reason, in principle, why it should not be possible for the
signals emanating from the transmitters B and C' in case 2 to be identical to the
signals emanating from the transmitters B and C in case 1. In classical physics
the stochastic variations of the radio frequency oscillators and other components
contributing to the signals can be imagined to be as small as we desire. There-
fore, in classical physics we can suppose that for any preseribed nonstochastic
signal produced by 4 in case 1 it would be possible, by having suitable record-
mgs available, to produce output signals from B and C in case 2 that would be
indistinguishable from the output signals from B and € in case 1. (We exclude
wholly stochastic signals because for these it is easy to distinguish between
cases 1 and 2. Indeed, consider stochastic sources with zero average field. If a
single such source is split as in case 1, the average product of the fields in chan-
nels B and ' is always positive, but if the fields in these channels are produced
by statistically independent sources, the average of the product is zero.)

If the cases 1 and 2 are set up classically as deseribed above, then it is im-
possible to determine which case actually obtains if we are not permitted to
examine the sources A, B, and C' and their counecting links; that is, if we are
confined to measurements on the radiation emitted by the system. On the other
hand considering cases 1 and 2 with quantum sources we might suppose that it
would always be possible to tell the difference between the two cases if all possi-
ble measurements on the output radiation are allowed to us. This supposition
is an error, and 1t 1s the error that this paper is about. Note that we are explic-
itly including all possible measurements on the output radistion; correlation
measurements relating numbers of photons produced by B to the number pro-
duced by € are tneluded. In the classieal situation we have deseribed so far such
correlationl measurements give 1o new physical information: if the signals from
B and C are nonstochastic, local measurements, ie., those made on B and on ('
separately, will suffice to predict the results of all possible correlations between
the output of B and the output of C. However, in quantum mechanies correlation
measurements may be needed to complete the specification of pure states ().
In Section ITT we give an explicit example of two pure quantum states which
are ndistinguishable if we are allowed to perform only local measurements on
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them, but which are distinguishable when correlation experiments are added to
our arsenal of possible measurements.

The erroneous argument that led us to suppose that case 1 can always be
distinguished from case 2 if source 4 is a quantum source is the following. We
mmagine that source 4 produces a pure quantum state containing photons of a
definite carrier frequency. We shall neglect the modulation of the carrier; that
can be inserted by the reader by making the coefficients occurring in our ex-
pressions time dependent. Then the most general pure state possible at source
A has the following form:

o
[Ya) = 22 Cum [m)a, (4)
n=0
whetre the vector |m), represents a state in which m carrier frequency photons
are present at source 4, and the (4, are arbitrary complex numbers that satisfv
the normalization condition

w
22 CanClim = 1. ()
m=0

We suppose that the contents of source A4, once they are generated by A, are

divided between B and € in a definite way. We suppose that there 1s an amplitude

p for a photon in 4 to be sent to B, and an amplitude » for that photon in 4 to

be sent to €. For example, the amplitudes could both be /14 if the splitting

of the signal from 4 were accomplished by an ideal half-silvered mirror. We then
concluded that the splitting action would obviously produce correlations between
the contents of B and the contents of C: if a photon goes to B, it cannot go te

C, and vice versa. Such correlated states are described more fully in Section I1T.

But in case 2 we have independent. quantum sources at B and €, so we expect
that the quantum state produced by such sources must factorize; there should
be no correlations hetween the radiation produced at B and the radiation pro-
duced at C. Clearly that expectation cannot be wrong; it is what we mean by
independent sources, Hence we made the erroueous conelusion that case 1, which
we supposed to produce a correlated quantum state, could always be distin-
guished in principle from case 2, which must produce uncorrelated states. If
that were so then no matter what quantum source we had at 4 ; that is, whatever
the coefficients ('y,, , then such a source driving B and C would ahvays be di:-
tinguishable by its output at B and € from any independent sources driving K
and C: the classical indistinguishability would never obtain.

We then tested this prediction on a Glauber state sowree at A4 and found it to
be false: there are no correlations in the B-C' quantum state if the state [¥y)
s a Glauber state. It oceurred to us that possibly the Glauber state is the only
pure quantum state possessing this indistinguishability properts: we proved that
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it is. Then we wondered whether there exist other quantum states having the
indistinguishability property if we enlarge the class of quaitum states to include
statistical mixtures specified by a density matrix. Again the Glauber state is the
only quantum state which has this classical characteristic, _

We now present three’ things: (1) a demonstration that the Glauber state at
A produces an uncorrelated state (a state which factorizes) at B-C'; (2) a proof
that the only pure quantum state at 4 that can produce a factorizing state at
B-('is the Glauber state; and (3) an argument to show that the only quantum
state that produces a factorized state at B-C is the Glauber state.

Up to this pomnt we have referred to a signal source 4 and transmitier B
and C. T'or generality we shall drop this hardware description and refer hence-
forth to channels A, B and C. Each channel will be taken to correspond to one
mode of the electromagnetic field. The modes B and C are assumed orthogonal.
This corresponds to the separation of the transmitters introduced previcusty.*

Since the n-photon state |n). can be written

In)a = [(ash)"/ (n)"]] 0)a (6)
where | 0), 1s the no-photon state and a.' is the usual photon creation operator
for channel 4, an equivalent expansion to (4) is

=

N/A> = 72 dfﬂA(aAT>ﬂ| O>A . (7)

=0

The most geueral states generated by independent sources in chanuels B and €
can be written similarly:

[ V) = ;ClnB(aBT)" 10)s 5 [We) = ;J(ZIIC(GC'T}N [0)c. (8)

Since the coefficients Cps, Crp, Cne are normalized according to Eq. (3), it
follows that the coefficients dos, dms , dme ave such that the functions

o

fi(z) = 2 due” (9)

n=0
are entire functions. The most general state vector | ¢). for case 2 iz
) = faas")fc(ac’) | O)se (10)

* These three resnlts were presented in a paper at the Conference on the Physies of Quan-
tum Electronics, Puerto Rico, June 1965; a brief account of items (1) and (2) has appeared
in the proceedings of that conference (6).

4 Other examples of channels are separate light beams or transmission lines. Spatial
separation is not essential as long as the radiation modes are orthogonal, e.g. orthogonal
polarizations i the same beam. In this context a “loeal’” measurement is one made on one
channel.
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where the no-photon state for channels B and € may be written as
|O>Bc= IO)B @ IO>C, (11)

the direct product of the no-photon states for channels B and C.
For case 1, the source 4 produces a state

[a) = falaa) [O)a (12)

each photon of which is projected by the splitter with amplitude p or » into the
modes of channels B and C respectively. This splitting is expressed by defining
the operator

as' = pag' + vact (13)

which is readily verified to act as a creation operator for the desired one-photon
superposition state. The associated annihilation operator is

as = H*(IB + V*Gc . (14)

From the Bose commutation relations for the operators as’, ¢z and ac', ac and
the assumed orthogonality of modes B and C one finds

las, ast] =1 (15)
provided
P+ v =1 (16)

Since A sends its photons to B and C,*we may consistently relate the vacuun:
states by the direct produect:

[0 = [0)s ® |0)c. ' (17)

We may now express the condition for the indistinguishability of cases 1 and 2
as the equality of the state vectors of the radration field for the two cases:

|Ya) = [¥h = [ (18)

This is clearly a sufficient condition. In Section ITI we shall show that (18)
(except for a trivial phase factor) is also a necessary condition for the indis-
tinguishability of cases 1 and 2 if @l measurements are allowed. Equation (15
requires that

Jalpast + vac') = frlast)feladl). (19)

If this equation, fi, f5, and fe could, a priori, be different funections char-
acterizing the different sources. The solutions of this (operator) functional
equation determine explicitly the admissible pure quantum states (in the form
specified by Eq. (12)) for which cases 1 and 2 are equivalent.
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First let us verify that the Glauber coherent states satisfy Eq. (19). The
function f, for a Glauber state | @) with amplitude a« may be written
Fa(a') = exp (—35|a ) exp (adh). (20)
Then the split field from 4 is gotten from this with a! = a,t, see Eq. (13):
falpas' + vact) = exp (—15]a ") exp (uaas' + vaadt). (21)
Using Eq. (16), this is equal to
lexp (=33 au [') exp (anas"))lexp (= 35| av ') exp (avac)]
= fual(@s')fua(act).

The righthand side corresponds to Glauber states in the channels B and C with
amplitudes pe and va respectively. In terms of the state vectors, (22) is equiva-
lent to’:

(22)

[a)s = [pa)s ® |va)e. (224)

Thus a sufficient condition for the equivalence of cases 1 and 2 is that the
three sources each produce a Glauber coherent state with respective ampliturdes
a, pa, and va. We next show that this condition is also necessary; these states
arc the unique quantum states with this property. It will then follow that for
every other quantum state, no equivalence between cases 1 and 2 is possible:
some measurable distinction can in principle always be made.

We proceed to obtain the explicit solution of the functional equation (19).
From Eq. (19) one has

J4(0) = f5(0)fc(0). (23)
Define F(z) = f(z)/f(0) and divide Eq. (19) by Eq. (23) to get
FA(/J.G/BT + V(LCT) = FB(G/BT)FC(CLCT). (24{)

This functional equation is equivalent to Eq. (19) and has the added con-
venience of the houndary conditions F;(0) = 1, 7 = A4, B, C. Setting in turn
act = 0, az’ = 0 Eqg. (24) one obtains

Fay(pas’) = Fplas'), (23)
Filvac) = Felach). (20)

5 We remark that although the state | )4 defined by Eq. (22a) is an eigenstate of the
operator ay = w*ag + r*ac , this is not & unigue way of characterizing it because (unlike
the non-degenerate eigenstates of ap or ag) there are an infinite number of eigenstates of
a4 . Indeed, any state of the form | Cia)p @ | Cuaie with Cy, C: arbitrary numbers is an
eigenstate of a4 . But only with C; = g, C: = v does one get the unique eigenstate corre-
sponding to the splitiing with relative amplitudes g and ». It has the eigenvalue a.
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On substituting these into Eq. (24) one gets a functional equation involving only
one unknown function, £, :

FA<,LL(IBT + VG/CT) = FA('L.L(IBT)FA(VU/CT). (27)

This 1s a familiar functional equation in the theory of one-parameter semigroups
(7). With the above boundary condition, it has the unique solution

Fa(d') = exp (aad'), - (28)

where « is an arbitrary complex parameter. From Eq. (25) and Eq. (26), we
have that

Fplas') = exp (apas'), (29
Folach) = exp (avach). ' (30)

Thus the operator functions f;(a') for each of the sources are, to within a con-
stant factor f;(0), preciscly those which produce Glauber coherent states (see
Eq. (20)). The constant factors do not affect the state and may be determined
by normalizing the states. (They are readily found to be f4(0) = exp (—1s| e |*),
f5(0) = exp (—1%]au "), and fo(0) = exp (—13]av [)). This completes the
proof of uniqueness.

We now relax the requirement of pure quantum states and ask if there are
more general quantum mechanical states, e.g., statistical mixtures of pure quan-
tum states for which cases 1 and 2 are equivalent. Mixed or impure states cannot
be expanded in the form specified by Eq. (4) with fixed expansion coefficients
(., . Rather they are the quantum version of what one gets classically when the
coefficients €, in the expansion are random variables, 1.c., noise. In quantun
mechanies such states are represented by a density operator p. The analysis here
will make use of an expansion due to Glauber (3, 4) and Sudarshan (8) which
represents the density operator for an arbitrary state of the radiation field as a
sum over suitably weighted coherent state projection operators:

n

p = j daP(a) |a)el (31)

Here P(a) is a real (but not necessarily positive) valued (generalized) weight

function of the complex argument o the integration is over the 2-dimensional
1 g ; g

complex a-plane. Thus we write for the radiation fields due to the sources B and ¢

ps = [ danPalas) | an)las], (32)

po = [ dacPelac) | ac)ec . (33)

In this notation @z, say, labels both the coherent state vector for channel B,

| ), and the eigenvalue of the annihilation operator as acting on this state.
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The radiation field produced by the source A when spht mav also be expanded
in this form,

pr = [ CarPla) | aa)oa . (34)
with l
|as) = exp (—13]a lz);?;a”(yagf + vac")" 0)sc/nl. (35)
Since
sl es) = alas) f . (35a)

we drop the subscript 4 on a4, the « itself indicating quantltlea associated with
the split field 4. Similarly in Eq. (22a),

la)s = |pa)y ® |va)e = |pe, B va, C); (35b)
the indices B and C are dispensable since the channels are identifiable by the
parameters p and ». With this notation Eq. (34) can be written
= / d'aP,(a) | ue; va)var; pa |. (36)
The functional equation analogous to Eq. (19) which expresses the equivalence
of cases 1 and 2 is now in terms of the density operators

Pa = pspc. (37)

In order to solve this equation for the p’s or their associated weight functions,
the P’s, we arrange to have the domain of integration to be the same on both
sides. This can be done by defining a new function

Plap,ac) = f(lzaPA(a)S(l)(aB — ya>5<z>(ac — ra), (3%)

2) . . . . o . .
where §% is a 2-dimensional Dirac é-function of its complex argument.
Then

// dap dacP 4 ap ,ac) | as; ac)ae s ay |

= [ CZQQPA (a) |:f/.5(2)(0~'3 - #a)a(i')(ac - Va) [ Qg ; ac><ac QB ’ dgaﬁ (lgac]
(39)
= [ @aP.(a) | uas ) s ua |

= Pa.
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one carries out one of the indicated integrations:
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On the other hand, by direct substitution from Eq. (32) and Eq. (33)
PBPCc = ff dZaB dgaan(ag)Pc(ac) I aB; ac><(1c; [45:3 ! (40)

Imposing the condition of Eq. (37), we may equate Eq. (40) to the first repre-
sentation of ps in Eq. (39). And since the basis states are the same in both in-
tegrals it is clear that condition Eq. (37) will be satisfied if
PA(aB ; ac) = PB(aB_)PC(aC)~ (41>
The definition Eq. (38) for Pa(as, ac) vields a more explicit form for 1t when
Pilen, ac) = Palan/w)s™ (ac — asly/w)/|u [ (42)
Thus the functional equation for the unknown weight functions P; takes the
form

Py(as)Pelac) = Pa(as/n)8® (ac — aslv/ul)/| [ (43)
The solution of this equation is
PA(VaA) = 3" (ay — a), a arbitrary, (44)
Pylas) = 8% (as — pay), (45)
Pe(ac) = 8% (ac — vac). (46)

This can be seen as follows: In E({.‘(f43) fix ap at some value «; for which
Pilas'/p) # 0. Then considering both sides as functions of ac we see that P
must be proportional to 8% (e — ez’ [v/u)). If there were another value as’
for which P,(as”/u) 5% 0, we would obtain contradictory solutions for P .
Hence there is at most one value of «y for which Py(as/p) # 0. From the sym-
metry of I5q. (41) in o and ac 1t s clear that similarly P, must be proportional
t0 8% (ay — ac’lu/v]) and that a¢’ is unique. Since both P and P are §% fune-
tions, it follows from Eq. (43) that P, is also a 8 funection.

With the above solution for the P’s the corresponding p’s each reduce to a
projection operator for a pure coherent state with amplitudes e, pa, and va re-
spectively, thus extending the theorem previously proven for pure states to
statistical mixtures of quantum states. Although this result seems highly plausible
for quantum noise sources by analogy with what one expects from classical
randoln sources, the proof given here is not rigorous iu two respects:

1. There is somt question® as to the validity of the P representation for all pos-
sible quantum states of radiation.

B 2. The coherent states are not linearly independent; they form an over-

§ See the references cited in (2), (4), (9), and (10).
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complete set (3). Hence the standard argument for equatmg coefficients in sums
over states needs further justification.’

III. MEASUREMENTS ON TWO-CHANNEL SYSTEMS

In this section we consider various measurements that can be made on a two-
channel system and the mformation we obtain thereby. We shall see that the
set of all measurements determines the state vector up to a phase if the system
is in a pure state (or more generally it determines the density matrix of the
svstem), while the set of local measurements rarely determines these.

Suppose that the basis states for channel B are specified by vectors | 7)5 and
that the basis states for channel C are specified by veetors | s)¢. Then the most
general pure state for the two-channel system is

1) = 30e Coe | 705 ® [ S)e. (47)

According to the general principles of quantum mechanics (72) we may de-
termine, by repeated measurements on identically prepared systems, the ex-
pectation value of any Hermitian operator. Consider the non-Hermitian transi-
tion operators Tyy,rs

v Ttu,rs = H t>B ® \ u>C}{<S lc ® <T ]B} (48)
We can write Tiw.,s as a linear combination of two Hermitian operators:
Ttu,rs = Hlu.rs + 7:‘4“1,1‘55 ' (49)

where
Hewss = Y8l tu)selsr || + 130] rs)sclut I]:

Avurs = =150 tw)sclsr | + 2adl| rs)sclut |].

(50)

Since we may determine the expectation values of each of the I7’s and A’s,
we may determine the expectation values of the 7”s. But those expectation
values form the density matrix for the system:

<Ttu,rs> = CB<tu/ l P !718>BC = Pius - (51)

The density operator p is defined by
= 22 W e |, (52)
where T, 1s the probability of finding the system in the pure state |y:). Hence
the set of measurements determining the H’s and 4’s determines the density

matrix p (18).

If the system is in a pure state | ¢), p reduces to the projection operator for
7 Proofs of the uniqueness of Glauber states, free of these objections, have recently
been comrunicated to us, first by Glauber and Titulaer (1¢) and then by T. F. Jordan (11).
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that. state:

po= Xy (53)
and
pruse = (| )sc calsr [¥) = CrClu . (54)
The eigenvalue equation p [¢¥) = |y) which implies
D e PrunsCre = C (33)

determines the coefficients C,, up to a common factor which, in virtue of nor-
malization, 1s of the form ¢*®. This shows that if every possible measurement
for case 1 yields the same result as for case 2, then the state vectors for these
two cases must be the same, as stated in connection with Eq. (18).

Suppose now that we are permitted local measurements only, that is, meas-
urements on either channel B or channel C. An operator representing a meas-
urement on channel B alone must be a direct product of an operator on channel
B and the unit operator on channel €. All such operators can be obtained as

. . . - . B ~C
linear combinations of the following basic set Tir, Tus :

Tfr = Zs Tis,rs = [t>3 B<T f ® Zs [ S>c C<S l;
TSS = Zr Tru.rs B

N ¢ . : : : .
The operators T7, and Ty, can be written as lincar combinations of local Hermi-
tian operators: ’
B B -4 B B B ol
T” = Hlf —|L z“"i” ) Hﬁf = Zs Hts,rs 3 A tr = Zs A fs,rs (0()

and similarly for C. Therefore the set of all local measurements will enable us
to determine the values of the single channel density matrices piy , phe

(56)

<'YtBr> = pfr ) <T€s> = pSs . (:)8)
If we know that the density matrix for the whole svstem factors,
Prurs = Fir ;u57 (—)9)

for all t, 7, w, s, it 13 easily shown that
B C PN
Pru,rs = PirPus . (00)

Therefore, in this case, local measurements do determine the complete density
matrix for the system. In general, however, the density matrix for the whole
system does not factor; nor in general is 1t possible to determiune it from the
values of pf, and p5,. Von Neumann® has proved that there are infinitely many

& See 18, p. 428.
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‘
density matrices for the whole system consistent with given density matrices
for the channels B and C unless one of these corresponds to a pure state. In this
case the complete density matrix is unique and factors, Eq. (60).

As an illustration of von Neumann’s theorem we now give an example in
which two different complete density matrices yield the same single channel
density matrices. Moreover, both of the complete density matrices represent
pure states; one, Eq. (61), corresponds to case 1. The channel density matrices
for our example both represent mixed states as required by von Neumann's
theorem. ,

We restrict ourselves to states such that at most one photon can be in a given
channel. Consider the following two states:

| ) = v/3% ] 050c) + V30 13 + 11| 1:0¢)

. _ (62)
+ V3o B 4 110510) + V4o 2 — [ Lelc).
Because both |¢) and |¢) are symmetric in each channel ps. = po° and
o = p,°. Moreover these two particular states have been constructed so as to
make all the single channel density matrices identical

ps" = ps" =0 = ps° = (91 s %> (63)
' ’ Yav'ys M
Hence in this example all local measurements on the two states will yield

identical results. But clearly a nonlocal measurement such as a coincidence
count for channels B and ¢ would yield different results.

Recerven: March 9, 1966
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