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We consider the problems of measurements of noncanonical variables such as velocity,
kinetic energy, and the electric field in the quantum domain. We show that there is an
essential difference between such measurements and the measurements of canonical
variables, i.e., noncanonical observables must be changed, in an uncontrollable way,
while being measured. We then construct a formal theory for the measurement of non-
canonical variables. We apply this theory to measurements of velocity, kinetic energy,
and the electric field and show how it clarifies and simplifies previous discussions of
these measurements.

I. THE PROBLEM OF MEASUREMENT

Ever since its foundation measurement theory has been one of the more contro-
versial subjects of quantum theory. Classical mechanics has a relatively simple
measurement theory since the interaction between the measurement apparatus and
the system being examined can be made as small as desired. This cannot be done
in quantum theory. Thus in classical physics the system can be left undisturbed
by the measurement while quantum mechanical systems must be disturbed in some
fashion by a measurement.

There are a number of compendiums on the work that has been done on quantum
mechanical measurement theories [1, 2, 3, 4]. We concern ourselves here only with
the question as to whether any one dynamical variable may be measured as
accurately as desired, without its being disturbed.

Quantum as well as classical observables may be divided into two classes:
canonical and noncanonical. A canonical observable is one defined solely in terms
of the momenta and positions of a given system (and possibly time). There are
other observables of physical interest which are noncanonical. To see this, consider
any canonical operator 4. Its time derivative 4 is given by

A = (1)if)[4, H] + 24/é,
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where H is the Hamiltonian of the system. 4 is a noncanonical observable since its
definition depends upon the Hamiltonian of the system. As we will see later, if
the time derivative 4 does not commute with the operator 4 itself, then there will
be an important distinction in its measurement theory from the measurement
theory of canonical variables. Examples of noncanonical variables of physical
interest include velocities, kinetic energies and electric fields.

In the next section we will formulate a measurement theory of canonical variables
in the impulsive limit. By impulsive we mean the limit in which the time duration of
the measurement approaches zero. Section III will extend these considerations to
the impulsive measurement of noncanonical variables where we find that different
considerations must be made. We then extend this measurement theory to non-
impulsive measurements. Finally, in Section V we consider three applications, two
of these are results of special interest: (a) a clarification of the confusion
surrounding the interpretation of the time-energy uncertainty principle [5, 6]; (b)
an interpretation and simplification of the Bohr—Rosenfeld analysis of the measure-
ment of electromagnetic fields [7].

II. IMPULSIVE CANONICAL MEASUREMENT FORMALISM

The canonical formalism of quantum measurement theory to be presented here
is an outgrowth of the carly work of von Neumann [8]. Von Neumann’s view was
that, even when we are discussing the quantum domain, there should be a way to
describe the combined system of measuring device and measured system according
to quantum rules. We assume that one can think about all the degrees of freedom
of the measuring device, together with the degrees of freedom of the system under
investigation, as one extended system which has some Hamiltonian, H, to describe
it. Qualitatively we have three time periods: At first there is no interaction and
H = Hg + Hyyp where Hy is the Hamiltonian of the system and Hy,p is the Hamil-
tonian of the measuring device. This is followed by a period of time, T, where the
system and measuring device interact. During this period

H = Hs + Hyp + H;, )

where H, is an interaction Hamiltonian. Finally the interaction is turned off and
H = Hs "I" kHMD once again.

Usually the following four criteria for the measurement of a variable 4, which
is a Hermitian operator representing a physical observable of the system are taken:

(1) For simplicity, measurements should be made in as short a time, T, as
possible. If the limit 7 — 0 can be taken, the measurement is termed im-
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pulsive. Impulsive measurements are useful for the following reason. If 4, is
not a constant of the motion it will change during the measuring interval and
thus the measured quantity may be disturbed by an uncertain amount due to
the interaction with the apparatus. For example, if we are measuring the
position of a moving particle, its momentum will be changed in an indeter-
minate fashion during the measurement and hence the average position is
effected by the measurement process. For the remainder of this section we
will take the impulsive limit, coming back to the effects of a finite duration of
measurement in Section IV. We do this to make it easier to compare the
essential difference in canonical and noncanonical measurement theory.

(2) The measurement must not change the measured variable 4, . This can be
assured if [4,, H;] = 0 provided the measurement is impulsive.

(3) When the measurement is completed there is a change in the measuring
device which corresponds to the value of 4, .

(4) Finally we want a magnification so the reading in the measuring device will
be stable. Namely, a microscopic change in the quantity to be measured will
produce a macroscopic change in the measuring device.

These requirements can be satisfied in nonrelativistic quantum theory by an
interaction Hamiltonian containing terms like g(f) A,Byp where Byp is some
variable in the measuring device and g(¢) = 0 before and after the measurement.
Thus conditions 2 and 3 are met as will be shown later. Since only integrals of g(¢)
appear, we will consider

_ V&0 0<t<T,
8(t) = 0, otherwise. (2 )

Condition 1 for impulsive measurements is satisfied by letting T approach zero
while keeping the product g,T finite. Choosing the product g,T sufficiently large
will also satisfy condition 4. Thus all our requirements for a measurement are met.
The particular form of g(¢) given in Eq. (2) is not essential for the general conclu-
sions. We only need that | § g(¢) dt be finite and large as T — 0.

Before we proceed let us note one important difference between classical and
quantum measurements. Consider a general observable, f(x, p). Classically we may
measure x and then p, or conversely, and finally calculate /. Quantum mechanically
this cannot be done, since the measurement of x will change p and therefore f.
Hence, quantum mechanics forces us to find a completely different physical
arrangement for each different observable.

It turns out that the essential elements we wish to emphasize in our discussion
here can be fully illustrated by the very simple example of the measuring device as
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well as the measured system being represented by free particles before and after the

measurement. Thus we take

Hs = p*[2m, Hyp = II*2M
and 3)
H; = g(t) A:Bup »

where M/m is extremely large, Consider first the choice 4, = x, the position of the
measured particle, and By = y, the position of the measuring device. Thus,

H; = g(t) xy,

then, working in the Heisenberg representation (as we will do for the remainder of
the paper),

& =plm,

y=1IIM,

j) = —&),
and

IT — —gx.

For M sufficiently large y can be considered constant during the interaction. We
call this constant y, . So for 0 << ¢ << T we have

X = Xq + (po/m) t — § go Yot® @
and
T
A1 = IT(0) = I1Q) = —g [ xdi = —goT% + 42T, ()
[}]
where
B % = x(0) + p(0) T/2m (62)
or
X =x(T) — p(T) T2m. (6b)

We now consider our impulsive limit 7 — 0, g, — oo taken such that

G =g, T M
is finite.
- So Eq. (5) can be rewritten as

H©0)/G = IT)|G + x) = AT), (59

where in the impulsive limit
X = x(0) = x(T). ®)
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Since G is to be taken large, Egs. (5) and (8) clearly satisfy conditions 2 and 3 of
our requirements for a good measurement. ‘

Equation (5') may be interpretated in the following way. Let us call I the
macroscopic “indicator” of the measuring device. We start our measurement at
t = 0 with this indicator being at a reasonably definite macroscopic value 1, with
a finite uncertainty 471, . By choosing G to be sufficiently large we have AI1,/G as
small as desired. That means that the uncertainty in A(7) may be made as small as
desired. Thus when the measurement is finished, a complete correlation between
the indicator value II(T) and the measured quantity X has been established. Thus
a macroscopic measurement of I1{T) will give X as precisely as desired.

It may be worthwhile here to complete the above discussion by considering the
wavefunction respresenting the system plus measuring device. Since we work in the
Heisenberg representation, this wavefunction remains the same throughout the
measurement until the “collapse” of the wavefunction takes place when we
measure TI(T). Let this wavefunction be

P(x, y) = " (x),

where @(x) represents the initial state of the observed system and where for simpli-
city we took the measuring device to be in an eigenstate of I with an eigenvalue I, ,
After time T the same wavefunction represents an eigenstate of the operator A(T).
Hence a measurement of [I(T) will “collapse” ¥ to a product of the form

P'(x, y, T) = 1T D'(x),
where @'(x) is an eigenstate of the operator
X =x(T)y — p(T) T2m = x(T) = x(0)

as expected in the impulsive limit.

A similar analysis shows that momentum or any function of position and momen-
tum can be impulsively measured by the same approach. We see then, that in the
nonrelativistic domain, where we are free in principle to consider arbitrary inter~
actions, we can impulsively measure any canonical variable as precisely as desired.
Before proceeding to noncanonical variables, however, the following two points

should be clarified.

(1) Although the Hamiltonians considered so far appear to be noninvariant both
under space and time translations, it should be remembered that the positions
and time appearing in the Hamiltonian are relative quantitites. Thus In
Egs. (3) the x and y, for example, stand for (x — z) and ( y — z) where z is
the position of some very massive reference object in the laboratory. This
reference object remains stationary throughout the experiment, It is straight-
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" forward to show that enlarging the system under consideration to include the

@

Let

z degree of freedom as well will add no new information provided the quan-
tum fluctuations of z can be neglected, as indeed is the case when the reference
object is sufficiently heavy. Including the z degree of freedom makes the
Hamiltonian invariant under translations without affecting in any essential
way the preceeding agreement.

In our discussion we considered the measurement of a quantity (position)
which does not commute with an additive conserved quantity (momentum).
Thus it seems that the objections of Wigner [9], Yanse and Araki [10]
concerning such measurements should apply. However, in our example we
assume that the mass of the measuring device is macroscopic; and therefore,
their objections do not apply.

III. Tue IMPULSIVE MEASUREMENT OF NONCANONICAL VARIABLES

us now consider a simple example of noncanonical variable: the velocity of a

free particle. From the results of Section Il we conclude that the momentum of a
free particle can be measured without changing its value. It is easy to show that the
velocity cannot be measured without changing its value. Suppose at some time, say

t=0,

we know the position,

x(0) = xy & 4x(0),

and velocity

v2(0) = vy &= 40(0),

of a particle where

Ax(0)Av,(0) = #jm.

At some later time, T,

where

x(T) = xy + v,T + Ax(T)

Ax(T) = Ax(0) + Av,(0) T.

If T is small, we can neglect the 4v,(0) T term. We now measure v, exactly so that
Av(T) == 0. If this measurement takes a time AT <€ T, then

AX(T + AT) = Ax(T) + 4 er o (T') dt", ©)
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where the last term can be neglected since we are assuming that v, is unchanged by
the measurement. Then,

AX(T + AT)~ Ax(T), )

SO
x(T + AT) Ao (T + AT)~> 0.

This violates the uncertainty relations, so the velocity must have been changing
during the interval AT. If so then the second term in Eq. (9) cannot be neglected
and thus Eq. (9) is incorrect.

To trace the source of this difficulty let us try to apply our formalism to the
problem of noncanonical measurement. The most general noncanonical variable
can be written as a function f(q, p, 4, p, t). Without any loss of generality we will
restrict ourselves to the simple case of noncanonical variables which are the time
derivatives of an arbitrary canonical variable A(g, p). By a suitable canonical
transformation we can make A4 a coordinate Q of the transformed system with
conjugate momentum P. Hence the problem of measurement of a noncanonical
variable is the same as that of the measurement of the (generalized) velocity.
Quantum mechanically, the same arguments hold except unitary transformations
are used instead of canonical transformations.

Since we can not directly put a velocity into the Hamiltonian we must use its
canonical equivalence

O = —if[Q, H] = ¢H|oP.
Then the total Hamiltonian, H, is given by
H = Hs + Hup + g(1)[0H|oP] B, (10

where we are using the notation of Egs. (1)-(3). Note that what appears in the
square bracket is 2H/2P not dHg/oP.

We must now distinguish between two cases: [Q, 0] = 0 or [0, Q] £ 0. It is
easy to show that this distinction is invariant under unitary transformations. For
the case [Q, O] = 0, it is obvious that the Hamiltonian, Hy , of the system can not
be quadratic or higher in the momentum P conjugate to Q. Hence the system
Hamiltonian must be Hs = Pfi(Q, 0',..., 0", P',..., P") + f:(Q, O',..., Q", P',..., P")
where (',..., Q" are the other coordinates of the system and P’,..., P” their conjugate
momentum. If Hg is at most linear in P then and only then is dH/0P = 0Hg/0P.
Thus we satisfy condition 2 of Section I. We can show this by differentiating
Eq. (10) with respect to P giving

0H|0P = 0Hs|oP + g(t)(6*H|oP?) B.
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Clearly it is consistant to choose dH/0P = 0Hg/oP if Hg is linear in P, On the
other hand if 0H/0P = 0Hg/oP, then g(t) (0*Hg/0P?) B = 0 which is 1ncons1stent
unless Hg is linear in P,

Suppose we now consider the case [Q, Q] # 0. Since QO = dH/dP and since for
[0, Q1 # 0, dH|OP # 0Hs/oP, Q must involve g(¢) and hence Q is not a constant
of the motion cvcn\thoug}}ht commutes with . We will in the remainder of this
section show that the cofrect approach is still to replace 8H/2P in Eq. (10) with
O0Hg/oP. We will see that this change in the content of Eq. (10) will enable us to
measure (), but during the measurement process there will be compensating forces
acting on the system and the measuring device that are not obvious from Eq. (10).

To understand what is occurring we go to the Lagrangian formalism considering
the particular example of the measurement of the velocity of a free particle. The
Lagrangian formalism is chosen since it is formulated in terms of noncanonical
variables, but at the end we will go back to the canonical formalism which is more
directly suitable in quantum mechanics.

We take the position of the particle to be x and use a measuring device which is

a free particle of position y. Then the Lagrangian is
.
‘ L = }mx? + }M5® + g(0) 4y, (11)

where g(t) is as given in Eq. (2) and the measurement will be made impulsively.
This gives us equations of motion

djdt(My) = —g(t) & (122)
and
dldt(max + g(t)y) = 0. (12b)

Equation (12a) is of the desired form, since the change in the measuring device is
proportional to the velocity of the measured particle. Equation (12b), on the other
hand, shows us that it is not the velocity of the measured particle which is a
constant of the motion, but the sum of the velocity and a term depending upon the
position of the measuring device. This is unacceptable for quantum mechanics
since we must measure the change in the momentum of the measuring device which
means its position is uncertain. However a modification of Eq. (11) to the form

L = jma® + §My* + g(t) &y + g*(t) y*[2m (I11°)

leaves Eq. (125) unchanged but changes Eq. (lib) to read
dld{(Mp) = —g(t)(* + g(t) yIm). (12b%)
The measuring device now responds to a constant of the motion, so it measures

fa P AUV AT LR SR

im
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the velocity without the effects of the measurement process. So we may compensate
for the necessary change in the velocity of the particle by adding an extra force.

It turns out that the canonical formalism enables us to solve this seemingly
complicated problem in a straightforward way. Just write the Hamiltonian which
measures the momentum p of the particle. This is

H = p*2m + ITI*2M — g(t) yp|m, (13)
which gives us equations of motion

v = & = p/m — g(t) y/m,
IT = +g(t) plm.

These equations are equivalent to Egs. (12a) and (12b") so by measuring the value
of p/m we obtain the value of the velocity before or after the measurement; but of
necessity, the velocity is uncertain during the measurement. Thus the Hamiltonian
of Eq. (13) which can be rewritten as

H = (p — g(O) y2m — g*t) y*[2m + II*2M (13"

is the same as the one derived from the Lagrangian of Eq. (11").

Although the Hamiltonian Eq. (13) or (13") is most useful for quantum for-
malism, it is the Lagrangian which gives us physical insight as to the experimental
arrangement necessary to measure velocity. Two interactions are needed; one is a
coupling of the measuring device and system being studied similar to the coupling
for canonical variables, while the other corresponds to a “spring” attached to the
measuring device from some reference frame. It is interesting that these two
together are the same as a single coupling to the canonical variable corresponding
to the noncanonical one in the absence of the measurement.

In summary we conclude that although we cannot measure noncanonical
variables without changing them during the measurement process we can arrange
impulsive measurements so the following occur.

(a) The correct Hamiltonian for the measurement of a noncanonical variable Q is
H = Hg + Hyp + g(t)[0Hs/6P] B,

where P is the momentum conjugate to Q. In general this amounts to an
interaction between the measuring device and system not only proportional
to Q but also involving compensating forces.

(b) The value of the noncanonical variable after the measurement is completed
is the same as it was initially. Unless this is arranged the measurement has
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not been completed. During the measurement the noncanonical variable is
uncertain,

(c) The value of the noncanonical variable that the measuring device reads is the
value before or after the measurement, not its value during the measurement.

The example of velocity in this section indicates the general prescription for
writing the interaction for the measurement of noncanonical variables. (1) In the
absence of the measurement each noncanonical variable has a canonical equivalent
defined for the system (For example v = p/m). To measure a noncanonical variable,
write an interaction Hamiltonian, with an interaction proportional to the above
canonical variable. As we will see in the next section, if the measurement is not
impulsive an extra term will be needed to correct for the time evolution. (2) Trans-
form from the Hamiltonian to the Lagrangian formalism. This will tell us what
compensating forces are needed in the laboratory to make the measurement.

IV. NONIMPULSIVE MEASUREMENTS

The correct approach for nonimpulsive measurements can be found by analyzing
the results of Section II. Consider Eq. (5). When the limit 7 = 0 cannot be taken
there is an extra term proportional to T3y, present. This may be eliminated if we
take the total Hamiltonian as

H = p*[2m + II*2m + g(t) xy + (%) 8°(1) T, (14)

where g(¢) is given by Eq. (2). We again take g,T finite and large but do not go to
the limit 7 = 0. Then the change in the momentum of the measuring device
becomes

All =ITKT) — I1(0) = —g,T%, 15

even for finite times, T. If we let G = g,T without a limiting process, then we
obtain Eq. (5) again and the analysis in the two paragraphs following Eq. (8) is
applicable except that we no longer rigorously satisfy condition 2 since X is given by
Eq. (6a) or (6b) rather than by Eq. (8).

Condition 2 must be modified so that it only applies in the impulsive limit of any
finite duration measurement, since the uncertainty relations forbid a measurement
of a system without some change in the system. We can guarantee that the change
in the canonical quantity we are measuring is the minimum possible. In our
example of the measurement of position Eq. (6) tells us that although x(7) #
x(0) + p(0) T/m its average value is the same as it would have been had we not
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made the measurement. If we had not added the term proportional to g%(¢) 732 in
Eq. (14) then Eq. (15) would have been

[T1(0)/( goT) + () goT*¥(O)] = [II(T)/( goT) + X]. (6"

Hence it would have been necessary to put the measuring device into a state for
which the error in (I1(0)/gT) -+ (}) gT?(0)) is small. This implies that y must be
measured to a microscopic accuracy and hence the measuring device could not be
considered macroscopic. So if the measurement is not impulsive, it is necessary to
add compensating forces acting on the measuring device. In our example of a
measurement of position, this corresponded to adding a spring attached to the
measuring device, In general the corrections for nonimpulsive measurements can
be provided by a term of the form A(t, T) f(Byp) where the form of iz, T) is
determined by g(t).

The compensating forces needed to correct for the time evolution of both
canonical and noncanonical variables can be found by considering the exact
solution for small measurement times without this term and then adding what is
needed as a correction. To measure noncanonical variables nonimpulsively we will
need two types of compensating forces. The first of these will be like the “spring”
needed in the impulsive measurement of velocity while the other will be needed to
correct the time evolution of the system during the measurement.

V. APPLICATIONS

In this section we consider three applications as examples of the formal theory
given in Sections III and IV. The first of these is measurement of the kinetic
energy of a free particle. The second is the measurement of the velocity of a
harmonic oscillator. Finally, we consider the measurement of an electric field.

By the energy of a free particle we mean the noncanonical variable 3mu?. Before
or after the measurement process this is the same as the Hamiltonian of that
system. During the measurement, however, the interaction breaks this correspon-
dence. If we measure velocity and calculate £ = {mw? during the interaction, then
the relevant uncertainty is 4o which from Eq. (13a) is given by

dv = g(t) dy/m. (16)
Now the uncertainty introduced into x by our measurements will be
Ax = AvT = g ,TAylm = gohT/(mAI). )

Our only information on p comes from the measurement II(T) — I1(0) = —g,Tp.
. W
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So we know that

goTdplm = AIT, (18)
\ .
Equations 6‘7) and (8) guarantee that we satisfy the uncertainty relations for x and 1D
p- Since \ )
AE _ UAP and v 2 AU, | .,_ Mo
we have ' Voo

AET > #, (19)

where AE is the uncertainity in the energy of the system during the measurement
interval 0 << ¢ << T. If some action is not taken to return the velocity to its original
value, as we prescribed earlier, Eq, (19) would imply that the energy cannot be
measured to an accuracy better than A/T. Thus we see that the confusion in the
interpretation of the AEAt¢ uncertainity relation is related to the problem of
measuring noncanonical variables. Since E must change during the measurement it
was believed that this was a constraint on the measurement of energy [6]. Bohr
originally arrived at the incorrect interpretation when he analyzed a collision
example which did not return the velocity to its original value after a measurement
[11]. He later realized as indicated in the Bohr—Rosenfeld paper on the measura-
bility of the electromagnetic field that the change in the energy can be compensated
[7]. But the connection between this problem and the general question of the
measurement of noncanonical variables was not, as far as we can ascertain,
recognized by him or anyone else.

We now examine the nonimpulsive measurement of the velocity of a harmonic
oscillator. If we pick units such that the frequency, w,, and mass of the oscillator
are unity, then we would, following our description of Section 1V, write the im-
pulsive Hamiltonian as

H = (p* + x8[2 + 1I*]2M + g(1) py (20)

with p and x the harmonic oscillator’s momentum and position and g(¢) as in
Eq. (2). We are measuring the velocity of the oscillator by examining the change
AIT in the momentum of a free particle of position y used as the measuring device.
If the duration of the measurement is 7 and provided M > g%,

x =xyco8t + (py + 8oy sin¢
and :

p={po+8gy)cost—x,sint—g,y,

for 0 <t < T which gives us

T
All = --gof0 p)dt = —gTp — g¥y(sin T — T),
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where p is the average that p(t) would have had in the interval 0 to T if we had not
made the measurement. We can also use the identity p = . Thus we see that instead
of Eq. (20) we should have written

H=(p* +x9[2+I*2M + g(t) py — 38O y*in T — T)/T.  (20')

For the Hamiltonian of Eq. (16") the change in the momentum of the measuring
device AI1, is then given by

All = —g,To.

If we consider the Lagrangian we find that in order to measure the velocity we need
a compensating force which is a “spring,” coupling the measuring device to the
laboratory frame during the measurement, with a constant given by

k= —g?2sinT)/T.

As a final example of our formalism for the measurement of noncanonical
variables, we consider the question of the measurability of the electromagnetic
field strengths. The simplicity of our approach becomes obvious when we compare
the result with the approach of Bohr and Rosenfeld [7].

Let us consider the question of the single measurement of the x-component of the
electric field, E, = —(8¢/0x) — (1/c) A9t where ¢ and A are the scalar and
vector potentials, respectively. Since E, involves 84/0t it is a noncanonical variable.
Following our prescription of the previous section we expect to obtain the correct
Hamiltonian approach by coupling to the canonical analogue of E, which is the
x-component of the electromagnetic momentum, 7, .

Our test body will be a dipole of typical dimensions L. It could be the two
charged spheres considered by Bohr and Rosenfeld. Thus our total Hamiltonian is
just the sum of Hg,, , the electromagnetic Hamiltonian, Hyp, , the measuring device
Hamiltonian, and Hjy , the Interaction Hamiltonian. We take

Hepy =1} Z (L% 4+ v0)9, A
A

Hyp = p?[2Mc? + P22/2M02,
and
Hypy = x, z &l — x, z mll,, + Hr,
) )

where Q,, II, are the coordinates and momenta of the decomposed electro-
magnetic field and x; , p; , X5, p; are the coordinates and momenta of the respective
charged spheres making up the measuring device and g, and n, are the transforms
of the charge distributions. We note that taking g, and », appropriately large will
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make a macroscopic charge in the measuring device. This is the same as Bohr and

Rosenfeld’s. requirement of a large charge. We also see that the mass of the

measuring device will need to be large to keep it in the region being studied. H is
the correction needed for nonimpulsive measurements. Since each mode of the
electromagnetic field is a harmonic oscillator we know the form of H, for each
mode will be the same as in the preceeding example. We fix one of the spheres by
taking the limit M — co and x, = 0 and dropping the subscript 1. The equations
of motion for the movable charged sphere are

bs = —c Z gAHAac »
)

Qm =1II,, + 8aX,s
while
Qm = dg, — 120 .
Thus in the impulsive limit, denoting g,7 by G, ,

Apz = —C Z GAH/\:: )
A

and hence we measure the electromagnetic momentum, which is unchanged since
[IT,,, H} = 0. The electric field is proportional to the electromagnetic momentum
before and after the interaction, so we have measured the value of the electro-
magnetic field before and after the measurement. Choosing the set of g, large
allows us to reduce the 817, to the arbitrary accuracy consistent with our approxi-
mation.

Let us now look at the compensating forces, In this case the Lagrangian (in the
M — o0, x, = 0 limit) becomes

L= ‘%Z (Q/\2 — 1208 + Ima? — x Z g,\Q/\ + $x? Z g
A A A
Thus we see that there is need of a compensating “spring” with spring constant

k=—1Y g 1)
A

If we choose to hold our dipole open for a finite time, 7, an extra compensating
force should be introduced as indicated before. Equation (21) becomes

sin w,T ,
k=—z.}Zg/\2——w—ﬂf—. 1)
)

This compensating force corresponds to the one introduced by Bohr and Rosenfeld.
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From Eq. (21) we can also see what we mean by an impulsive measurement. For
our measurement to be impulsive it is necessary that the charge in the free system
during the measurement period T can be neglected. That condition is satisfied
provided the frequencies, w, , present satisfy w, <€ 1/T. We clearly do not couple to
frequencies much greater than ¢/L. Thus if L >> ¢T, we have an impulsive measure-

ment. :
The problem of two measurements of a single field average separated in space by
a distance D is handled in the same fashion. Let

H = (I + v?0,®) + p*f(2McP) + P22/(2M02) + x Z&\H/\ + x, Z mll,,
) )

where x; and x, are the displacements of each measuring device from its equili-
brium. Then in the impulsive limit

Apl = —C Z g/\TlnA, + 27X, Z &,
A A

and
Apz = —¢ Z h,\TgH/\E + 2erx, Z & s
5 S

where T; and T, are the durations of the measurements at x; and x, , respectively,
and 7 is the overlap time of the measurements. The first terms in each case are just
the results that would have been obtained if the other measurement had not been
made. '

Then the Lagrangian is

L=} z (Q,\2 — 200 4+ IME? 4 %M"sz — X z gAQ/\
A A
— X3 Z ”/\Q/\ + 3x2 Z gt $x,? Z m2 + X1X, Z galy -
A . A A

The last three terms can be rewritten as
- %Z (xlg/\ - xznA)2 -+ x12 Z g,\2 + x22 Z 7’1,\2.
A A A

If there is some overlap of the g,’s and the n,’s, we have “springs” coupling each
measuring device to the laboratory frame and a “spring” connecting them. This
again is similar to the results of Bohr and Rosenfeld. If the two domains don’t
overlap, i.e., X, gy n, =0, the spring that couples the two test particles is not
needed. The more general case of two arbitrary domains is handled in a fashion
similar to that of nonimpulsive measurements.

Thus we see that the canonical approach when extended to noncanonical
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variables and to nonimpulsive measurements has given us, in a simple fashion,
results similar to that of Bohr and Rosenfeld. The coupling chosen to measure a
noncanonical variable, the electric field, is a canonical coupling to the field momen-
tum. In the laboratory this means adding the “springs” of Bohr and Rosenfeld;
however, we found this as a direct result of the formalism rather than from a
detailed analysis of the particular problem.

N

~ VII. CONCLUSION

In conclusion, we find that a canonical formalism based upon the ideas of
von Neumann can be extended to the measurement of noncanonical variables.
During the measurement process many noncanonical variables such as velocity,
kinetic energy, electric field strength, etc., must become uncertain. This uncertainty
is inversely proportional to the duration of the measurement. Nevertheless, the
measurement may be so made that we obtain the value of the noncanonical
variable after the measurement is completed and that this is its value before.
Thus, we are able to measure noncanonical variables as precisely as desired. We
also found why the time-energy uncertainty relation cannot be interpreted as
referring to the uncertainty of kinetic energy and the time taken to measure that
energy. Finally, the compensatory “springs™ introduced by Bohr and Rosenfeld
to measure the electric field were shown to be a direct consequence of the formalism
of noncanonical and nonimpulsive measurement theory.
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