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The problem of renormalization is as old as quantum field theory, and its roots
extend back into classical electrodynamics. Since the late 1940’s we have learned to
live with the divergences of field theory, but it is only lately that we have begun to
look upon them as a blessing rather than a curse. From the seminal work of CALLAN M,
Syaanzig (*) and ospecially WiLsoN (2) we have loarned that an understanding of renor-
malization offcets is crucial to the physics of ultraviolet and infra-red limits in field
theory and of critical phenomena in statistical mechanics. Unfortunately, because of
the inherent cowmplexity of any system in which renormalization effects occur naturally,
it is very difficult to find a simple model of renormalization that exhibits the essential
physies. Wo would like to report on some models which do just that.

Our models are based on a familiar and intuitive physical idea: the « virtual cloud »
picture of renormalization. In this picture renormalization effects occur because cven
free particles arve surrounded by a cloud of virtnal quanta that arise from their interac-
tion with the vacuum, The high-momentum modos of this virtual cloud are « stuck »
to the particle, and contribute to its observed mass. Under the action of soft external
forees the particle moves as if free. The only effect of its clond being the mass renor-
malization. .

A simple mathematical model of this effect ean be made with the following Hamil-
tonian (%):
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() C. G, CaLvaN: Phys. Rev. D, 2, 1541 (1970).
() W, sSymaNzik: Conan. Math. Phys., 18, 227 (1970).
@) J. Kouwur and K. WisoN: The renormalization group and the e ciepansion, Phys. Rep., to be
published. .
(*)  The alert reader will notice that the transformation
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tials which can transfor arbitrarily large momentum). This extra stability, which is
a consequence of the discrefeness of quantum energy levels, will he important when
we attempt to build a field theory based on our modoel.

Another aspoct of field-theoretic renormalization theory that is mirrored in our
model can be seen by examining the equal-time commutator of the particle’s position
and velocity (). The solution of the Heisenberg cquations of motion for the par-
ticle is :
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The canonical commubation relations imply that the equal-time commutator of =,
and z; is simply 46,;/m,. However, if wo now smear both operators by averaging over
a time 7 large comparcd to the period of the oscillator, then we find that tho rapidly
oscillating terms in = average to zero and
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since [@,(¢), p;] = 4 for all {. Equation (10) is tho analoguc in our model of a well-known
fact of field theory: the smeared renormalized fields are finite opeirators cven though
the equal-time commutators of the fields themselves are singular. (In fact, although
we have treated the transition my, - m as a mass renormalization, it is also a wave
function renormalization if our model is considered as a zero-dimensional theory.)

Amusingly, our model appears to bo the only one of a largo class of Hamiltonians
that can exhibit the effects we have deseribed. Any Hamiltonian of the form
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that satisfies tho conditions A), B) and C) must in fact have the form (1).
The modcl we have described is nonrelativistic, but it is easy to genoralize it.
We write tho invariant squared mass of a systemn as

(11) My = (pu— 2qu)* + (mun” + 0®quq®) .

‘We use m, to generate proper-timo cquations of motion, and results exactly analogous
to (1), (2) and (3) above (with the Galilean group roplaced by the Poincaré group)
follow immediately. In order to avoid imaginary masses we havo to constrain the
system. A simple constraint is n,n” = 0, and we have checked that thero is a subsct
of solutions of the cquations of motion that satisfies the constraint, This is the class
of all solutions with Ap,— (12 4 w?)q, a lightlike vector. In particular, it contains
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all the solutions with constant velocity for the particle, sinco these satisly Ap,— .\‘

— (A24- ®®) gy = 0. Tho problem of incorporating this constraint into a quantum thoory
will bo studied in a future work.

Thore aro soveral interesting questions which we hope to investigate in further
work on our model. Firstly, since the model is exactly solvable, we can compare renor-
malization of the exact theory with perturbative renormalization, and investigate the
validity of the latter procedmre. We can also study the effects of renormalization on
the stability of the theory. For A/w-—» oo a8 the requireinént that the physical frass bo
finito implies that the bare mass is -— co. Does this mean that the theory.is unstablet

Finally, wo intend to eonstruct a Fock space and a field theory using our modol
as a single-particle Hilbert space. -(Remember that the model contains a representation
of the Galilean group even for finite w.) New features should arise” because of the
intrinsie nonlocality of any interaction which does not excite the particle’s cloud.
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