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How macroscopic properties dictate microscopic probabilities
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We argue that the quantum probability law follows, in the largeN limit, from the compatibility of quantum
mechanics with classical-like properties of macroscopic objects. For a finite sample, we find that likely and
unlikely measurement outcomes are associated with distinct interference effects in a sample weakly coupled to
an environment.
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Given that quantum theory is probabilistic, is there a fu
damental physical principle that dictates the form of t
quantum probability law? We will argue that, indeed, t
assigned probabilities for a given test performed on a la
sample of identical systems are dictated by the classical-
properties of macroscopic systems.

Consider a sample ofN identically prepared nonentangle
spins in the stateuc&. The state of the sample is then

uC&5uc&1uc&2•••uc&N . ~1!

Since spins carry a magnetic moment, the sample may
be viewed as a collection of magnetic moments, all point
in the same direction, which under a suitable arrangem
describe a magnetlike object. In the limit of large enoughN,
the sample becomes a macroscopic object, with definite
lective properties like a total magnetic moment and ass
ated magnetic field.

Suppose now that we want to measure such a collec
property of our sample, say, the magnetic momentMx5 x̂
•MW , in the x̂ direction. Since the magnetic moment of ea
spin is proportional to the spin itself, we need to measure
x̂ component of an observable like

MW 5

(
i 51

N

sW i

N
. ~2!

In the largeN limit

lim
N→`

@Mx ,M y#5 i lim
N→`

Mz

N
50. ~3!

This suggests that averaged collective observables, likeMW ,
represent ‘‘macroscopic,’’ classical-like, properties of t
sample.

Our main idea is to compare two distinct methods,
‘‘macroscopic’’ and ‘‘microscopic’’ methods, for observin
the macroscopic collective magnetic moment. First, we c
sider acollectivemeasurement ofMx , which does not probe
the state of individual spins. For instance, a single char
test particle can be scattered to determine the total magn
field of the sample. As we show below, and as Eq.~3! above
indicates, in the largeN limit the state is an eigenstate ofMx
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and the outcome given by the expectation value is determ
istic. The macroscopic measurement induces a vanish
small disturbance in each individual spin. Yet the total ac
mulated effect on the scatterer is finite. In the second mic
scopic method, we measure separately on each spin the
eratorssxi , i 51, . . . ,N, and evaluate from theN outcomes
the average ofMx . The microscopic measurements do d
turb the spins and randomize the state of the sample acc
ing to the quantum probability law. However, since the fi
macroscopic method nearly does not affect the sample
outcome should agree up to 1/AN corrections with the mean
result of a subsequent microscopic measurements. We
see that in the limit ofN→` this suffices to fix the form of
the quantum probability distribution. On the other hand, fo
large but finite sample, the probability law still follows if w
make a further assumption on the stability of physical la
against small perturbations.

Consider the following identity. Operating with the sp
operators[n̂•sW on a single spin state we can express
resulting state as

suc&5s̄uc&1Dsuc'&, ~4!

where s̄ and Ds are the expectation value and the unc
tainty of s with respect to the statec, andc' is a normal-
ized state orthogonal toc:

^cuc'&50, ici5ic'i51. ~5!

If s is not an eigenoperator ofuc& we have on the right hand
side of Eq.~4! also a component ofuc'&. However, let us
now apply the relation to the collective stateMxuC&. We get

MxuC&5
1

N (
k51

N

s̄xk uC&1
Ds

N (
k51

N

uCk
'&

5s̄xuC&1
Ds

N
uC'&. ~6!

Here uCk
'&5uc&1•••uc'&k•••uc&N . Since ^C i

'uC j
'&5d i j ,

the norm of the second term on the right hand side is

Ds

N
iC'i5

Ds

AN
. ~7!
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Apart from the special cases wheres̄x;O(1/AN), the last
term on the right hand side in Eq.~6! is a small correction,
and in the largeN limit,

lim
N→`

MxuC&5s̄xuC&. ~8!

Similar results, which we discuss in the following, have be
described in@1–3#.

Next, let us see that the disturbance caused to individ
spins, as a result of a collective measurement ofMx , van-
ishes in the largeN limit. The evolution of the system unde
a measurement is described by the unitary operatorU
5exp(iQMx), whereQ is conjugate to the ‘‘pointer’’P of the
measuring device. Denoting byuP& the initial state of the
measuring device~say a Gaussian centered aroundP), and
applyingU to the combined state, we have

UuC&uP&5)
k51

N

ukuck&uP&, ~9!

whereuk5ei (sxk /N)Q. Using Eq.~4! we have

ukuck&5Fcos
Q

N
1 i s̄xsin

Q

NG uck&

1 iDs sin
Q

N
uck

'&. ~10!

Expanding this equation in 1/N we get

UuC&5F12
Ds2Q2

2N Gei s̄xQuC&uP&1udx&, ~11!

where

udx&5 i
DsQ

N (
k51

N

uCk
'&uP&1O~1/N2!. ~12!

For nonzeroudx& the measuring device is entangled with t
sample. SinceuCk

'& are mutually orthogonal,̂ dxudx&
;1/N, and the entanglement produced by this measurem
is small. In particular, in the limitN→`, we may drop the
term udx& above and obtain

lim
N→`

UuC&uP&5exp~ iQs̄x!uC&uP&5uC&u~P2s̄x!&.

~13!

For a given initial state,uc&5c1u1&1c2u2& with u1& and
u2& as the eigenstates ofsx , the collective measuremen
will shift the pointer by the value

s̄x5uc1u2~11!1uc2u2~21!. ~14!

Next suppose that we perform on thesamesample a ‘‘micro-
scopic’’ measurement of each individual spin in t
x̂-direction. The outcome of this microscopic measuremen
05211
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a string of numbers of11 or 21. The numbersn1 of 11s
and n25N2n1 of 21s should again allow us to evalua
the average

FN5
n1

N
~11!1

n2

N
~21!. ~15!

Since in this limit the disturbance caused to the system v
ishes, consistency of the microscopic measurements with
macroscopic collective measurement dictates the equalit

lim
N→`

FN5s̄x ~16!

or

lim
N→`

Fn1

N
~11!1

n2

N
~21!G5uc1u2~11!1uc2u2~21!.

~17!

On the left hand side we have the averages obtained from
individual measurements, and on the right hand side the
terministic result for the macroscopic measurement ofs̄x .
From the above equation we identifyuc1u2 and uc2u2 with
the usual quantum mechanical frequencies forsx511 and
sx521.

Our argument can be easily generalized. For ann-level
system a single macroscopic measurement is not suffic
because the average is determined from the absolute sq
of n amplitudes. However, now we can measure macrosc
cally n21 independent commuting observables~e.g.,
Lx , . . . ,Lx

n21) and together with the overall normalizatio
(ni5N evaluate the relevant probabilities.

The above result for theN→` limit is still unsatisfactory,
when considering a finite sample, because in this case we
no longer neglect the disturbanceudx& in Eq. ~11!. One way
to proceed is to make an additional assumption which se
natural for macroscopically large samples:the results of
physical experiments are stable against small perturbatio.
Hence, for finite largeN, the operatorMx fails to be a precise
eigenoperator ofuC& in Eq. ~8!. However, by a small modi-
fication of the state touC&1udC&, with magnitudeiudC&i
5O(1/AN), the perturbed state does become an exact eig
state ofMx . Alternatively, if after coupling toP, we first
project the state in Eq.~11! by uC&^Cu, this would eliminate
the termudx& and the final microscopic measurement wou
give rise only to likely outcomes. The ‘‘stability’’ principle
then requires that the corresponding probability law c
qualitatively change at most by terms of orderO(1/AN).

To get further insight into the physical meaning of th
disturbance it is useful to adopt another line of considerati
Suppose that, after coupling the sample to the pointerP, we
do not observe the exact value ofP, but proceed to perform
the microscopic measurement. Hence we now regard
pointer as an environmentlike system that couples wea
with the sample. The outcome of the microscopic measu
ment is described by the postselected stateun1 ,n2& of the
sample. We can evaluate the final state of the pointer sys
P by projecting Eq.~11! from the left by^n1 ,n2u:
6-2
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^n1 ,n2uUuC&uP&5F12
Ds2Q2

2N G^n1 ,n2uei s̄xQ&uC&uP&

1^n1 ,n2udx&. ~18!

Noting thatU is diagonal with respect to the final state of t
sample, we get

uP2FN&5uP2s̄x&1udP&, ~19!

where

udP&5
^n1 ,n2udx&

^n1 ,n2uC&
. ~20!

The last equation states that the difference between a po
state shifted by the frequency and by the mean is given
the correctionudP&. Consider the case of a ‘‘likely’’ out-
come, withFN2s̄x'0. By examining Eqs.~12!, ~19!, and
~20!, we find that in this case destructive interferences red
the magnitude of the correction toiudP&i'0. On the other
hand, consider now an unlikely resultn15N, n250, and
henceFN2s̄x'N. In this case the equality of the two side
in Eq. ~19! cannot be satisfied ifudP& is small. Indeed, we
get the result that in this case the postselected environm
state interferes constructively andiudP&i;1. ~In fact in this
case all higher orders in 1/N give rise to order 1 contribu
tions.! Hence what we could have regarded in the likely ca
as a negligible 1/N correction now becomes the domina
contribution.

It is interesting that here we see, as far as we know for
first time, a fundamental difference, from amicroscopic
point of view, between likely and unlikely outcomes for
given sample. The unlikely results require a large coher
interference effect between the microscopic amplitudes
Eq. ~12! that are induced by the weak interaction with t
weakly coupled environment.

We further emphasis that the analysis considered her
quite general. In reality, when a sample is measured, i
always subjected to environmental effects which cou
weakly with the particles of the sample~e.g., the electromag
netic dipole coupling!.

Before concluding, and for completeness, let us exam
the effect of a macroscopic measurement, from the poin
view of the full quantum formalism.~Hence, from now on,
we will assume the usual quantum probability law.! When
we perform a precise measurement ofMx we must disturb
other noncommuting observables. In the case of the in
vidual microscopic measurements, we will randomly chan
the state of individual spins, and consequently destroy
macroscopic, magnetlike, properties of the sample: the
state may look like a collection of randomly polarized spin

Now let us consider the collective measurement. Clea
when we measure a macroscopic quantity~here the average
magnetic moment of the magnet! we do not destroy the mac
roscopic state. However, to be in conformity with the unc
tainty principle we must causesomedisturbance to the spins
We will now show that the strength of the disturbance
generally such thatnot even one spinof the sample has
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flipped its direction. To do that we will now regard the me
suring device on a quantum level as well.

The accuracy of the collective measurement is determi
by the initial uncertainty of the measuring device pointer. L
us express it as

DP5
1

eAN
, ~21!

wheree is some real number to be fixed in the followin
The disturbance to thei th spin of the sample is then induce
by the evolution

Ui5expi
Qsxi

N
, ~22!

which describes a rotation around thex̂ axis of the spin, by
an uncertain angle ofDu'DQ/N'e/AN. The probability of
a single spin remaining in its initial state~not flipping! hence
varies as'12e2/N. Therefore the probability for all theN
spins to remain in their initial state is

S 12
e2

N D N

'exp~2e2!. ~23!

Therefore, fore!1, the probability that even one spin of th
sample has not flipped is close to unity. Nevertheless, s
at the same time we can still haveN@1/e2, the measuremen
becomes arbitrarily precise for large enoughN.

This is in agreement with the uncertainty relation f
components ofMW and a single spin. From the commutatio
relation~3! with a finite N, and from@szi ,Mx#5 isyi /N we
have

DMxDM y>
^Mz&

N
~24!

and

Ds iDM ~N!>
^syi&

N
. ~25!

Hence we can measure simultaneously all components oMW

provided that we keep the accuracy asDMx;DM y;1/AN.
Although for large N this inaccuracy becomes vanishin
small, we still cannot distinguish between different eigenv
ues whose separations vary as 1/N.

Finally, let us compare our approach with other relat
attempts to derive quantum probabilities. Hartle@1# and Gra-
ham@2# constructed the ‘‘frequency operator’’f̂ N by consid-
ering the sum of projectors to all possible results of the m
surements, which are weighted by an appropri
‘‘degeneracy’’ factor, the latter corresponding to the numb
of different strings of possible results with the same to
numbers ofn1 andn2 . In the limit of N→`, f̂ N becomes
an eigenoperator ofuC&N . The eigenvalue of the frequenc
operator is then given by the quantum probability. In o
approach it is the collective magnetic operatorMW that be-
6-3
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comes an eigenoperator. However, since in order to obs
f̂ one has to perform a highly nonlocal measurement of
spin sample, the frequency does not seem to be a physi
realizable operator.

Instead, we argued that inordinary, everyday, macro-
scopic observations we do measure collective operators
the operatorMW discussed here. Indeed, such collective o
erators appear naturally in the usual electromagnetic inte
tions of an external test particle with a sample of magne
moments that constitute a macroscopic object. An appro
similar to ours has been suggested by Farhi, Goldstone,
Gutmann@3#. The present article extends this approach
analyzing the measuring process.

In conclusion, we have demonstrated how the agreem
between macroscopic and microscopic observations dict
the quantum probability law. For a finite sample we su
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gested that this law can be obtained if one further invoke
natural stability assumption.

Finally, we compared two definite measurement o
comes: a rare sequence where all spins are found to be in
↑ direction, and an expected sequence with roughly an eq
number of↑ and↓ outcomes. Classically there is no micro
scopic difference between the two sequences: they have
samea priori probability. Surprisingly, we observed that i
quantum mechanics these ‘‘likely’’ and ‘‘unlikely’’ sequence
do differ on a microscopic level, and are associated w
distinctive interference effects.
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