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Abstract

Hardy’s paradox is revisited. Usually the paradox is dismissed on grounds of counterfactuality, i.e., because the paradoxical
effects appear only when one considers results of experiments which do not actually take place. We suggest a new set of
measurements in connection with Hardy’s scheme, and show that when they are actually performed, they yield strange and
surprising outcomes. More generally, we claim that counterfactual paradoxes point to a deeper structure inherent to quantum
mechanics.
 2002 Published by Elsevier Science B.V.

A gedanken-experiment due to Hardy [1] provides
a beautiful illustration of the sort of retrodiction “para-
doxes” arising in connection with quantum mechani-
cal entanglement. To refute the possibility of Lorentz-
invariant elements of reality, he shows that in a two-
particle Mach–Zehnder interferometer, realistic trajec-
tories inferred from one particle’s detection are in di-
rect contradiction with the trajectories inferred from
the other particle’s detection. Thus he derives a para-
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doxical inference in which an electron and a positron
in some way manage to “be” and “not to be” at the
same time and at the same location.

A widespread tendency to “resolve” the Hardy and
similar paradoxes has been to point out that implicit
in such paradoxes is an element of counterfactual
reasoning, namely, that the contradictions arise only
because we make inferences that do not refer to results
of actual experiments. Had we actually performed
the relevant measurements, we are told, then standard
measurement theory predicts that the system would
have been disrupted in such a way that no paradoxical
implications would arise [2].
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In this Letter our claim is that one should not
be so quick in throwing away counterfactual reason-
ing; though indeed counterfactual statements have no
observational meaning, such reasoning is actually a
very good pointer towards interesting physical situa-
tions. We intend to show,without invoking counter-
factual reasoning, that the apparently paradoxical re-
ality implied counterfactually has in fact new,exper-
imentally accessible consequences. These observable
consequences become evident in terms ofweak mea-
surements, which allow us to test—to some extent—
assertions that have been otherwise regarded as coun-
terfactual.

The main argument against counterfactual state-
ments is that if we actually perform measurements
to test them, we disturb the system significantly, and
in such disturbed conditions no paradoxes arise. Our
main point is that if one does not perform absolutely
precise measurements but is willing to accept some fi-
nite accuracy, then one can limit the disturbance on the
system. For example, according to Heisenberg’s un-
certainty relations, an absolutely precise measurement
of position reduces the uncertainty in position to zero
∆x = 0 but produces an infinite uncertainty in mo-
mentum∆p = ∞. On the other hand, if we measure
the position only up to some finite precision∆x =∆

we can limit the disturbance of momentum to a fi-
nite amount∆p � h̄/∆. We use such limited distur-
bance measurements to experimentally test the para-
doxes implied by the counterfactual statements. What
we find is that the paradox is far from disappearing—
the results of our measurements turn out to be most
surprising and to show a strange, but very consistent
structure.

The line of reasoning presented in our Letter is very
closely related to the one suggested by Vaidman [3].

Let us now describe Hardy’s paradox. Hardy’s
gedanken-experiment is a variation on the concept of
interaction-free measurements (IFM) first suggested
by Elitzur and Vaidman [4], consisting of two “su-
perposed” Mach–Zehnder interferometers (MZI) (see
Fig. 1), one with a positron and one with an elec-
tron. Consider first a single interferometer, for instance
that of the positron (labeled by+). By adjusting the
arm lengths, it is possible to arrange specific rela-
tive phases in the propagation amplitudes for paths
between the beam-splittersBS1+ andBS2+ so that
the positron, entering the interferometer as described

Fig. 1. Hardy’s gedanken-experiment.

in Fig. 1, can only emerge towards the detectorC+.
However, the phase difference can be altered by the
presence of an object, for instance, in the lower arm, in
which case detectorD+ may be triggered. In the usual
IFM setup, this is illustrated by the dramatic example
of a sensitive bomb that absorbs the particle with unit
probability and subsequently explodes. In this way, if
D+ is triggered, it is then possible to infer the pres-
ence of the bomb without “touching” it, i.e., to know
both that there was a bomb and that the particle went
through the path where there was no bomb.

Now, in the double MZI setup, things are arranged
so that if each MZI is considered separately, the elec-
tron can only be detected atC− and the positron only
atC+. However, because there is now a region where
the two particles overlap, there is also the possibil-
ity that they will annihilate each other. We assume
that this occurs with unit probability if both particles
happen to be in this region.1 According to quantum
mechanical rules, the presence of this interference-
destroying alternative allows for a situation similar to
that of the IFM in which detectorsD− andD+ may
click in coincidence (in which case, obviously, there is
no annihilation).

1 Of course, we are describing here a gedanken-experiment. In
reality the cross section for electron–positron annihilation is very
small. We can however arbitrarily increase the annihilation proba-
bility by arranging the electron–positron to cross their paths many
times. Also, we note that while we are interested in eliminating the
electron–positron pair out of the interferometers when the electron
and the positron happen to be in the overlapping arms, the actual
process by which we do this is irrelevant for us. Annihilation is only
one such process; scattering will do as well. For more realistic im-
plementations see “Note added” at the end of the Letter.
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But then suppose thatD− andD+ do click. Trying
to “intuitively” understand this situation leads to para-
dox. Based on the interferometers setup, we should in-
fer from the clicking ofD− that the positron must have
gone through the overlapping arm; otherwise nothing
would have disturbed the electron, and the electron
could not have ended inD−. Conversely, the same
logic can be applied starting from the clicking ofD+,
in which case we deduce that the electron must have
also gone through the overlapping arm. But then they
should have annihilated, and could not have reached
the detectors. Hence the paradox.

Alternatively, one could try the following line of
reasoning. From the clicking ofD− we infer that the
positron must have gone through the overlapping arm;
otherwise nothing would have disturbed the electron,
and the electron could not have ended up inD−. Fur-
thermore, from the fact that there was no annihila-
tion we also deduce that the electron must have gone
through the non-overlapping arm. Conversely, from
the clicking of D+ we deduce that the electron is
the one which went through the overlapping arm and
the positron went through the non-overlapping arm.
But these two statements are contradictory. A paradox
again.

All the above statements about the positions of the
electron and positron are counterfactual, i.e., we have
not actually measured the positions. Suppose however
that we try to measure, say, the position of the electron,
for example, by inserting a detectorD−

O in the overlap-
ping arm of the electron MZI. We find that, indeed, the
electron is always in the overlapping arm—the detec-
tor D−

O always clicks—in accordance with our previ-
ous counterfactual statements [10]. However,D−

O dis-
turbs the electron and the electron could end up in the
D− detector even if no positron were present! Hence,
when we actually measure the position of the elec-
tron, we can no longer infer from a click atD− that
a positron should have traveled through the overlap-
ping arm of the positron MZI in order to disturb the
electron. The paradox disappears.

Let us now however measure the positions of the
electron and positron in a more “gentle” way, such
that we do not totally disturb the physical observables
which do not commute with position. To do this we
will follow von Neumann’s theory of measurement.

Suppose we want to measure an observableÂ.
Consider a test particle described by the canonical

position Q̂ and conjugate momentum̂P which we
couple the system via the interaction Hamiltonian

(1)HI = g(t)P̂ Â.

The time dependent coupling constantg(t) describes
the switching “on” and “off” of the interaction. For
an impulsive measurement we need the coupling to be
strong and short; we takeg(t) to be non-zero only for a
short time around the moment of interest,t0 and such
that

∫
g(t) dt = g > 0. During the time of measure-

ment we can neglect the effect of the free Hamilto-
nians of the system and of the measuring device; the
evolution is then governed by the interaction term and
is given by the unitary operator

(2)Û = e−igP̂ Â.

In the Heisenberg picture we see that the effect of the
interaction is to shift the pointer̂Q by an amount pro-
portional to the value of the measured observableÂ,
i.e., Q̂→ Q̂+ gÂ; in effectQ̂ acts as a “pointer” in-
dicating the value of̂A. The uncertainty in the reading
of the pointer is given by∆Q, the initial uncertainty
of Q̂.

In the Schrödinger picture the state of the measured
system and measuring device becomes

|Ψ 〉ΨMD(Q)→ e−igP̂ Â|Ψ 〉ΨMD(Q)

(3)=
∑
i

|A= ai〉〈A= ai |Ψ 〉ΨMD(Q− gai),

whereΨMD(Q) is the initial state of the measuring de-
vice. For an ideal measurement we must know pre-
cisely the initial position of the pointer; for example,
ΨMD(Q)= δ(Q). Such a state is however unphysical;
as a good approximation for an ideal measurement we
can take a Gaussian

(4)ΨMD(Q)= exp

(
−Q2

∆2

)
.

When the uncertainty∆ in the initial position of
the pointer is much smaller than the difference in
the shifts of the pointer corresponding to different
eigenvaluesai , the measurement approaches an ideal
measurement—the final state of the pointer (after
tracing over the state of the measured system) is a
density matrix representing a series of peaks, each
corresponding to a different eigenvalueai , and having
probability equal to|〈A= ai |Ψ 〉|2.
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However, as discussed in the introduction, we want
to reduce the disturbance caused by the measurement
on the measured system. We can reduce it arbitrarily
by reducing the strength of the interactiong. In
this regime the measurement becomes less precise
since the uncertainty∆ in the initial position of
the pointer becomes larger than the difference in
the shifts of the pointergai , corresponding to the
different eigenvalues. Nevertheless, even in the limit
of very weak interaction the measurement can still
yield valuable information—the final state of the
measuring device is almost unentangled with the
measured system and approaches a Gaussian centered
around theaverage valueĀ= 〈Ψ |A|Ψ 〉, namely

Ψ final
MD ≈ exp

(
− (Q− Ā)2

∆2

)
.

We need however to repeat the measurement many
times to be able to locate the center.

There is one more element we have to add. In
our example we are only interested in the results of
the measuring interaction in the cases in which the
electron and positron finally reached the detectorsD−
andD+. To account for this we have to make a “post-
selection”, i.e., to project the state (3) of the system
and measuring device after the interaction on the post-
selected state|Φ〉 (which in our case represents the
electron and positron detected atD− andD+). Thus
the final state of the measuring device, given the
initial state |Ψ 〉 and the final state|Φ〉 is (omitting
normalization constants) given by

ΨMD(Q)→ 〈Φ|e−igP̂ Â|Ψ 〉ΨMD(Q)

(5)=
∑
i

〈Φ|A= ai〉〈A= ai |Ψ 〉ΨMD(Q− gai).

As shown by Aharonov et al. [5] in the weak regime
the effect of post-selection is very surprising. The final
state of the measuring device (5) is

(6)exp

(
− (Q− gAw)

2

∆2

)
,

which describes the pointer shifted to a surprising
value,Aw, called the “weak value” of the observable
Â and given by

(7)Aw = 〈Φ|Â|Ψ 〉
〈Φ|Ψ 〉 .

Note that in contrast to ordinary expectation values,
weak values can lie outside the range of eigenvalues of
Â and are generally complex! Their real and imaginary
parts are given by the corresponding effects on the
pointerQ̂ and its conjugatêP , respectively.

The above behaviour of the measuring device may
look strange indeed; we want to emphasize however
that there is nothing strange about the measurement
itself—it is an ordinary, standard measurement ofÂ,
only that the couplingg with the measured system is
made weaker. In fact, it can be shown thatany external
system, that interacts linearly with an observableÂ of
a pre- and post-selected system, will react, in the limit
that the coupling is sufficiently small, as if the value
of Â is Aw. (For a detailed description of how weak
values arise, and their significance see [6].)

Finally and most importantly, in the weak regime
different measurements do not disturb each other so
non-commuting variableŝA and B̂ can be measured
simultaneously and they yield the same weak values
Aw andBw as when measured separately.

Let us investigate now Hardy’s paradox by us-
ing weak measurements. Let us label the arms of
the interferometers as “overlapping”, O, and “non-
overlapping”, NO. The state of the electron and
positron, after passing throughBS1− andBS1+ is

(8)
1√
2

(|O〉p + |NO〉p
) × 1√

2

(|O〉e + |NO〉e
)
.

The detectorsC+ andD+ measure the projectors on
the states 1√

2
(|O〉p + |NO〉p) and 1√

2
(|O〉p − |NO〉p),

respectively, and similarly for the detectorsC− and
D−. Each interferometer is so arranged that the free
propagation does not add any supplementary phase
difference between the arms; if it were not for the
electron–positron interaction, the detectorsD− and
D+ would never click.

We are interested in measuring the electron and
positron when they traveled in the interferometers
beyond the moment when they could have annihilated;
we are interested in the cases when annihilation did not
occur. The state at this moment becomes

|Ψ 〉 = 1√
3
|NO〉p|O〉e + 1√

3
|O〉p|NO〉e

(9)+ 1√
3
|NO〉p|NO〉e,
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which is obtained from (8) by projecting out the term
|O〉p|O〉e corresponding to annihilation. We take this
as our initial state.

We further restrict ourselves to the final state
representing the simultaneous clicking ofD− andD+,
i.e., we post-select

(10)|Φ〉 = 1

2

(|NO〉p − |O〉p
)(|NO〉e − |O〉e

)
.

From the overlap of|Ψ 〉 and |Φ〉 we can see that
this final possibility is indeed allowed with probability
1/12.

What we would like to test are question such as
“Which way does the electron go?”, “Which way does
the positron go?”, “Which way does the positron go
when the electron goes through the overlapping arm?”
etc. In other words, we would like to measure the
single-particle “occupation” operators

(11)

N̂+
NO = |NO〉p〈NO|p, N̂+

O = |O〉p〈O|p,
N̂−

NO = |NO〉e〈NO|e, N̂−
O = |O〉e〈O|e,

which tell us separately about the electron and the
positron and also thepair occupation operators

(12)

N̂
+,−
NO,O = N̂+

NON̂
−
O , N̂

+,−
O,NO = N̂+

O N̂
−
NO,

N̂
+,−
O,O = N̂+

O N̂
−
O , N̂

+,−
NO,NO = N̂+

NON̂
−
NO,

which tell us about the simultaneous locations of the
electron and positron. We note a most important fact,
which is essential in what follows: the weak value of
a product of observables isnot equal to the product of
their weak values. Hence, we have to measure the pair
occupation operators independently from the single-
particle occupation numbers [3].

Since we will be performing weak measurements
of these observables, i.e., using probes which interact
weakly with the electron–positron system and produce
only limited disturbance, we can perform all these tests
simultaneously. We will show that the results of our
measurements echo, to some extent, the counterfactual
statements, but go far beyond that. But they are now
true observational statements and, if anything, they are
even more paradoxical. Indeed, using the definition of
the weak value (7) and the pre- and post-selected states
(9), (10) we obtain

(13)N−
Ow = 1, N+

Ow = 1,

(14)N−
NOw = 0, N+

NOw = 0,

(15)N
+,−
O,Ow = 0,

(16)N
+,−
O,NOw = 1, N

+,−
NO,Ow = 1,

(17)N
+,−
NO,NOw = −1.

What do all these results tell us?
First of all, the single-particle occupation numbers

(13) are consistent with the intuitive statements that
“the positron must have been in the overlapping arm
otherwise the electron could not have ended atD−”
and also that “the electron must have been in the
overlapping arm otherwise the positron could not have
ended atD+”. But then what happened to the fact that
they could not be both in the overlapping arms since
this will lead to annihilation? Quantum mechanics is
consistent with this too—the pair occupation number
N

+,−
O,Ow = 0 shows that there are zero electron–positron

pairs in the overlapping arms!
We also feel intuitively that “the positron must have

been in the overlapping arm otherwise the electron
could not have ended atD−, and furthermore, the elec-
tron must have gone through the non-overlapping arm
since there was no annihilation”. This is confirmed by
N

+,−
O,NO = 1. But we also have the statement “the elec-

tron must have been in the overlapping arm otherwise
the positron could not have ended atD− and further-
more the positron must have gone through the non-
overlapping arm since there was no annihilation”. This
is confirmed too,N+,−

NO,Ow = 1. But these two state-
ments together are at odds with the fact that there is
in fact just one electron–positron pair in the interfer-
ometer. Quantum mechanics solves the paradox in a
remarkable way—it tells us thatN+,−

NO,NOw = −1, i.e.,
that there is alsominus one electron–positron pair in
the non-overlapping arms which brings the total down
to a single pair!

Finally, the intuitive statement that “the electron did
not go through the non-overlapping arm since it went
through the overlapping arm” is also confirmed—
a weak measurement finds no electrons in the non-
overlapping arm,N−

NOw = 0. But we know that there
is one electron in the non-overlapping arm as part of
a pair in which the positron is in the overlapping arm,
N

+,−
O,NO = 1; how is it then possible to find no electrons

in the non-overlapping arm? The answer is given by
the existence of theminus one electron–positron pair,
the one with the electron and positron in the non-
overlapping arms, which contributes a furtherminus
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one electron in the non-overlapping arm, bringing the
total number of electrons in the non-overlapping arm
to zero:

(18)N−
NOw =N

+,−
O,NOw +N

+,−
NO,NOw = 1− 1= 0.

We can now in fact go one step further. Above
we have computed the weak values by brute force.
However, the weak values obey a logic of their own
which allows us to deduce them directly. We will now
follow this route since it will help us to get an intuitive
understanding of these apparently strange results. Our
method is based on two rules of behavior of weak
values:

(a) Suppose that between the pre-selection (prepar-
ing the initial state) and the post-selection we perform
an ideal, (von Neumann) measurement of an observ-
able Â, and that we perform no other measurements
between the pre- and post-selection. Then if the out-
come of this ideal measurement (given the pre- and
post-selection) is known withcertainty, say Â = a

then the weak value is equal to this particular eigen-
value,Aw = a.

This rule provides a direct link to the counterfac-
tual statements. It essentially says that all counter-
factual statements which claim that something occurs
with certainty, and which can actually be experimen-
tally verified byseparate ideal experiments, continue
to remain true when tested by weak measurements.
However, given that weak measurements do not dis-
turb each other, all these statements can be measured
simultaneously.

(b) The weak value of a sum of operators is equal
to the sum of the weak values, i.e.,

(19)Â= B̂ + Ĉ ⇒ Aw = Bw +Cw.

Let us return now to Hardy’s example. As we
will show, the complete description of what occurs is
encapsulated in the three basics counterfactual state-
ments which define the paradox:

• The electron is always in the overlapping arm.
• The positron is always in the overlapping arm.
• The electron and the positron are never both of

them in the overlapping arms.

To these counterfactual statements correspond the
following observational facts [10]:

• In the cases when the electron and positron end
up atD− andD+, respectively, if we measure
N̂−

O in an ideal, von Neumann way, and this is
the only measurement we perform, we always find
N̂−

O = 1.
• In the cases when the electron and positron end

up atD− andD+, respectively, if we measure
N̂+

O in an ideal, von Neumann way, and this is
the only measurement we perform, we always find
N̂+

O = 1.
• In the cases when the electron and positron end

up atD− andD+, respectively, if we measure
N̂

+,−
O,O in an ideal, von Neumann way, and this is

the only measurement we perform, we always find
N̂

+,−
O,O = 0.

The above statements seem paradoxical but, of course,
they are valid only if we perform the measurements
separately; they do not hold if the measurements
are made simultaneously—this is the essence of how
counterfactual paradoxes are usually avoided. Rule
(a) however says that when measured weakly all
these results remain true, that is,N−

Ow = 1,N+
Ow = 1,

N
+,−
O,Ow = 0 and can be measured simultaneously.
All other results follow from the above. Indeed,

from the operator identities

(20)N̂−
O + N̂−

NO = 1,

(21)N̂+
O + N̂+

NO = 1,

we deduce that

(22)N−
Ow +N−

NOw = 1,

(23)N+
Ow +N+

NOw = 1,

which, in turn, imply the single particle occupation
numbersN−

NOw = 0 and N+
NOw = 0. The operator

identities

(24)N̂−
O = N̂

+,−
O,O + N̂

+,−
NO,O,

(25)N̂+
O = N̂

+,−
O,O + N̂

+,−
O,NO

lead to

(26)N−
Ow =N

+,−
O,Ow +N

+,−
NO,Ow,

(27)N+
Ow =N

+,−
O,Ow +N

+,−
O,NOw,

which, in turn, imply the pair occupation numbers
N

+,−
NO,Ow = 1 andN+,−

O,NOw = 1.
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Finally,

(28)N̂
+,−
O,O + N̂

+,−
NO,O + N̂

+,−
O,NO + N̂

+,−
NO,NO = 1

leads to

(29)N
+,−
O,Ow +N

+,−
NO,Ow +N

+,−
O,NOw +N

+,−
O,NOw = 1,

from which we obtainN+,−
NO,NOw = −1.

Let us now turn to the question of how to perform
the weak measurements described above. First of all,
we note that, as discussed earlier, an important prop-
erty of weak measurements, is that what are usually
mutually disturbing measurements, “commute” in this
limit, i.e., they no longer disturb each other and can
be performed simultaneously. Hence, in principle, the
whole set of predictions (13)–(17) for the single and
pair occupation numbers can be experimentally veri-
fied simultaneously. But as we have also mentioned
before, this comes for a price—the measurements are
necessarily imprecise. How imprecise? It can be easily
seen that for the measurements considered here (where
the measured operators have only two distinct eigen-
states), the weak regime is obtained when the shift of
the pointer is smaller than the uncertainty∆Q [7].
Thus in a single experiment we obtain little informa-
tion about the value of the weak values. That is, every
single measurement may yield an outcome which may
be quite far from the weak value (the spread of the
outcomes around the weak value is large). Neverthe-
less, by repeating the measurements (i.e., performing a
large number of independent measurements on identi-
cally prepared systems),Aw can be determined to any
desired accuracy [8]. (A different, improved version of
the weak measurements will be discussed later in the
Letter.)

The single particle occupation can be inferred by
a weak measurement of the charge along each arm.
For example by sending a massive charged test parti-
cle close enough to the relevant path (but sufficiently
distant from others) and then using the induced trans-
verse momentum transfer as a pointer variable. The
weakness condition is met by preparing the test par-
ticle to be in a localized state in the transverse di-
rection, and hence ensuring that momentum transfer
is small enough. The measurement must be repeated
many times. Finally, after measuring the momentum
transfer in each experiment, one evaluates the mean of
the result of the separate trials, which is taken to stand
for the weak value [8].

In each experiment one can simultaneously also
measure the pair occupation operator by introducing
a weak interaction between the electron and the
positron. For instance, to observêN+,−

NO,NO, we let the
non-overlapping trajectories pass through two boxes,
just before they arrive to the final two beam splitters.
The electron and positron are temporarily captured
in the boxes and then released. This will not modify
the experiment, provided that no extra phases are
generated while the particles cross the boxes. Now
suppose that the boxes are connected by a very rigid
spring of natural lengthl. While the electron and
positron pass through the boxes the relative deviation
in the equilibrium length of the spring produced by the
electrostatic force between the two boxes will be

(30)
δl

l
= Fe,p

Kl
� − e2

Kl3
N

+,−
NO,NO,

whereK is the spring constant. The relative shift in
the equilibrium position plays the role of the pointer
variable with the ratiog = e2/Kl3 as a dimensionless
coupling constant. In other words, when an electron–
positron pair is present in the boxes, due to their
electrostatic attraction the spring will be compressed.
On the other hand, if only the electron, or only the
positron, or none of them is present in the boxes,
then here is no electrostatic force and the spring is
left undisturbed. In the weak regime however, we will
observe a systematic stretching of the spring! This
is indicative of a negative pair occupationN+,−

NO,NO
which implies an electrostaticrepulsion between the
two boxes.2

In the above setup the measuring devices have to
be quite imprecise in order to ensure that they do not
disturb each other, and therefore the experiment has to
be repeated many times to learn the weak values. Thus
one might suspect that what is measured is some sort
of average. This is not so. A different version of the
experiment allows us to measure all weak values with
great precision in one single experiment. To achieve
this we send through the interferometers a large num-
berN of electron positron pairs, one after the other.
We shall now consider only the case in which allN
electrons end up atD− and allN positrons end atD+.

2 Note that since the electrostatic energy is invariant under a
reversal of signs in the charges, this “negativeness” is not the same
thing as charge conjugation.
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The probability for this to happen is exponentially
small. However, when this happens, a counterfactual
reasoning similar to Hardy’s original one tells us that
all electrons must have gone through the overlapping
arm, all positrons must have also gone through the
overlapping arm, but there were no electron–positron
pairs in the overlapping arms. Suppose now that we
measure weakly thetotal number of electrons which
go through the overlapping arm. (We do this by bring-
ing a test charged particle near the overlapping arm,
and letting it interact with all the electrons which pass,
one after the other, through the arm.) As can easily be
seen, the weak value of the total number of electrons in
the overlapping arm is(N−

Otot)w =N . Simultaneously
we use other measuring devices to measure the weak
value of the total number of positrons and electron–
positron pairs in the different arms, and so on. It is
now the case however [5,9] that the measurements no
longer need to be very imprecise in order not to sig-
nificantly disturb each other. Indeed, the disturbance
caused by one measurement on the others can be re-
duced to an almost negligible amount, by allowing an
imprecision not greater than

√
N . But a

√
N error is

negligible compared to the total numberN of elec-
trons and positrons. Thus a single experiment3 is now
sufficient to determine all weak values with great pre-
cision. There is no longer any need to average over
results obtained in multiple experiments—whenever
we repeat the experiment, the measuring devices will
show the very same values, up to an insignificant
spread of

√
N . In particular, the measuring device

which measures the total number of electron–positron
pairs which went through the non-overlapping arms
shows that this number is equal to−N ± √

N .

Conclusion

In the present Letter we suggested a new set
of gedanken-experiments in connection with Hardy’s
setup. Our results enrich Hardy’s original experiment:
in fact, the whole original Hardy experiment could
have been dismissed as uninteresting by simply claim-
ing that all its strange and paradoxical aspects are arti-

3 We refer, of course, to a “successful” experiment, i.e., one in
which all electrons ended up atD− and all positrons atD+.

facts, arising from asking illegitimate questions about
measurements which were not performed. Not any
more. The weak measurements we present show that
Hardy’s situation has real experimental aspects which
are strange and surprising. As they are experimen-
tal results, they are here to stay—they cannot be dis-
missed as mere illegitimate statements about measure-
ments which have not been performed, as it is the case
with the original counterfactual statements. Whatever
one’s ultimate view about quantum mechanics, one
has to understand and explain the significance of these
outcomes.

Although the outcomes of the weak measurements
suggest a story which appears to be even stranger
than Hardy’s original one (existence of a negative
number of particles, etc.) the situation is in fact far
better. The weak values obey a simple, intuitive, and,
most important,self-consistent logic. This is in stark
contrast with the logic of the original counterfactual
statements which is not internally self-consistent and
leads into paradoxes. Strangeness by itself is not a
problem; self-consistency is the real issue. In this
sense the logic of the weak values is similar to the
logic of special relativity: that light has the same
velocity in all reference frames is certainly highly
unusual, but everything works in a self consistent way,
and because of this special relativity is rather easy to
understand.

In the present Letter we analyzed Hardy’s paradox;
it is obvious however that a similar analysis can be
applied to any quantum counterfactual paradox. We
are convinced that the weak measurements approach
will lead to a deeper understanding of the nature of
quantum mechanics.

Note added

Very recently K. Moelmer has suggested a practical
way of realizing a version of the gedanken-experiment
described here, using ion trap techniques [12].
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Appendix A

In our logical derivation of the weak values we
started from the three basic statements which define
Hardy’s paradox, namely that when measured sepa-
rately we find with certainty that̂N−

O = 1, N̂+
O = 1 and

N̂
+,−
O,O = 0. These three statements represent the min-

imal information which contains the entire physics of
the problem thus this derivation is, in a certain sense,
the most illuminating. It is useful however to give yet
another derivation.

We note that in fact we know, with certainty (in
the sense of rule (a)) quite a number of things. Apart
from N̂−

O = 1, N̂+
O = 1 andN̂+,−

O,O = 0 we also have

N̂−
NO = 0, N̂+

NO = 0, N̂+,−
NO,O = 1 andN̂+,−

O,NO = 1 (see
[10]). Thus all the corresponding weak values can be
obtained directly by applying rule (a).

Deducing the weak value of the last pair occupation
number,N+,−

NO,NOw, is however more delicate. Indeed,

if we perform an ideal measurement ofN̂+,−
NO,NO we do

not obtain any certain answer. We obtainN̂+,−
NO,NO = 0

with probability 4
5 and N̂+,−

NO,NO = 1 with probability
1
5 [10]. Rule (a) therefore does not apply.N+,−

NO,NOw
however can be deduced using the additivity property
of the weak values, together with the fact that we know
that there is only one single electron–positron pair.
Indeed, from

(A.1)N̂
+,−
O,O + N̂

+,−
NO,O + N̂

+,−
O,NO + N̂

+,−
NO,NO = 1,

using additivity and the weak values calculated above
we obtain

N
+,−
NO,NOw = 1−N

+,−
O,Ow −N

+,−
NO,Ow −N

+,−
O,NOw

(A.2)= −1.
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that the initial state of the system is|Ψ 〉 and given that a final
measurement (performed after the measurement ofÂ) finds the
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