Foundations of Physics, Vol. 10, Nos. 7/8, 1980

A Vector Product Formulation of Special Relativity and
Electromagnetism

Charles P. Poole, Jr.,! Horacio A. Farach,' and
Yakir Aharonov!-2 ’

Received June 4, 1979

The vector product method developed in previous articles for space rotations
and Lorentz transformations is extended to the cases of four-vectors, anti-
synmumeltric tensors, and their transformations in Minkowski space. The electro-
magneftic fields are expressed in “six-vector” form using the notation H + iE,
and this vector form is shown to be relativistically invariant. The wave equations
of electromagnetism are derived using these vector products. The following
three equations are deduced, which summarize- electrodynamics in a compact
Jorn: (1) Maxwell's four equations expressed as one, (2) the scalar and vector
potential wave equations combined into one relation, and (3) the wave equations
Jor the electric and magnetic fields and the continuity equation combined
together. Space inversion, time reversal, and magneric monopoles are also
treated.

1. INTRODUCTION

In the first article of this series, which we shall refer to as I, we expressed
a rotation through an angle ¢ in the direction of a unit vector 4 in terms
of a rotation vector R,

R = fisin ¢ (1)

L 4

and an associated scalar r,

r=(1 — R — cos }¢ 2
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We showed that two successive rotations R, and R, produce a third rotation
R, with their vector and scalar parts given by the nonlinear vector product
operations [X] and [ defined by

R, — R, @ R; = R, X R, + R, + 1R, 3)
r3=R2E]R1?r1"2~R1'R2 4)

Several examples of the utility of this approach to space rotations were
presented in 1.

In the second article,® which we shall call II, we showed that the
spacetime rotation called a pure Lorentz transformation or boost has the
same form as Eqgs. (1) and (2) with the angle ¢ having an imaginary value
¢ = — i. This converts the sines and cosines of Eqgs. (1) and (2) to their
hyperbolic counterparts, which are related to the quantity y = (1 — p&iie
as follows:

yE 1y )

sinh%zﬁ:(y;l—)l/z cosh%(ﬁ:( >

In Il the usefulness of the nonlinear product method was illustrated by
applying it to the determination of the addition law of velocities and the
Thomas precession. o

There is an isomorphism between the nonlinear vector products
and [ of Egs. (1)~(2) and a linear vector product denoted by the symbol []

Ry = R, 1 Rl . (6)

of associated four-component real vectors (Riz, Riy, Rizy 12 whose first
three components form the vectors R; of Eq. (1) and whose fourth component
is the scalar r; of Eq. (2). The linearity of the resulting vector product may be
found by writing Egs. (3) and (4) in the form

Ry; == RyjRy — RyxRy; + 1Ry + Ryt
| i, j, k = x, y, z cyclically ~ (7)
rg = rirg — RyiRy — RyjRy — RyeRo

The linear vector product operation [ of Eq. (7) preserves the product of
the magnitudes M, , M,, and M; associated with these four-component
vectors

M3:M1M2 (8)

where in this case M; = R?® + rl:2 =1fori=1,2,3.
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If the normalization condition R? -+ 72 =1 and the reality condition
on the vectors R are relaxed, then we can define a vector V with three real
components v, , v, , v, which form the Carteswn vector V and the fourth
imaginary component iv,

V = {U:c s Uy s Uz l_.vt} (9)

This may be written in condensed notation as
V={V,iv} (19

The fact that V is boldface indicates a quantity which transforms like a
threc-vector under space rotations. Associated with every four vector V
there is a conjugate four vector V* defined by

V¥ ={V, io}* ={V, — iv} (1n

Two four-vectors {V,, iv,} and {V,, ivy} have the scalar product

4
Vie Vo= 3, (tuvn) (12)
g=1 .
and by convention a four-vector is called spacelike, lightlike, or timelike
depending upon theisign of its magnitude-or self scalar product V:V =
Ve — U2 S
>0 spacelike
V2— 2 (=0 |lightlike ' - (13)
<0 timelike

In the present article we will start with the four-vectors as primitive,
and using the linear vector product operation [] on alternating four-vectors
and conjugate four-vectors, we will construct the higher order spacetime
vectors ¥, O Vo, V, O Vo* O Vs, and Vy [0 Vo* O Va O3 V,*, which we
refer to respectively as relativistic vectors of second order, third order, and
fourth order. We will show that space rotations and boosts are second-order
and more general Lorentz trAnsformation are fourth-order relativistic vectors.
Antisymmetric second-rank tensors appear in‘the formalism as second-order
relativistic vectors. The fundamental equations of electromagnetism will be
written in terms of vectors of these various orders.

The treatment presented in this article is closely related to Clifford
algebras®% which were:discovered a hundred years ago and which have
been extensively used by Hestenes®®® in recent years. At the end of the
article we will make some comments about Clifford algebras.
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2. RELATIVISTIC YECTORS
A four-vector is called a first-order relativistic vector. The and
[0 operations defined by Eqgs. (3) and (4) may be employed to form a
second-order relativistic vector D from a four-vector V; ={V,, iv;} and a
complex conjugate four-vector V,* = {V,, — iv,}. Thus we write
D=V, V,*=[D,d] (14)
where D has a complex space part
D=V, R V,*=—V, XV, + iV, — Vy1,) (15)
and a real time part
d=V, OQV,*=—V,-V,-+ v, (16)
The conjugate second-order relativistic vector corresponding to D is
D =V ¥ [V, =[D*d] . (17
In general both D and D* have complex magnitudes.

A third-order relativistic vector Q is generated from three first-order
vectors V,, V,*, V; as follows:

Q =V 0OV*OV;={Vy,ivg} O{Vy, — iva} [1{V3, iv5} ={Q, q} (18)
where Q and g are easily found to be (cf. the Appendix)

Q== V(Vy"Vy) + Vy(V5 - V) — ViV " Vo) + 010,V + 0,05V,
— 030, Vy + i[9,V XV - 0,V XV, + 0,V X V,] (19)
g =V, (Va3 XV) 4 ifvyo03 — 0(Vy " Vs) + (V3 Vy) — vi(Vy - V)l

This triple product result can aid in evaluating transformations of four-vectors
which appear later. Another useful way to write Eq. (18) is

Q=V,0OD* (20)
A third-order relativistic vector Q can be written uniquely as the sum

Q=V+V, @n
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of a four-vector ¥ and what may be called a pseudo-four-vector ¥,
V={V,it}, V,={iV,, — 0, (22)

where V, v, V,,, and v, are all real. Both V" and V,, have the same transforma-
tion properties, to be discussed. below. The terminology pseudo-four-vector
for V', arises from its behavior under the parity operation, as will be explained
later [cf. Eq. (89)].

A fourth-order relativistic vector H

H=V,OV,*0V, 0V, =M, 4 23)

has complex vector and scalar parts H and A, respectively. It may also be
considered as the linear vector product of two second-order relativistic vectors

H =D, D, . (24

where use was made of Eq. (14).
A fourth-order relativistic vector H may be written uniquely as the sum

-

H=5+s4s, ) (25)

of a six-vector S, a scalar s, and what we will refer to as a pseudoscalar s,

S =[S +iS", 0} , (26a)
s = [0, 5] ' (26b)
5y = [0, is,) : (260)

where §', S”, 5, and s, are all real. All three quantities S, s, and s, have the
same transformation law, as will be explained later.

In summary, we have shown that the present formalism contains four
orders of relativistic vectors (G’ -+ iG”, ig’ 4 g"). There are two first-order
vectors, namely a vector {G’, ig’} and a pseudovector {iG", —g”"} each of
which has four parameters G/, @}/, G,’, g’ and G,”, G,”, G,”, g", respectively.
A second-order relativistic vector with the form [G’ + iG”", g"] has seven
parameters, and a special type of second-order vector called a six-vector
[G' +iG", 0] has only six parameters. Third- and fourth-order relativistic
vectors are each of the form (G’ 4 iG”, ig’ 4+ g”) and have all eight para-
meters. The formation of higher order vector products

Vl D Vz*D V3D V4*|:| V5
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does not increase the number of parameters and hence does not generate
new orders of vectors. They remain third or fourth order, depending upon
whether or not they are even or odd in the number of primitives which
form them. Therefore first- and second-order forms may be considered as
special cases and their third- and fourth-order counterparts as general cases,
respectively, of odd and even relativistic vectors.

In an alternate approach, pseudovectors may be selected as primitives
and D may be derived from the product — V,,, [J V};, of a pseudovector
and a conjugate pseudovector. The higher order relativistic vectors may be
constructed analogously.

3. PROPERTIES OF TRANSFORMATIONS

A transformation T = (T, t) is an even-order normalized relativistic
vector. Some of the properties of particular transformations were given in
I and II and are summarized in Table I. In the present section we will show
how space rotation and boost transformations can be derived from primitive
four-vectors, and then we will discuss some of the general properties of
transformations.

"~ A space rotation R may be considered as formed via Eq. (14) from two
spacelike four-vectors V; and V,* with magnitudes of +1,

Vl = {_ ﬁl ’ 0}’ V2* = {ﬁz H 0} (27)
where #, and #, are unit space vectors which subtend the angle ¢/2 of Eqs. (1)
and (2). This gives

R:[ﬁl Xﬁ2:ﬁ1'ﬁ2]:[R:r]

where use was made of Egs. (15) and (16). A boost B is derived from two
timelike four-vectors

Vl == {0’ l}s VZ* = {B, lb} (28)
with magnitudes of —1, where
B2 —p2=—1

Making use of Eq. (14) gives
B =[iB, b] (29)
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which is the boost vector given in IT and listed in Table I. Hence the basic
space rotation and boost transformations are second-order relativistic
vectors. We see from these equations that a pure rotation is real and a boost
has a real time part and a purely imaginary space part.

In an alternate approach the pseudovectors {i; , 0} and {i#, , 0} may be
used to form a space rotation.

The most general proper, or orthochronous, Lorentz transformation L
has complex space and time parts and may be written uniquely as the product
of a space rotation R and a boost B™

[L,/] = [R, »] (O [iB, ] = [bR + i(*B + BXR), b — iR-B]  (30)

or in a more condensed notation

L=ROB (1)

This makes it a fourth-order relativistic vector. In Il we treated the special
case where the Lorentz transformation is dervived from two successive
noncolinear boosts and we showed that R is perpendicular to B so that
[ = rb is purely real. The magnitude L2 + /2 of L is of course unity

L-L=L+P=1 (32)
as may be demonstrated by direct calculation from Eq. (12).

In general the magnitude of a transformation is 4- 1 through the
normalization condition

T - T=T'4+12= 41 (33)

If the magnitude is 4- 1, the transformation is a proper space-time rotation,
and such transformations are the subject matter of this section. We will see
later that a magnitude of — 1 corresponds to an improper space-time
rotation which includes a space-time inversion (r — —r, t —> — 7).

There is a unit transformation U

U=10,1] (34)
which commutes with all relativistic vectors G and leaves them unchanged,

UOG=GOU=G (35)
To obtain the reciprocal 7-* = T’ = (T’, t’) of the transformation T

TOT =T"0OT=U (36)
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we combine the scalar part t##" — T - T” = 1 of the expression T[] 7' = U
with the normalization condition (32) to give

(it Fe)=T-(T" +7T) 37N
The upper signs apply to a proper Lorentz transformation, so that r’ = ¢
and T' = — T. Therefore, the reciprocal of [T, ¢t} is [— T, t]:

T = [Ta t]_l = [— T’ t] (38)

The lower signs apply to improper Lorentz transformations, as will be
explained later. The reciprocal of the product 7, [ T, of two transformations
Tyand T, is

(MOTY*'=T,"OT1 (39

4. TRANSFORMING RELATIVISTIC VECTORS

A four-vector V in a particular space-time coordinate system can be
transformed to the form V' in another space-time coordinate system by
means of a proper transformation 7" through tHe following operation:

V' =TQO V[Tt (40)

The proof for this will be presented in the next section. The transformation
of the conjugated counterpart V* of V is obtained,by taking the complex
conjugate of both sides of this expression

Vr* = T* VO T (41)
In like manner we have for a pseudo-four-vector
v =TQVv,O7T,  Vi=Tr0y, art (42)

Thus we see that a general third-order relativistic vector Q is composed of
vector and pseudovector parts which do not mix together under a transforma-
tion. The second-order relativistic vector D = [D’' 4 iD”, d 4 id,] of
Eq. (14) transforms as follows:

D=TOvar)yorEEQviary=ropoOTrt @3

where D’ has the form

D' = [D" 4 iD", d + id,] (44
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and the scalar parts id and d, are uneffected by the transformation. This is
the justification for dividing D’ into the six-vector S, scalar s, and pseudoscalar
s, parts in accordance with Eq. (44). The three parts do not mix under
transformations.

The preceding expressions may be generalized to give for odd-order
Goaa and even-order Geven relativistic vectors, respectively,

Goaar = T [ Goga [} T*1 (45a)
Geven = T [ Geven [ T2 (45b)

To clarify the difference between these two expressions we consider the case
in which the space part T of T is in the z direction, and we write for the
corresponding transformation of a general high-order relativistic vector G

roeaTr =I7,,110G +iG", —g" +igH)OI7., t'] (46)
and 7" is 7% or T, depending upon the order of G

[T, t'] = [— T,* t*] odd order G (47a)
T, t'1=[—1T;,1t] even order G (47b)

Table II illustrates how the components of G mix when T is a space
rotation and a boost for both odd and even orders of G. We see from the
table that the components mix in pairs, and the pairs are either x and y pairs
or z and time pairs. A fourth possibility given in the last row does not occur
in special relativity. The table illustrates the particular case in which T is
along one coordinate axis. More general orientations of T' produce more
mixing of components.

It was mentioned above that the magnitude of a relativistic vector
G = (G +iG", ig’ — g") given by

G'G = G’2 — G"Z + g"2 _ g'z + zl(Gl . Grr - g’g”)

is not changed by a transformation. Therefore its real and imaginary parts
separately remain invariant. As a result the invariants of a first-order
relativistic vector {G’, ig’} and pseudovector {iG", — g"} are, respectively,
G'? —g'? and — G" 4 g"%. A second-order relativistic six-vector [G" |-
iG”, 0] possesses two invariants G'2 — G" and G’ - G”. The overall third-
order relativistic vector {G’ 4 iG", ig’ — g"} and its four-vector {G’, ig"}
and four-pseudovector {iG", — g”} components (21) and (22), respectively,
are individually preserved in magnitude and hence there are three associated
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invariants, namely G2 — g2, — G"2 + g"?, and G' - G" — g'g". A fourth-
order relativistic vector [G" + iG”, ig’ + g"] and its six-vector [G’ + iG”, 0],
scalar [0, g”] and pseudoscalar [0, ig’] parts, respectively, are individually
conserved and hence its four invariants G2 — G"2, g'%, g"% and G’ - G” are
individually preserved. )

A space-time transformation L, being an even-order relativistic vector,
transforms to a new system via Eq. (45b). For example, in this equation let
Geven be the boost [iB, b] and T be the boost [iB;, br], which gives

[iB, b'] = [yr(Br X B) -1 iysB + i(l — ) Br(Br - BB} (48)

where vy = (I — By?)~1/2 and B; is the reduced velocity. The fact that the
time part b = b’ remains unchanged shows that the transformed boost 5" =
retains the magnitude of its original velocity; only its direction changes.

In this section we merely stated the transformation properties of
relativistic vectors without proof. Tn the next section we will prove them
for a four-vector transformed by a space rotation and by a boost.

5. TRANSFORMING FOUR-VECTORS
We mentioned above that the law of transformation for a four-vector V'is
V=TV []T*! (49)
We will show that this is valid by writing down the results of this transforma-
tion for the cases of a space rotation and a boost.
For a space rotation Eq. (49) has the form
{Vla iU,} = [R9 r] D {V’ IU} D [_ Ra r] (50)
and when we work out the triple products [cf. Egs. (19)] we obtain
V =2rVXR + (r2— R}V -} 2R(V - R) (5nH
If V is written in terms of components parallel and perpendicular to the
rotation direction and use is made of Table 1, we arrive at the more familiar
expressions

v,/ =V, V,/=@6nlVXR| (coshV,, v'=v  (52)

These constitute the well-known formulas for a space rotation.
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In like manner we merely work out the details to demonstrate that the
boost transformation

{V, vy = [iB, b] (I {V, iv} 1 [iB, b] (53)
gives the result
V' = V(b* — B + 2B(B - V) — 2vbB (54)
v’ o= (bt 4 BY) — 26V - B
which may be written in the more common form

Vii=oVi—Bo), V.=V, o =yv—BK) (53)

corresponding to a boost in the parallel direction, where use was made of
Table 1.

Thus we have demonstrated that the transformation law (40) of a four
vector is valid for a space rotation and a boost. The validity of this trans-
formation law (40) for more general transformations (30) is easily proven by
induction. a

6. ELECTROMAGNETIC POTENTIALS AND FIELDS

Now that the relativistic vector approach has been applied to special
relativity, we will proceed to apply it to the case of electromagnetism.

The electromagnetic fields H and E form a second-order relativistic
vector F which may be constructed from the gradient four-vector

V = {— v, (ilc) 8fat) (56)

and the clectromagnetic potential four-vector A4

4

A={A, i) (57)
With the aid of Eq. (14) we write for F
F =V 0] A* = {— V, (ife) 3/ét} I {A, — if} (58)

To carry out the square product operation we must be careful to conform
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to the order of terms in Eq. (58) by always keeping the operator parts V and
0/ot to the left of the potential terms A and . Accordingly we have

1 6A

F:[VXA+. (V¢+E )vA}-—Ji]:[H—fE,O] (59)

where the electromagnetic potentials have the standard definitions
H=VXA, E=—Vé—(lfc)asAjot (60)
and the scalar part vanishes if the Lorentz condition is used
V- A+ (l/o)odjor =0 (61)
Since (H — {E, 0) has six components it might be referred to as a six-vector,
and we will call it the electromagnetic six-vector. Its form in a new Lorentz
frame is obtained from Eq. (43)
[H' —iE,0] = [H, 4 y(H, + 8 X E) — iE, — iy(E, —8 X H), 0] (62)
The real and imaginary parts of the magnitude .ofF
F-F=2H?—E*)—2H'E (63)
provide, respectively, the two invariants (H? — E?) and H - E of the electro-

magnetic fields.

7. MAXWELL’S EQUATION AND THE WAVE EQUATIONS

Maxwell’s equations are obtained by forming a third-order relativistic
vector though the operation with 4 on the conjugate field six-vector F* in
accordance with Eq. (20),

V[jF*zg—VE——s[j[H+1E 0l=V+ 7, (64)

where use was made of Eq. (21). We identify V as the current charge density
four-vector J

= (4=[c)] = (4=/c)(J, icp) (65)
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and set V), equal to zero, to obtain

v x 11-13’£+i(v><E+1ﬁ),v-H+iv-E = 713, iep)
c ot c ot : c
(66)
This single expression constitutes a statement of Maxwell’s equations,
vxH_ L% _ 47 e o
c ot c
. (67)-
leH S
V X E E?t——(), v E~—4ﬂ’p

as may be seen by equating the real and imaginary, scalar and vector parts
of Eq. (66).

The potential wave equations are obtained ‘by forming the following
third-order relativistic vector from Eq. (58):

i 0
‘¢ ot

;[1 [v A—i(Vd:—{—%%),O] =4T7T{J, icp}  (68)

{ v
The operations 'may be carried out to give .*

1 2A . 1 a2 4,
24 24 =
§” aam o (V9 P2 6t2): ¢ 1 ice) (69)

where use was made of the Lorentz condition (61). The real vector part is
the wave equation for the vector potential

1 PA 4n)

2 —_—_— e
ViA c® o1 ¢

(70)

and the imaginary scalar part is the wave equation for the scalar potential

1o

724 ve
vié c? ot?

= 4mp €a))
v

A similar approach using the gradient operator V provides the wave

cquation for the electromagnetic fields as a fourth-order relativistic vector (23),

1 2 1 2E . 1 6H .
i ¢ 47 .
=[5 00, )] (72)

Ra23/10//R.4
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The square cross operations are easily carried out to give

[Vzﬂ—%%—i(vm~%%),o]
:igf_[_exJ—f(vp+%%'t_),v-J+~aa—’;] (73)

The real vector part of these six-vectors is the wave equation for the magnetic
field

| &H 4V
c? o1z c

V2H — X J (74)

the imaginary vector part is the wave equation for the electric field

1 &°E

183
2 i, Il
VIE — — S = 4m (vp+ - az) (75)

and the scalar part is the continuity equation
VJ+4 0pfot =0 (76)

Thus the present formalism provides a very compact way to express the
equations of electromagnetism.

8. SPACE-TIME INVERSION AND IMPROPER TRANSFORMATIONS

Until now the discussion has been confined to proper transformations
which have a magnitude of -~ 1. Such proper transformations exclude the
operations of space inversion and time reversal. The transformation [

I=10,i) (77)

which has the reciprocal (0, — i) and the magnitude — 1, produces a total
space-time inversion of an odd-order relativistic vector since the operation
IV [JI** converts both the vector and scalar parts of a four-vector
and a pseudo-four-vector to their negatives in accordance with Egs. (40) and
(42), respectively,

{—=V, —iv} =10,i] O{V, i} [0, ]

(78)
{'—ivﬂ s ivp} = [0: l] O {ivﬂ s _Uﬂ} O [Os l]
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I differs from other transformations because it cannot be written as the
product of two four-vectors. Even-order relativistic vectors undergo total
inversion by using Eq. (45b), where 7-! equals [0, — i].

A proper transformation T is converted to an improper transformation
T, with a magnitude — 1 through the operation

T,=IO0T=TOI (79)
corresponding to

[T,,1,] = [iT, it] 80

Using the lower sign of Eq. (37), we obtain [T, , — ¢,] as the reciprocal of an
improper transformation,

[Tp s tp]hl = [Tp s — 1] ) (8])
The successive application of [0, i] or [0, — i] twice produces the self
reciprocal transformation [0, — 1] = — U, '
IO0I=rQOQit=-U

which has no effect on a four-vector

-

{V,iv} = [0, = 11 O0{V, i} O [0, — 1] (82)

Using these four transformations [0, 1], [0, i], [0, — 1], and [0, — /],
we can divide the set or group of general space-time transformations into
four branches: .

[T,¢]1 00100, 1] =T, 1] . proper branch

[T, 1310, {] = [iT, if] improper branch
[T,:10[0, —1} = [T, —1] proper double branch
[T, ] 0[0, —i] = [—iT, —it] improper‘ double branch

(83)

Each double branch has a one to one correspondence with its counterpart
single or ordinary branch, and both have the same effect on the transforma-
tion of a four-vector since from Eq. (82), [T, ¢] is effectively the same trans-
formation as [— T, — ¢#].

In the case of boosts the two branches correspond to the following
disjoint range of values of the parameter b:

1<bhb< ordinary branch (84)
—oo <b g —1 double branch
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For space rotations the branches are connected, and if we select — 77 << 0 <
for the range of ¢ corresponding to the ordinary branch, we obtain

0<r<1 ordinary branch —r <07 5)
. (85
-1 <r<0 double branch <0 <L -7, L0 L2

The existence of the two space rotation double branches is associated with
the well-known double-valuedness of spinor matrices.

9. PARITY AND TIME REVERSAL

The four-vector {r, ict} is reversed in time by the operation of complex
conjugation, and parity P may be considered as a combination of time
reversal T and total inversion I. Therefore we have

P{V, vy = 10,11 O{Y, in}* O [0, 1] ={—V, iv} (86)
T{V, iv} = {V, iv}* ={V, — iv} (87)
IV, iv} = [0,i] [I1{V,iv} [J[0,i] ={—V, — iv} (88)

These three operations commute with each other; e.g., P = IT = TI. The
corresponding expressions for a pseudo-four-vector V, are

PV, , — v} =(iV,, v} . (39)
T{iVy,, — v} ={—1iV,, — v, (50)
[{iV,, s T Uzi} = {— l'V,, s Uw} (91)

We see from the sign changes of Egs. (86) and (89) that V is a vector, V,,is a
pseudovector, v is a scalar, and v, is a pseudoscalar. Hence the notation of
pseudo-four-vector for V,,.

10. MAGNETIC MONOPOLES
Mazxwell’s equations were derived above by equating V [J F* to the

current-charge density four-vector J. The case of magnetic monopoles may be
treated by writing for Eq. (64)

i o . 4 , 4 .
1=, 2 O+ B, 0] = =0, iep} — =il —epu} (92)
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where J,, and p,, are the magnetic current and magnetic charge density,
respectively, corresponding to V,, of Eq. (22), and the signs on J,, and p,,
arc selected to agree with Jackson.® This expression gives for the space part

1 ¢E . 1 6H\  A4x .
(V=) +i(vx s G = Ta—im) o
and for the time part
V'H 4“ iV-E = 477(Pm + ’P) (94)

which symmetrizes the real and imaginary parts, as expected for a magnetic
monopole formulation. The form of Eq..(92) correlates with the fact that
J and cp constitute a polar vector-scalar pair, and J,, and cp,, constitute a
pseudovector-pseudoscalar pair. We should note from the discussion after
Eq. (46) that the relativistically invariant quantities of the J, J,, pair of
first-order vectors are J2 — c?pt — J2 + et and J o J,, — c2pp,,, .

11. CLIFFORD ALGEBRAS

The formulation presented in this and the two previous articles is closely
related to Clifford algebras, and indeed it may be considered as a particular
application of Clifford algebras. In this section we will comment upon the
relationship between the present approach and the following Clifford
algebras®.®:

I. The real quaternion algebra C, operates on a linear vector space
of dimension 22 = 4 with the orthonormal basis vectors given by f, f (where
k = i X j). The vector products (3) and (4) are related to the usual quaternion
product '

¢ +iC = (b + iB)(a + iA) = ab — AB F i(aB + bA) (95)
through expression (1.30) of Ref. 5,
AB=A-B+|iAXB (96)

.
The operation AB is not defined in the present formalism,

The first article in this series dealt with the rotations of three-dimensional
vectors in Cartesian space. The rotation vectors (R, r) presented there were
real unit quaternions or quaternions of unit length.

2. The Pauli algebra or algebra of complex quaternions C, is associated
with a linear vector space of dimension 2% — 8 with the orthonormal basis
vectors given by the Pauli spin matrices o, , 0y, and o, .
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3. The Dirac algebra C, is determined by a linear vector space of
dimension 2% = 16 with the orthonormal basis vectors given by the Dirac
matrices ¥, , y1 , Y2, and y; .

The elements of the Dirac algebra C, are of five types: one-component
scalars Sp , four-component vectors V,,, six-component trivectors (tensors)
Tp , four-component pseudovectors (also called axial vectors or bivectors)
B, , and one-component pseudoscalars P,. The elements of the Pauli
algebra C, are of four types: one-coponent scalars S, , three-component
vectors V,, three-component pseudovectors B,, and one-component
pseudoscalars P, . Each of these terms plus the terms of the algebras of real
numbers (C,), complex numbers (C;), and also C; may be arranged in the
array shown in Table III. In this array we indicate for each term its dimen-
sionality and its total parity (evenness of oddness) under total inversion.
We see from the array that all scalars are even and of dimension unity, all
vectors are odd and of dimension n, all terms in a row alternate in total
parity from plus to minus, and all C, dimensionalities are binomial coeflicients
(e.g., 1-4-6-4-1 for C,). For simplicity the subscripts are omitted from the
zeroth-order, first-order, second-order, and fifth-order terms.

For each algebra C, there are two subspaces formed from C,_, by
grouping each term of C,_; in pairs or singly with a term of C, that appears
in the array to the right or left directly below. This grouping is done in a way
that preserves the dimensionality.

The odd-order relativistic vectors used in this work correspond to the
odd Pauli subspace with the following decomposition:

Vo =V, +iS,, By, =iB,+ P, 97

The first-order relativistic vector ¥V, alone is an incomplete part of this
subspace. Since Eq. (97) constitutes the complete subspace, odd higher order

Table IIL
C, Terms of Algebra Dimension n
Co S(1.+) 1
(& S(1.+) P(,,,) 2
G St.n Ve Pq, 4
Ca Sp1.0 V:-(a.—) By, Py 8
Cy Spa.) Vbt Toes.+) Bpa. Ppu.w 16

Cs San Vis.oy Tao.n T(’ll),—-) B Py, 32




A Vector Product Formulation of Special Relativity and Electromagnetism 551

relativistic vectors do not generate any additional types of elements. There-
fore, Eq. (21) is equivalent to the expression

Q:VD+BD ’ (98)

when written in the notatign of Eq. (97).
The even-order relativistic vectors correspond to the following even
Pauli subspace decomposition:

Sp=S,, Tp=iV,+B,, Pp=iP, (99)

Second-order relativistic vectors lack P, and fourth-order ones contain the
complete subspace (99). Equation (25) expressed in this notation has the form

H=1Tp+ Sp+ Pp (100)

These odd and even Pauli subspaces, given by Eqs. (97) and (99), respectively,
exhaust the Dirac algebra. The even Pauli subspace is a subalgebra because
it is closed under the operation [J, while the odd Pauli subspace is not closed
under this operation and hence it is not a subalgebra.

In forming subspaces the i is inserted in front of each term of the
subspace that differs in total parity from the higher order algebra term
associated with it. For example, ¥, is odd and hence even §, has an 7 and
odd V), has no i in Eq. (97). In like manner, the even Dirac term Tp of
Eq. (99) contains the Pauli terms iV, and B, .

The transformations used in this work mix the elements of the Pauli
subalgebra which are associated together with each Dirac algebra term, but
they do not allow mixing between Dirac algebra terms. Thus, transormations
of Q [Eq. (98)]in the odd subspaces (97) mix together elements of V,and S, ,
and mix those of B, and P, , but no other mixing occurs. Tn the even sub-
algebra (99) elements of i/, and B, mix together, while S, and iP, remain
invariant under transformations of H [Eq. (100)]. In other words, the special
and general Lorentz transformations (29) and (30), respectively, Jeave these
odd and even subspaces separately invariant through Eqs. (45a) and (45b).
This explains why in the electromagnetic field six-vector E and B mix, but
the zero time part (S, = 0, P,, = 0) remains zero.

The transformations themselves correspond to the even Pauli subalgebra.
Thus the scalar part b in Eq. (48) remains invariant. More specifically, the
transformations are even-order elements of the Pauli algebra with unit
magnitude, and as a result they preserve the magnitude of the relativistic
vectors which they transform.
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12. DISCUSSION

In this article we have shown that the use of a linear vector product
formalism permits a four-vector and its conjugate to be employed as primitive
vectors for the formation of quantities called second-, third- and fourth-order
relativistic vectors which comprise the space rotations, Lorentz transforma-
tions, and antisymmetric tensors of special relativity. The use of these
relativistic vectors provides a very compact way to express the equations of
clectromagnetism. Using this method, all four of Maxwell’s equations reduce
to one equation (66), the wave equations for the scalar and vector potentials
appear together in one expression (69), and a third equation (73) combines
the wave equation for the magnetic field, the wave equation for the electric
field, and the continuity equation for the electric current and the charge
density. The compactness of these expressions serves to emphasize the
interrelatedness of the various vectors and scalars in electromagnetism.
Others®-%11) have made use of the form E — iH.

The Lorentz group consists of four disjoint parts, namely the ordinary
or orthochronous part, and the three parts generated respectively by the
space inversion, the time reversal, and the space-time inversion operations.!?
Our transformations only generate two of these parts, namely the proper
orthochronous part and the space-time inverted part. Each of these, however,
appears in both ordinary and double-valued branches. The operations of
space inversion, time reversal, and total inversion are not derivable from
primitive four-vectors. Instead, time reversal is produced by complex
conjugation, and space inversion is obtained by a combined total inversion
and complex conjugation operation. .

The general transformation [T, ¢] has eight parameters since the scalar
¢t and each vector component of T are in general complex numbers. The
normalization condition is equivalent to two conditions

Re(T-T+) =1, ImT-T+12)=0 (1o

which leaves six independent parameters, the same as the number in the
Lorentz group. A four-vector, with a real vector part, an imaginary scalar
part, and an arbitrary real magnitude, has four independent parameters,
and a second-order relativistic vector, with a complex vector part, a real
scalar part, and an arbitrary complex magnitude, has seven independent
parameters. The special case with a zero scalar part, exemplified by the
electromagnetic field six-vector, has six parameters. Third- and fourth-order
relativistic vectors have in general eight independent parameters.

In this article the emphasis was on the methods of transforming
relativistic vectors and on applications to electromagnetism. The results,
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however, are quite general and may be applied to other aspects of special
relativity, such as to the basic equations of mechanics. In relativistic me-
chanics force-power and momentum-energy form four-vectors and angular
momentum and torque form six-vectors.

APPENDIX
Equation (18) of I for the triple product of three successive rotations
[R,r] = Ry, 1O [R,, 1O Ry, 7]
should read as follows:

R = (R, X Rg) — ry(Ry X Ry) 4 r3(R; X Ry) — Ry(R, - Ry)
+ Ry(R; " Ry) — Ry(R; - Ry) + ryrsRy + rar Ry - 1Ry
ro= gy — 1Ry Ry) — r(Ry - Ry) — rg(Ry - Ry) 4 Ry - (R X R))
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