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We present a perturbation theory for an arbitrary bound state in the one-space and one-time
dimension Klein—-Gordon equation in the presence of a scalar potential and a vector (fourth
component only) potential by reducing it to a Ricatti equation with the method of logarithmic
perturbation expansions. All corrections to the energies and wavefunctions, including corrections
to the positions of the nodes in excited states, are expressed in quadratures in a hierarchical
scheme, without the use of either the Green’s function or the sum over intermediate states.

PACS numbers: 03.65.Ge

I. INTRODUCTION

Recently, in a series of papers,'— we have presented per-
turbation theories for an arbitrary bound state in static po-
tentials for the Schrddinger equation and the Dirac equa-
tion. In central field problems® and in problems reducible to
one dimension in the case of the Schrédinger equation,’-* we
have shown that all corrections to the energies and wave-
functions, including corrections to the positions of the nodes
in excited states, can be expressed in quadratures in a hierar-
chical scheme, without the use of either the Green’s function
or the sum over intermediate states. This is achieved through
the reduction of the differential equations involved to a Ri-
catti equation, followed by a perturbation expansion. In the
case of the Schrodinger equation,'** this is equivalent to
performing a perturbation expansion on the logarithmic de-
rivative of the wavefunction instead of on the wavefunction
itself. In the case of the Dirac equation,™® this is equivalent
to carrying out a perturbation expansion on the ratio be-
tween the radial parts of the small and large components of
the Dirac spinor. We emphasize that in the case of excited
states where the wavefunctions possess nodes,'** the zeros
must be factored out first. We have also shown that the first-
order perturbation iteration method (FOPIM), first intro-
duced by Hirschfelder,” can be incorporated into this pertur-
bation approach to yield accelerated convergence, if conver-
gence exists.>® In nonrelativistic problems that are not
reducible to one dimension, we show that, for the ground
state, the method of logarithmic perturbation leads to a hier-
archy of equations that determines the corrections to the
energy and wave function for each order. In this hierarchy,
the equation for the jth-order correction is isomorphic to the
equation for the first-order correction. Moreover, these
equations have the same form as Gauss’ law in classical elec-
trodynamics.? As an application, we have shown that this
method can be used to obtain the corrections to the energy
and the logarithm of the wavefunction of the ground state of
a hydrogen atom in a multipole field or a linear combination
of static multipole fields to any order in perturbation
theory.’
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In this paper, we would like to extend similar tech-
niques to the one-space and one-time dimension Klein—-Gor-
don equation. We shall assume that it is possible to solve this
equation with a certain scalar potential and a fourth compo-
nent vector potential. The problem of a charged spinless bo-
son in a central field is reducible to this form. We then con-
sider the change in the energy and in the wavefunction as a
perturbation is introduced to the fourth component vector
potential or to the scalar potential. This will be developed in
Secs. IT and I1I. In Sec IV, we conclude by mentioning some
possible applications of the presently developed techniques.

. PERTURBATION IN THE FOURTH COMPONENT
VECTOR POTENTIAL

The single-particle one-space and one-time dimension
Klein-Gordon equation in the presence of a fourth compo-
nent vector potential ¥ and a scalar potential S can be writ-
ten as'*'" in natural units # = ¢ = 1:

(B~ Vixl2uix) = | — <+ m? + 2mS (x|l
(2.1)

We assume that, for a certain ¥, and S, the above eigenvalue
problem is solvable so that the energy eigenvalue E, and the
corresponding wavefunction y, are known for a particular
state. We shall consider the correction to the energy and
wavefunction as a perturbation A ¥, is introduced to the po-
tential V. In the following section, we consider the same
corrections as a perturbation 7S, is introduced to the scalar
potential S;,. For the sake of brevity, and yet without sacrific-
ing clarity of the essense of our method, we shall limit our
detailed discussions to the ground state where the wavefunc-
tion does not contain any zero and to the first excited where
the wavefunction possesses one zero. The generalization to
an arbitrary excited bound state with a finite number of
nodes is straightforward, and the mechanism is similar to
what has been reported previously. '

In the absence of any degeneracy, the wavefunction ¢
can be taken as real. In order that the charge density be
normalizable, we require that i vanishes as x approaches
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+ 0. In the case of the ground state, ¥ does not contain any
zero, and so its logarithm is regular. In analogy to the nonre-

lativistic Schrodinger equation, we define
#ix) = expl — G (x)] (2.22)

and

glx) = iG (x). (2.2b)
dx

Equation (2.1) is then transformed to the Ricatti form
(E—V)i=g —g"+m*+2msS, (2.3)
where a prime denotes a derivative with respect to its argu-
ment. The unperturbed Klein—-Gordon equation in Ricatti
form is
(Eo — V0)2 =gy — g(z) +m’ + 2mS,,. (2.4)

In the presence of a perturbation to the fourth component
vector potential, A V|, Eq. (2.3) becomes

(E—~Vy—AV) =g —g* +m? 4+ 2mS,. (2.5)
We seek a perturbative solution to Eq. (2.5) by expanding the

eigenvalue E and the logarithmic derivative of the wavefunc-
tion g in power series in A:

E=E,+AE 4+ A°E, + - =3A'E,, (2.6)
and

§=8 +Ag +A%% + - =31%, (2.7)
We next define

B,=E, — V,, (2.8)

B,=E,—V, (2.9)

B,=E, foralli>2. (2.10)

On comparing coefficients of various powers in A, we obtain
(2.11)

which is the unperturbed Klein—-Gordon equation for the
ground state in the Ricatti form, and

2ByB, = g| — 28,8,

k—1
2BoB + 3 (BB ; +88_;) =8 — 288 (2.13)

J=1

B} =g — g +m’ +2mS,,

(2.12)

for all k2. We then observe, similar to the nonrelativistic
case in the Schrodinger equation, that the square of the un-
perturbed wavefunction serves as an integration factor to
this hierarchy of equations,

2B,Be~ 200 = [ge %1,
and for k>2

(2.14)

k—1 »
2BoBi + Y (BiBi_; + 88 ;)¢ 2% = [gie O]
j=1
(2.15)

Equation (2.15) can be brought to a form similar to (2.14) if
we define an effective £ th-order perturbation potential ¥, by

k—1
BVi=—1% (BBi_;, +g8:_,) (2.16)
i=1
Equations {2.14) and (2.15) can then be rewritten as
AE, — VNE, — Vi)e 2?9 = [ge ] (2.17)
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for all k> 1.

We now readily see that this hierarchy of equations can
be solved in quadrature. On integrating Eq. (2.17) from — oo
to + oo, the right-hand side vanishes according to the
boundary conditions and the integration yields

ST 2 (Ey— Vo)V ¥(x) dx
SH2(Eo— VoltPix)dx

E, = (2.18)

If we normalize the charge of the Klein—-Gordon particle to
unity, then the integral in the denominator of (2.18) is equal
to m, the mass of the Klein-Gordon particle in equation. In
this case, the k th-order correction to the energy is given by

+ o — Px)d
E, _J (Ey — Vo)Vidix) x'

(2.19)

Cw m
Having obtained £, , Eq. (2.17) can now be readily integrated
to yield a solution for g, :

8ilx) = em‘""f 2Ey — VolEx — Vy)e **dx. (2.20)

Since V), is defined by E; and g; where j<k — 1, itis apparent
that the perturbative solution can be obtained in this hierar-
chical scheme.

It may appear worthwhile to show that £, as given by
Eq. (2.19), is the same as that obtained in standard perturba-
tion theory in terms of the two-component wave function
formalism that leads to the first-order Klein-Gordon equa-
tion.'>'" As is well known, the two-component isospinor
wavefunction ¥ can be written in terms of the Klein-Gordon
wavefunction ¢ as

(O S E)

In terms of this isospinor, the Klein-Gordon equation can be
written in Hamiltonian form

(2.21)

HY =FEY, (2.22)
where the operator H is identified as
. —-14d?
H = (r; + ir)) —+S8|+rm+V, (2.23)
2m dx?

T1, T2, T3 being the Pauli isospin matrices, and the scalar
product is defined in general as

<WIW’>EIW+T3W'. (2.24)

Thus, the normalization that fixes the charge of the Klein-
Gordon particle to be unity is equivalent to (¥ |¥) = 1 or

fm +(E—V)mP —[1 —(E—VymP|¢*/d=1 (2.25)
or to

f(E — V)P dx =m, (2.26)

which is the condition used to replace the denominator of
Eq. (2.18) by the mass of the Klein-Gordon particle in terms
of the unperturbed solution. Then, as is well known, the first-
order energy shift is given by

E, = <W0|H1|Wo>, (2-27)
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where ¥, is the isospinor corresponding to the unperturbed
solution. Here, H, = ¥, 1, where 1 is the unit matrix. Then
Egs. (2.27), (2.24), and (2.21) together will lead to Eq. (2.19)
fork = 1.

Once the g, ’s are obtained, they can be integrated to
given the G, ’s, the correction to the logarithm of the wave-
function. The integration constants here are additive con-
stants to the logarithm of the wavefunction and are hence
multiplicative constants to the wavefunction that can be
fixed by normalization of the charge density.

As discussed in earlier papers,>® an alternative ap-
proach to the perturbation is the first-order perturbation it-
eration method (FOPIM). From the knowledge of £, and g,
we construct the function

8=8, + 48 (2.28)

and

El =E,+ AE,. (2.29)
We then seek a potential ¥} that will satisfy Eq. (2.24)

(Eq — Vo)©=lgo) — (go)* + m’ + 2msS. (2.30)
This is an algebraic equation and ¥, can be solved. Howev-
er, because of the quadratic nature, there will be two possible
solutions for ¥ . The correct choice is the one that ap-
proaches V¥, as A approaches zero. Having found this ¥ §, the

new unperturbed potential, the perturbation can be chosen
as’

V=V, + AV, - V). (2.31)

It is not hard to show that from Egs. (2.4}, (2.12), (2.28),
(2.29), and (2.30) that ¥’} is of order A 2. We thus succeed in
reducing a problem with a perturbation of order A to the one
with order A 2. This process can be continued. The next step
will reduce the perturbation to order A *.

We not turn to the excited states. For simplicity, we
consider the first excited state where the wavefunction con-
tains one node and give the corrections to an arbitrary order.
For an arbitrary excited bound state where the wavefunction
contains a finite number of, but more than one, zeros, we give
the expressions for the first-order corrections. One then can
use the FOPIM to generate all higher corrections.

In the case of the first excited state where the wavefunc-
tion has one node we can write

Y=(x—a)le (2.32)

where a is the position of the node. The Klein-Gordon equa-
tion is then transformed to the Ricatti form:

g +E—-Vy—m*—2mS)x—a)=2g (2.33)
The unperturbed equation is
(85 — 86 + (Ey— Vol? —m? — 2mSy|(x — ay) = 28,
(2.34)

where E is the zeroth-order energy eigenvalue, and the ze-
roth-order eigenfunction is

Yo = (x —agle =%, (2.35)
where a,, is the nodal position in the absence of any perturba-
tion. In the presence of a perturbation A ¥, we seek the solu-
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tion of £ and G in power series of 4 as in Eq. {2.6)and (2.7). In
addition, the nodal position a is also expanded in powers of
A:

a=ay+Aa, +A%+ =31, (2.36)

On substituting Egs. (2.36) and (2.6)—(2.10) in Eq. (2.33) and
using (2.34), we obtain, after multiplying throughout by

(x — agle ~ 2%,

[ae %] — [g(x —ag)’e 2%}

+ 2B,B \(x — a,fe 2% =0, (2.37)
and for all i>2,
a;[e 2% — [gilx — apf’e ~**]'
+2By(E; — V,)ix — ag)’e > =0, (2.38)

where the effective ith-order perturbation potential is de-
fined by

2B,V ix —ay)
i—1

=3 {a,_ . [2808 — 8} + 2B,B;

k=1

k—1
+ Z (BB, ; +88& ;)

Jj=1
— BB _« 88—k ]lx —(10)}, (2.39)
and the summation is understood to be zero if the upper limit
of the punning index is smaller than the lower limit. It is then
trivial to obtain the corrections to the energy, the nodal posi-
tion, and g by integrating Egs. (2.36) and (2.37) from — oo to
+ o, @, and x in a hierarchical scheme.

In the case of an arbitrary excited bound state where the
wavefunction prossesses N zeros, we write the wavefunction

as

N
v=[lx— aﬂ}]e - (2.40)

=1
Then the Klein-Gordon equation in Ricatti form becomes

g —g +E—V)—m’—2mS][[ix—a,)
M
:Zgzn(x—au)-—z Il *x—a.)
v opFEY oV puFEov
Here, we only give the first-order corrections. The higher-
order corrections can be brought to forms analogous to Egs.
(2.37) and (2.38) by keeping track of the indices. Alternative-
ly, one can use the first-order perturbation iteration method.
The first-order corrections are given by the following equa-
tion analogous to (2.36):

,2“‘“ IIx— a,)le” 2G..]' . [gll;[(x —apfe- zc,,] ,

vF#EN
= —2E, — V\)E,— V(,)H(x — auo)ze - 26,
I

(2.41)

(2.42)

from which the first-order energy correction £ can be ob-
tained by integrating from — o to + co, the first-order
correction to theuthnode a,,, can be obtained by integrating
from — « toa,,, and theng, canbe obtained by integrating
from — oo tox after E, and the g, ’s have been obtained. As
in the case of the ground state, the additive constant to G
from the integration of g is fixed by normalization of the
charge density.
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Ill. PERTURBATION IN THE SCALAR POTENTIAL

We now consider the situation where the perturbation
7S, is in the scalar potential S. In the case of the ground state
where the wavefunction does not contain any zero, it can be
written as in Egs. (2.2a) and (2.2b), and the unperturbed
equation is the same as Eq. (2.4). In the presence of the addi-
tional scalar potential %S, the Klein-Gordon equation in
Ricatti form becomes

(E— V=g —g" +m?+2mSy+2myS,.  (3.1)

In analogy to Eqs. (2.6} and (2.7}, we seek the solution in
power series in 17:

E=E,+nE, + °E, + - = S9'E, (3.2)
and

g =8 +mg + = 2ng,. (3.3)
On comparing coefficients of various powers in 77, we obtain

(Eo — Vo =80 — 85 + m* + 2mS,, (3.4)
which is the unperturbed Eq. (2.4}, and

2E\(E,— Vo) =g — 2808, + 2mS,, (3.5)

i1
2E(E,— V) + Z (EE _;+88 _;)=8 —28&:

=1

’ (3.6)

for all />2, We then readily observe, as in the previous sec-
tion, that the square of the unperturbed wavefunction,

e~ %, acts as an integration factor to this hierarchy of
equation:

2E\(Ey — Vyle =% = [gie™ *%]" + 2mS\e *%, (3.7)

from which we obtain
+ oo
E, =f S,e "% dx, (3.8)

on using the normalization condition (2.26), and
g = 2AE(E, - Vi) -mSledx (9)

The higher-order corrections are given by
2E,(E, — Vo)e "% = [g,e ~2%] + 2mS;e ~ 2%, (3.10)

where we identify the ith order effective scalar perturbation
potential S, by -

2mS;=— ‘z](EjEifj +88 ;)

=
In terms of the two-component wavefunction ¥in Eq. (2.21),
the first-order correction to the energy is given by Eq. (2.27),
where H, = (75 + i7,)S,, which can be easily shown to lead
to the same result as Eq. (3.8).

We now turn to the first excited state whose wavefunc-
tion is written as in Eq. (2.32). The Klein-Gordon equation in
Ricatti form is given by Eq. (2.33). We then expand the ener-
gy £ and g in power series in 77 as in Egs. (3.2) and {3.3). In
addition, the nodal position 4 is also expanded in a power
series of 77 analogous to Eq. (2.36):

(3.11)

a=a,+na, + = Iy, (3.12)

On executing procedures similar to the last section, we ob-
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tain the following for the first-order corrections:

—26,]" _ —2G, T

[81(x — ap)’e
= —2[E|(E,— V,) — mS,}{x — ay)’e ™%, (3.13)
from which the corrections E,, a,, and g, can be obtained by
integrating from — o t0 + oo, @, and x. The higher-order
corrections are given by
[g:(x — ap)’e
= —2[E[(Ey— Vo) — mS; )(x — a,)’e ~*%, (3.14)
where the effective ith-order scalar perturbation S, is defined
by
2mS (X — ay)

[a.e

VZG(,]I _ —ZG(,]:

a;le

i—1
= 2 [ai—k[Zgng ~ &k + 2B, — VO)E,
K=1
k1
+ 2 (EjEk_j +gjgk¥j)]
i=

— [EvE,_, +gkgi~k](x_a())]' (3.15)
Equation (3.14) can readily be integrated to give the correc-
tions E, ,a,, and g, with the same sets of integration limits. It
is then obvious that Egs. (3.13)~(3.15) can be integrated in a
hierarchical scheme to yield corrections to any order in per-
turbation theory.

For an arbitrary excited bound state, we only give the
equation for the first-order corrections:

Zaﬂ !
i

=yh

= —2[E,(Ey— Vo) — mS| |Tl(x — a )% 2%, (3.16)

[T 6x = a.oe 2| = [g[tx = a0 e 2]

which is analogous to Eq. (2.41) and can be solved in quadra-
ture by integration in an analogous manner.

IV. CONCLUDING REMARKS

In this paper we have presented a bound state perturba-
tion theory for the one-space and one-time dimension Klein-
Gordon equation in the presence of a scalar potential and a
fourth component vector potential by reducing it to a Ricatti
equation with the method of logarithmic perturbation ex-
pansions. The problem of a charged spinless boson in a cen-
tral field is reducible to this form. Our results are thus appli-
cable to the study of the perturbative corrections to the
energies and wavefunctions of bound states in pionic atoms
due to a screened Coulomb potential or due to a finite-sized
but spherical nucleus. We have shown that it is possible to
obtain all preturbative corrections in quadrature in a hierar-
chical scheme without the use of either the Green’s function
or the sum over the intermediate states, especially in the
latter where negative energy states are also involved. The
computation of the higher energy corrections in closed qua-
dratures can be used to identify sum rules, as reported by us
previously. '

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under Grant Nos. PHY-79-01053 and
ISP-80-11451.

C.K.Auand Y. Aharonov 1431

Downloaded 03 Aug 2004 to 157.82.227.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Y. Aharonov and C. K. Au, Phys. Rev. Lett. 42, 1582 (1979); 43, 176(E)
(1979}; 44, 619(E) {1980).

3C. K. Au and Y. Aharonov, Phys. Rev. A 20, 2245 (1979).

C. K. Auand G. W. Rogers, Phys. Rev. A 22, 1820 (1980).

V. S. Polikanov, Zh. Eksp. Teor. Fiz. 52, 1326 (1967} [Sov. Phys. JETP 25,

882 (1967)); Theoret. Math. Phys, (USSR] 24, 230 (1975).
R. J. Price, Proc. Phys. Soc. London 67, 383 {1954).
®A. I. Mikhailov-and V. 8. Polikanov, Zh. Eksp. Teor. Fiz. 54, 175 {1968)

1432 J. Math. Phys., Vol. 22, No. 7, July 1981

{Sov. Phys. JETP 27, 95 (1968)].
’J. O. Hirshfelder, J. Chem. Phys. 39, 2009 {1963).
*C. K. Au, Phys. Lett. A 77, 221 {1980).
°C. K. Auand Y. Aharonov, Phys. Rev. A 22, 328 (1980}.
“H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958). .
"' Also see, for example, G. Baym, Lectures on Quantum Mechanics {Benja-

min, New York, 1969}.

C. K. Auand Y. Aharonov 1432

Downloaded 03 Aug 2004 to 157.82.227.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



