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We study the ground state as well as the first three excited states of the anharmonic oscillator with anharmonicity hx 4 
for a range of h = (0, 10) with the first-order logarithmic perturbation iteration method (FOLPIM). This leads to conver- 
gent results. The initial choice of the wave function seems only to affect the rate of convergence in the case of the ground 
state but may critically affect the convergence for the excited states. For large values of h, convergence is best obtained by 
choosing the asymptotic solution as the initial "unperturbed" wave function. 

The perturbative solution o f  the ground state of  
the anharmonic oscillator has been extensively studied 
[ 1 - 2 3 ] .  In the typical  problem where the anharmoni- 
t icity is Xx 4 , the energy corrections have been calcu- 
lated by Bender and Wu to 150 orders [4]. The asymp- 
tot ic  form for the energy correction as a function o f  
the order o f  the perturbat ion parameter  X has also 
been given [4]. The resultant series is well known to 
be divergent. Both the Pad6 approximat ion and the 
Borel summation method have been used to  recover 
finite results for the energy correction [13,14,18].  In 
the past few years, there has been a lot o f  renewed in- 
terest in the logarithmic per turbat ion theory which es- 
sentiaUy consists of  transforming the Schr6dinger 
equation to Ricatt i  form by taking the logarithm of  
the wave function [ 8 - 1 1 , 2 4 - 2 8 ] .  For  the case of  the 
ground state where the wave function does not  con- 
tain any zero, the logarithm is regular. For  excited 
states where the wave functions have nodes, the zeros 
must be factored out  before the logartihm is taken o f  
the envelope o f  the wave function [24]. 

The logarithmic per turbat ion expansion has been 
used to restudy the ?,x 4 anharmonic oscillator to 72nd 
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order. We have calculated the corrections to the energy 
and the logarithmic derivative of  the wave function. 
The i th-order  correction to the logarithmic derivative 
of  the wave function is a polynomial  of  degree 2i  + 1, 
consisting of  odd powers only. We have compared our 
results for the energy correction to those of  Bender 
and Wu [4]. Up to the 45th order, our results are iden- 
tical to theirs to 12 significant figures. Slight discrep- 
ancies slowly accumulate as the order o f  the perturba- 
t ion is increased until at the 72nd order, the agreement 
with the results of  Bender and Wu is only to 3 signifi- 
cant figures. We have run our program in both double- 
and quadruple-precision versions with exact agreement 
up to 12 places at 72nd order. We do not understand 
the reasons for the difference between our results and 
those o f  Bender and Wu. Nevertheless, our results con- 
firm their asymptot ic  form. Hence the straightforward 
logarithmic per turbat ion method will not improve the 
convergence o f  the per turbat ion series. 

A variant o f  the logarithmic per turbat ion method 
which uses the asymptot ic  solution to the total  poten- 
tial, V = V 0 + ?,V1, as an input has been suggested [9, 
10, 28].  This input wave function ~k I in logarithmic 
form is an exact ground-state solution for a potential  
V I .  Thus V~ = V - V~ can be treated as a perturba- 
t ion to a problem for which we have a solution. This 
leaves us a "per turba t ion"  which is nonzero, and, may 
even be large but  finite, over a finite measure, com- 
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Fig. 1. The probability density P(x) = ~2(x) for the initial 
(asymptotic) and final ground-state wave functions with 
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pared to the original )tx 4 perturbation which becomes 
arbitrarily large over a nonfinite measure. Thus one 
can expect this modification to improve convergence. 

In particular, this works well with the first-order- 
logarithmic perturbation iteration method (FOLPIM) 
[25]. Here we use the same notations: G = - I n  qJ and 

g = G' ,  where the prime indicates a derivative with re- 
spect to its argument. Using the asymptotic solution 

gA(X) = N / ~ X  2 = gO, (1) 

as an input to the Ricatti equation 

g'(x) - g 2 ( x )  = 2(E - }x 2 - ~,x4),  (2) 

in four  iterations, we obtain agreement with the values 
of Biswas et al. * 1 to 4 significant figures for )t be- 
tween 0 and 10.0. The result is shown for X = 0.5 in 
fig. 1. The correction to the energy for X = 10.0 in 
each step of the iteration process is displayed in 
table 1. 

For the case of the ground state, FOLPIM will 
yield a convergent result even without  using the 
asymptotic solution as input. As noted in the original 
paper where FOLPIM was developed [25] (the nota- 
tion here is the same as in this reference) the energy 

of the system at the end of the N t h  iteration is (N~> 2): 

-- I ( 3 )  

where 

E N - 1  = ( ~ 0  -11vN-X 1~0 -1) , (4) 

and 

v N - 1  = I ( g N - 1 ) 2 Q t 2 ) N - 1  . (5) 

Thus E~ v-1  is negative definite and the FOLPIM 

scheme yields a monotonically decreasing sequence 
for the energy eigenvalue: E N <  E N - 1  . Since 

EN = ( ~ 0  -1 IHIq~0 -1 ) , (6) 

where H is the total hamiltonian and ~0.-1 is the 
properly normalized eigenfunction o f H  N-1  with en- 
ergy eigenvalue E N - l ,  E N is an upper bound to the 

*l The reader may refer to ref. [6] for the eigenvalues as a 
function of the parameter h. 

Table 1 
Convergence of the energy expectation value for the ground state of the hx 4 anharmonic oscillator (h = 10). 

Iteration Asymptotic solution 
step as input 

Harm. osc. ground-state wave 
function as input 

correction to energy correction to energy 
the energy expectation the energy expectation 

value a) value 

0 0 0 0 
1 1.66070 1.66070 7.500 
2 -1.54813 × 10 -1 1.50589 -3.742 
3 -9.21485 X 10 .4 1.50497 -1.796 
4 -9.60965 X 10 .9 1.50497 -0.707 
5 -1.25208 × 10 -17 1.50497 -0.134 

1 

8.000 
4.258 
2.462 
1.755 
1.621 

a) Energy expectation value according to Biswas et al. [6] = 1.50497. 
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true energy. Therefore FOLPIM yields a decreasing se- 
quence of  upper bounds. If  the system has a true 
ground state, then this sequence is bounded from 
below by the true energy. A monotonic decreasing se- 
quence bounded from below will converge to the cor- 
rect value [29]. 

We have indeed applied FOLPIM to the anharmonic- 
oscillator problem with the ordinary harmonic-oscilla- 
tor ground-state wave function as the input unper- 
turbed wave function. In contrast to the standard per- 
turbation expansions which diverge, both the wave 
function and energy converge. For ~ = ½, corrections 
on the fifth iteration are five orders o f  magnitude less 
than those obtained in the first iteration and are al- 
ready in agreement with the published values o f  Biswas 
et al. [6]. We illustrate the convergence o f  the sequence 
(V  N } in fig. 2 for ;~ = ½. For large ~., say ;k = 10, we 
encounter computational difficulties because o f  the 
simultaneous appearance of  very large and very small 
numbers. It is thus much harder to achieve good ac- 
curacy due to difficulties arising from numerical ap- 
proximations. Nevertheless, the iteration process does 
seem to yield a decreasing sequence for the energy ex- 
pectation value. For the purpose of  comparing how 
the initial choice of  the wave function affects the rate 
of  convergence in the case o f  the ground state, we 
also show in table 1 the corrections to the energy and 
the energy expectation value in each step of  the itera- 
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Fig. 2. The effective perturbation potential vN(x) for the 
first three iterations with X = 1, with the harmonic-oscillator 
ground-state wave function as the initial input FOLPIM. 

t ion process, when the harmonic-oscillator ground- 
state wave function is used as the input. 

Finally, we would like to report on the application 
of  FOLPIM to the excited states of  the anharmonic 
oscillator, where the wave functions have zeros: 

n 

~bn,ex(X ) = i~= l (x - oti)e-G(x) . (7) 

The Ricatti equation becomes 

n 

g2 _g ,  -- 2g ~ 1/(x -eel) 
i=1 

n n 

+ 2 ~ ~ l /(x - ai)(x - a i )  = 2(V - E') .  (81 
i=1 j>i 

Since g = G '  is regular, we have, for a nonsingular po- 
tential V: 

g(ai) =/~i l[(t~i -- a]) . (9) 

Eq. (9) serves as a very important constraint relation 
on the nodes and logarithmic derivative of  the wave 
function envelope. 

To generate the solution for the n th  excited state, 
we start with the ground-state solution ggr and Egr, 
which satisfies: 

2 ' = 2 ( V -  . (10) ggr  "ggr  E g r )  

The n th excited state has n nodes in the wave function. 
The input wave function in this case is chosen to be 

~b 0 = g2 inpu t  = I - I ( x  -- o t ( 0 ) ) e x p ( - G g  r + C )  ( 1 1 )  
--n,ex i 

where C is a suitable normalization constant and the 
(a/tU))'̂  are chosen in accordance with the con- nodes 

straint equation (9) as well as symmetry considerations. 
The choice o f  the envelope to be that o f  the ground- 
state solution ensures the correct asymptotic behavior. 
The wave function expressed in eq. (11) is a solution 
to the Ricatti equation (8) for a potential (V - AI O. 
Since the nodes are chosen in accordance with the 
constraint equation (9), AV is regular and hence we 
can apply FOLPIM to AV. For ~, = 0.5, by using 
FOLPIM, five iterations lead to results that agree with 
those o f  Biswas et al. [6] to five significant figures for 
the first two excited states and to three places for the 
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Fig. 3. The FOLPIM-generated probability density P(x) 
1 = t~  (x) for the first three excited states with h = 

third excited state. For smaller values of  X, conver- 
gence is even faster. For  larger X, in the range X 
--- (0 ,10)  we examined,  this FOLPIM with the asymp- 
tot ic  solution as input again proves to work very well. 
For  all three states considered, for X = (0, 10), the cor- 
rections obtained in the sixth i teration are at least 9 
orders of  magnitude less than those in the first itera- 
t ion.  We illustrate the solutions for the wave functions 
for X = 0.5 in fig. 3. We also illustrate the convergence 
of  the energy expectat ion value in FOLPIM and the 
adjustment in the posit ions of  the nodes in each step 
of  the i teration process for X = 10 for the first, second 
and third excited states in tables 2, 3, and 4. For  com- 
parison purposes, we also list the energy expectat ion 
value obtained by Biswas et al. [6]. We notice excel- 

lent agreement between our results and those of  
Biswas et al. [6] for the ground and the first excited 
states. In all cases, in the numerical integration, we 
encounter the simultaneous appearance of  large and 
small numbers and we have to introduce numerical 
cutoffs in the numerical integration. Such cutoffs 
probably account for the disagreement between our 
result and that of  Biswas et al. for the second and 
third excited states. Unfortunately,  we do not  have a 
fair estimate of  the errors due to our cutoff. 

Lastly, we would like to comment on the question 
of  convergence in the two FOLPIM methods consider- 
ed. For  the ground state it appears that (numerical 
problems aside) the FOLPIM method leads to conver- 
gent and correct results for either kind of  trial wave func. 
t ion considered. For the asymptotic  trial wave function, 
convergence is quite rapid for all X between 0 and 10. 
For  the harmonic-oscillator trial wave function, con- 
vergence is slowed as X increases. Nevertheless, con- 
vergence is not in question, rather the exact result be- 
comes more dependent  on the numerical routine used 
and hence high accuracy becomes harder to obtain as 
X is increased. 

The situation with the excited states is more com- 
plicated. In contrast to the ground state, E1N for N 
> 1 is not negative definite as can be seen in tables 3 
and 4 for the second and third excited states. I f  the 
trial wave funct ion is "close" enough to the exact so- 
lution there seems to be no problem with convergence. 
If  the trial wave function differs too much,  conver- 
gence is definitely difficult to attain for higher excit- 
ed states. In  fact, for some (dependent  on the trial 
wave function), the nodes may be shifted past the 
classical turning points or inward past the origin. This 

Table 2 
Convergence of the energy expectation value and the adjustment in the nodal position for the first excited state of the Xx 4 an- 
harmonic oscillator (X = 10). 

Iteration Correction to Energy Correction to Nodal 
step the energy expectation nodal position 

value a) position 

0 0 1.50497 0 0 
1 3.84550 5.35047 0 0 
2 -2.88495 X 10 -2 5.32162 0 0 
3 -1.64981 × 10 -5 5.32161 0 0 
4 -8.60388 × i0 -13 5.32161 0 0 

a) Energy expectation value according to Biswas et al. [6] = 5.32161. The zeroth-order energy is adjusted to be the energy of the 
ground state. 
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Table 3 
Convergence of the energy expectation value and the adjustment in the nodal position for the second excited state of the h x  4 an- 
harmonic oscillator (h --- 10). 

Iteration Correction to Energy Correction to Nodal 
step the energy expectation nodal position b) 

value a) position 

0 0 1.50497 0 0.384 
1 8.891 10.396 -0.0462 0.338 
2 -6.537 × 10 -2 10.330 0.728 X 10 -2 0.345 
3 +5.7818 x 10 -3 10.336 0.581 x 10 -3 0.346 
4 +2.8459 x 10-4 10.336 0.814 × 10 -5 0.346 
5 -2.599 x 10 -a 10.336 0.355 x 10 -8 0.346 
6 +1.4580 x 10 -14 10.336 0.265 x 10 - i s  0.346 

a) Energy expectation value according to Biswas et al. [6] = 10.3471. The zeroth-order energy is adjusted to 
state energy. 

b) The nodes occur symmetrically with respect to the origin. 

be that of the ground- 

Table 4 
Convergence of the energy expectation value and the adjustment in the nodal position for the third excited state of the h x  4 an- 
harmonic oscillator (h = 10). 

Iteration Correction to Energy Correction to Nodal 
step the energy expectation nodal position b) 

value a) position 

0 0 1.50497 0 0.617 
1 14.702 16.207 -0.6999 0.547 
2 -8.525 X 10 -2 16.122 +0.838 X 10 -2 0.555 
3 +1.303 X 10 -2 16.135 0.106 X 10 -2 0.557 
4 +1.030 X 10 -3 16.136 0.366 × 10 -4 0.557 
5 +9.414 X 10 -7 16.136 0.460 × 10 -7 0.557 
6 +1.789 × 10 -12 16.136 0.667 X 10 -13 0.557 

a) Energy expectation value according to Biswas et al. [6] = 16.090. The zeroth-order energy is adjusted to be that of the ground- 
state energy. 

b) The nodes occur symmetrically with respect to the origin in addition to the one located at the origin. 

s i tuat ion cer ta inly creates problems in our  algori thm. 

In pract ice,  convergence  alsways fails before  these val- 

ues o f  ~, are reached. In conclus ion,  for the  exci ted 

states the authors  can only present  the rule o f  thumb 

that ,  as long as the  first-order cor rec t ion  to  the nodes  

does not  shift t hem more  than a small f rac t ion o f  the 

distance be tween  adjacent  nodes,  our  m e t h o d  wou ld  

probably  lead to convergent  results. Hence one does 

rely on the initial choice  o f  the  trial wave funct ion .  
However ,  we seem to  have a "gu ide l ine"  here,  though  

no t  a rule. One can hopefu l ly  solve the ground-state  

p rob lem qui te  accurate ly  wi th  our  me thod .  The  ex- 
ci ted-state trial wave func t ion  is chosen wi th  this 

ground-state  envelope and is assigned initial trial 
nodal  posi t ions in accordance wi th  eq. (9). Lucki ly,  

this last step is an algebraic process. We would  like to 
add that  for large X, the  2kx 4 t e rm is dominant .  By 

doing pe r tu rba t ion  theory  o n the  deviat ion f rom 

asympto t ic  behavior ,  we are ef fec t ively  t reat ing the 

x 2 te rm,  which  is lesser, as a per turba t ion .  F r o m  this 

angle, FOLPIM provides a systemat ic  m e t h o d  to  im- 
prove on the trial wave funct ion .  
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