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Cherenkov radiation of superluminal particles
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Any charged particle moving faster than light through a medium emits Cherenkov radiation. We show that
charged particles moving faster than light through thevacuumemit Cherenkov radiation. How can a particle
move faster than light? Theweakspeed of a charged particle can exceed the speed of light. By definition, the
weak velocity^v&w is ^C f inuvuC in&/^C f inuC in&, wherev is the velocity operator anduC in& and uC f in& are,
respectively, the states of a particle before and after a velocity measurement. We discuss the consistency of
weak values and show that superluminal weak speed is consistent with relativistic causality.
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I. INTRODUCTION

In quantum mechanics, it is axiomatic that the only
lowed values of an observable are its eigenvalues. With th
allowed values come, in turn, allowed interpretations. F
example, a quantum particle can tunnel through a poten
energy barrier greater than its total energy. Can it have ne
tive kinetic energy? The axiomatic answer is ‘‘No, the eige
values of kinetic energy are all positive.’’ This answer do
not allow us an intuitive interpretation of quantum tunneli
as a negative kinetic-energy phenomenon. But we can
beyond the axiomatic answer to define theweakvalue^A&w
of an observableA on a system@1,2#:

^A&w5
^C f inuAuC in&

^C f inuC in&
. ~1!

Here uC in& and uC f in& are, respectively, the states of th
system before and after a measurement ofA. ~Just as we can
preselectuC in&, we can postselectuC f in&; thus we measure
A on a preselected and postselected ensemble.! Weak values
are measurable. If the measurement interaction is w
enough @1,2#, measurements on a preselected and pos
lected ensemble yield the weak value^A&w , and^A&w need
not be an eigenvalue. Indeed, it need not be any classic
allowed value. The weak kinetic energy of a tunneling p
ticle is negative@3#. Weak values allow many new interpre
tations, in addition to negative kinetic energy. Here we sh
that the weak speed of a particle can exceed the spee
light, and we discuss the consistency of weak values.

We will begin by showing how the weak speed of
charged particle can exceed the speed of lightin vacuo. Such
behavior seems completely inconsistent with the laws
physics. But we then compute the electromagnetic field
the particle and find that it corresponds to Cherenkov ra
tion: like any charged particle moving faster than lig
through a medium, a superluminal particle emits Cheren
radiation. Finally, we prove that superluminal weak spe
does not contradict relativistic causality. Weak speed ill
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trates the general principle that all values measured o
preselected and postselected ensemble are consistent.

II. QUANTUM WALK

Consider a particle constrained to move along thez axis.
As a model Hamiltonian for our particle, we takeH
5pzvz , wherepz52 i\]/]z andvz acts on an internal Hil-
bert space of the particle:

vz5
c

N (
i 51

N

sz
( i ) . ~2!

The Pauli matrices operate on the internal Hilbert spa
~They do not represent spin—the particle has no electric
magnetic dipole moment.! The eigenvalues ofvz are 2c,
2c12c/N, . . . ,c22c/N,c, wherec is the speed of light.
The particle moves with velocityvz in the z direction,

ẋ5@x,H#/ i\50, ẏ5@y,H#/ i\50, ż5@z,H#/ i\5vz ;

~3!

hence the change in positionz is a measure ofvz .
If the only allowed values ofvz are its eigenvalues, the

speed of the particle cannot exceed the speed of light.
consider the following weak measurement ofvz . We prese-
lect the particle in an initial stateuC in&F(x,0), where
F(x,0) represents a particle approximately localized ax
5(x,y,z)50,

F~x,0!5~e2p!23/4e2x2/2e2
, ~4!

and postselect a final stateuC f in&. For uC in& and uC f in& we
choose

uC in&522N/2
^ i 51

N ~ u↑ i&1u↓ i&),

uC f in&5 ^ i 51
N ~a↑u↑ i&1a↓u↓ i&), ~5!

with a↑ and a↓ real anda↑
21a↓

251. Our chances of post
selecting the stateuC f in& may be very small, but if we repea
the experiment again and again, eventually we will postse
uC f in&. ThusF(x,t) is
©2002 The American Physical Society02-1
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F~x,t !5^C f inue2 ipzvzt/\uC in&F~x,0!, ~6!

up to normalization. For short enough timest, we can expand
the exponent:

F~x,t !'^C f inu12 ipzvzt/\uC in&F~x,0!

5ŠC f inu12 ipz^vz&wt/\uC in‹F~x,0!

'^C f inue2 ipz^vz&wt/\uC in&F~x,0!

5^C f inuC in&F~x,y,z2^vz&wt,0!. ~7!

Thus at timet the particle is displaced bŷvz&wt along thez
axis. Note that the weak value ofvz ,

^vz&w5
^C f inuvzuC in&

^C f inuC in&
5

a↑2a↓
a↑1a↓

c, ~8!

exceedsc in magnitude ifa↑a↓ is negative. Thus the wea
speed of the particle could be superluminal.

This result is surprising enough to merit a second deri
tion. We can rewrite Eq.~6! by evaluating the exponent ex
actly:

F~x,t !522N/2~a↑e2 ipzct/N\1a↓eipzct/N\!NF~x,0!

522N/2(
n50

N

a↑
na↓

N2n N!

n! ~N2n!!

3e2 i (2n2N)pzct/N\F~x,0!. ~9!

Equation ~9! represents a superposition of many displa
ments of the particle. Applying the binomial theorem, w
find thatF(x,t) is a superposition ofF(x,0) displaced along
the z axis by at mostct in either direction. So how can Eq
~6! represent a particle displaced by^vz&wt if ^vz&wt is out of
this range? Here is the surprise. Apparently the displa
states interfere,constructively for z'^vz&wt and destruc-
tively for other values ofz. Indeed, we can verify this inter
ference. Since

a↑e2 ipzct/N\1a↓eipzct/N\

'a↑~12 ipzct/N\!1a↓~11 ipzct/N\!

5~a↑1a↓!2~a↑2a↓!ipzct/N\

5~a↑1a↓!~12 ipz^vz&wt/N\! ~10!

and

lim
N→`

~12 ipz^vz&wt/N\!N5e2 ipz^vz&wt/\, ~11!

we find that, for large enoughN, Eq. ~9! does indeed imply
Eq. ~7!.

Mathematically, Eq.~9! does not look like Eq.~7!. Equa-
tion ~9! corresponds to a superposition of wavese2 ipzvzt/\,
where vz52c,2c12c/N, . . . ,c22c/N,c. If e2 ipz^vz&wt/\

is not one of these waves, how can we obtain it by superp
ing them? Physically, Eq.~9! is analogous to a random walk
We can generate a random walk in one dimension by tos
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a coin. In Eq.~9!, we toss a quantum coin—a spin—to ge
erate a quantum random walk@4#. If the coefficientsa↑ and
a↓ in Eq. ~9! were probabilities, the expansion of Eq.~9!
would generate a classical random walk; each term in
expansion would represent a possible random walk, wit
coefficient equal to its probability. A classical random wa
of N steps yields a typical displacement ofAN steps, and
never more thanN. But the coefficientsa↑ anda↓ are prob-
ability amplitudes; the quantum random walk superposes
possible classical random walks and yields arbitrary d
placements.

III. CONSISTENCY OF WEAK VALUES

We have derived Eq.~7! in two ways, but we have no
explained how such a surprising result as superluminal sp
could coexist with relativistic causality~i.e., the constraint
2c<vz<c that applies tovz and its eigenvalues!. The ex-
planation is that superluminal speed depends on appa
‘‘errors’’ of measurement. A hint of this dependence appe
already in Eq.~4!, where we define the initial wave functio
F(x,0) of the particle to be a Gaussian with an uncertainty
position of aboute. If e vanished,F(x,0) would be ad
function of position and no superluminal behavior cou
emerge from Eq.~9!; there would be no tails on the wav
function that could interfere constructively forz'^vz&wt.
However,e does not vanish, our initial and final measur
ments are uncertain, and we can obtain, ‘‘by error,’’ a d
placement corresponding to superluminal speed. Thus
weak value emerges only if it could be an error; yet the we
value does notseemto be an error. On the contrary, when
ever our preselections and postselections@which are indepen-
dent ofF(x,0)] yield the weak valuêvz&w , measured val-
ues of the displacement of the particle over a timet cluster
about^vz&wt.

We can quantify the dependence of weak speed on m
surement error as follows. Equations~7! and~9! agree in the
limit N→`, but let us take into account the fact thatN is
finite. To do so, we define a functionf (1/N)5(11s/N)N

with s constant, and expandf (1/N) in a Taylor-series expan
sion aroundf (0):

f ~1/N!5 f ~0!1 f 8~0!/N1 f 9~0!/2N21•••, ~12!

where f (0)5 lim
N→`

f (1/N), etc. We obtain

S 11
s

ND N

5esS 12
s2

2N
1

3s418s3

24N2 1••• D . ~13!

Hence Eqs.~9! and ~10! imply

F~x,t !5e2 ipz^vz&wt/\F11
pz

2^vz&w
2 t2

2N\2 1OS 1

N2D GF~x,0!,

~14!

up to normalization. The exponential factor outside t
brackets displacesF(x,0) by ^vz&wt, but terms of order 1/N
can change the shape ofF(x,0). To make the change negl
gible, we require
2-2
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1@^vz&w
2 t2/Ne2. ~15!

Equation ~15! relatesN to the width e of F(x,0): to de-
creasee, we increaseN. As long as Eq.~15! holds, the par-
ticle will move with weak speed̂vz&w over a timet.

Equation~15! is crucial to the consistency of weak spee
Does it seem that we get superluminal speed by playin
‘‘game of errors’’ with the measuring device? Perhaps; bu
is a remarkably consistent game: whenever we prese
uC in& and postselectuC f in& of Eq. ~5!, we get superlumina
speed~up to the uncertainty that characterizes the measu
device!. For this consistency to hold, the probability of pos
selectinguC f in& must besmaller than the probability of get-
ting the superluminal speed ‘‘by error.’’ Otherwise, when w
postselectuC f in&, we would most likelynot get superluminal
speed.

Let us check: on the one hand, a particle with wave fu
tion F(x,0) may be found, by error, atz5^vz&wt a time t
later. The probability of such an error is proportional

e2^vz&w
2 t2/e2

, which by Eq.~15! is much greater thane2N. On
the other hand, the probability of postselecting the st
uC f in& is approximately (a↑a↓11/2)N. If we compare the
two probabilities and recall thata↑a↓ is negative for̂ vz&w
.c, we find that the probability of an error dominates t
probability of postselectinguC f in&.

Then why all the fuss about postselection? If we meas
vz and obtain the valuevz.c, how does it matter whether o
not we postselect? The answer is thatonly if we postselec
are measured values consistent. An example may help clarify
this answer. Suppose we measure the displacement o
particle at timet with a weak measurement interaction. If w
do not postselect, the most likely displacement at timet is
ct/AN, because the expectation value ofvz in the stateuC in&
is a random walk ofN steps of sizec/N. Yet there is a small
chance of obtaining a displacementct. Such a value might
be an error and, indeed, if we remeasurez, there is again only
a small chance of measuring such a large displacem
Since each measurement hardly disturbs the particle@5#, the
probability that the next measurement yields a displacem
ct remains small. Thus, without postselection, there is
consistency in measurement errors. Unless and until we p
select, they are just errors. With postselection, however, m
surement ‘‘errors’’ yield a consistent pattern. Repeated w
measurements on an ensemble of particles preselected i
stateuC in& and postselected in the stateuC f in& yield errors
consistent with the superluminal weak value.

Equations~7! and~9! show that the weak speed of a pa
ticle can consistently exceedc. We now give the particle a
chargeq and show that its electromagnetic field, too, is co
sistent with superluminal weak speed.

IV. CHERENKOV RADIATION

What is the electromagnetic field of the particle? Let
treat the scalar potential; the treatment of the vector poten
is similar. To begin with, suppose thatvz is well defined, i.e.,
that vz equals one of its eigenvalues. LetV(x8,t;vz) denote
the scalar potential atx8,t of a particle of chargeq moving
04210
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along thez axis with z5vzt. The simplest way to obtain
V(x8,t;vz) is via a Lorentz boost, byvz in thez direction, of
the Coulomb potentialV(x8,t;0). Weobtain

V~x8,t;vz!5q$@~x8!21~y8!2#~12vz
2/c2!1~z82vzt !

2%21/2.

~16!

So far, V(x8,t;vz) represents the classical potential of
point charge moving along the axis withz5vzt. But we
want to treat the field as quantum mechanical. We could
so with quantum field operators, but the treatment would
unnecessarily complicated. Instead, let us write down an
fective two-particle interaction between the moving char
and a test particle. Namely, toH5pzvz , the Hamiltonian of
the moving charge, we add the HamiltonianH8 of a ~nonrel-
ativistic! test particle:

H85
1

2m
~p82q8A!21q8V. ~17!

In H8, the test particle has chargeq8, and the scalar potentia
is

V~x8!5q$@~x82x!21~y82y!2#

3~12vz
2/c2!1~z82z!2%21/2. ~18!

The vector potential has only one nonzero compone
namely,Az , which is @6#

Az~x8!5
qvz

c
$@~x82x!21~y82y!2#

3~12vz
2/c2!1~z82z!2%21/2. ~19!

Note that if we substitute (0,0,vzt) for (x,y,z), thenV(x8)
equalsV(x8,t;vz) as defined above in Eq.~16! and Az(x8)
equals (vz /c)V(x8,t;vz). The equations of motion flowing
from H1H8 yield (x,y,z)5(0,0,vzt), together with the cor-
rect motion of the test particle due to the electromagne
field of the moving charge.~The equation of motion for the
momentump of the moving charge is unphysical, but it ha
no measurable consequences.! Now we treatV and Az as
quantum operators and calculate their effect on the test
ticle. We will see that if the moving charge has weak spe
^vz&w , then^vz&w replacesvz in Eqs.~18! and ~19!.

Namely, suppose we preselect the moving charge in
state uC in&F(x,0) and, after a timeT, postselect the state
uC f in& @see Eqs.~4! and~5!#. We also prepare the test partic
in a localized stateV(x8,0), whereV(x8,0) is analytic in
x8. For simplicity, and because we want the test particle
measure the instantaneous values ofAz andV at the end of
this evolution~and not their average values during or aft
the evolution!, we ‘‘turn on’’ H8 instantaneously at timeT,
i.e., we multiply H8 by d(t2T). The state of the moving
charge and the test particle after the postselection is the
2-3
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F~x,T!V~x8,T!5^C f inue2 i [(p82q8A)2/2m1q8V]/\

3e2 ipzvzT/\uC in&F~x,0!V~x8,0!. ~20!

The potentialsV andA in Eq. ~20! are defined by Eqs.~18!
and ~19!. But we now show that the weak speed^vz&w re-
placesvz in Eqs. ~18!–~20!. Here we present a short proo
while Appendix B contains a long rigorous proof.

Let us focus on the right-hand side of Eq.~20! and note
that we can expand the first exponential,

e2 i [(p82q8A)2/2m1q8V]/\, ~21!

as a power series invz . Thus, the right-hand side of Eq.~20!
is a sum of terms of the form

^C f inuvz
ne2 ipzvzT/\uC in& ~22!

multiplied on either side by functions that do not depend
vz . But we have, for anyn and in the limitN→`,

^C f inuvz
ne2 ipzvzT/\uC in&

5S i\

T

]

]pz
D n

^C f inue2 ipzvzT/\uC in&

5^C f inuC in&S i\

T

]

]pz
D n

e2 ipz^vz&wT/\

5^C f inuC in&~^vz&w!ne2 ipz^vz&wT/\. ~23!

@Compare Eqs.~6!–~11!.# So we can simply replacevz by
^vz&w everywhere it appears in the series. We drop the fa
^C f inuC in& ~to normalize! and obtain

F~x,T!V~x8,T!5e2 i [(p82q8A)2/2m1q8V]/\

3F~x,y,z2^vz&wT,0!V~x8,0!, ~24!

where

Az5~^vz&w /c!V5~^vz&w /c!V~x82x,0;^vz&w!. ~25!

SinceV(x82x,0;^vz&w) equalsV(x8) as defined in Eq.~18!
with ^vz&w taking the place ofvz , the scalar and vector po
tentials are exactly the potentials of a charge moving w
weak speed̂ vz&w ~folded with the width of the localized
stateF) and have the corresponding effect on the test p
ticle. Now if ^vz&w exceeds the speed of light,V and Az
correspond to Cherenkov radiation, the shock wave o
charged particle moving faster than light through a mediu

Cherenkov radiation is a striking illustration of the pri
ciple that all weak values measured on a preselected
postselected ensemble are consistent. There is more co
tency here than what we have noted. We have shown th
particle emits weak Cherenkov radiation consistent with
superluminal weak speed. But we need not limit ourselve
the HamiltonianH8 in Eq. ~17!. Given any Hamiltonian
H8(vz) that is analytic invz , we can write the time evolu
tion operator exp@2i*H8(vz)dt/\# as a power series invz ,
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and then, as before, replacevz by ^vz&w . And what holds for
weak speed holds for other weak values.

With our effective two-particle interactionH8, we have
neglected the radiation modes of the electromagnetic fi
just as we often neglect these radiation modes in treating
interaction between two charged particles via the Coulo
potential. When can we consistently neglect the radiat
modes? A particle of chargeq reveals its position through its
electromagnetic field; each mode of the electromagnetic fi
is, in effect, a measuring device. What assures us that
superposition of localized states in Eq.~20! lasts a timeT, if
each localized state has a distinct electromagnetic field
other words, how can we postselect the stateuC f in& if the
radiation modes can reduce the superposition to a local
state corresponding to one eigenvalue ofvz?

The answer to this question depends on the magnitud
the chargeq. If q is large,F(x,t) will not remain a superpo-
sition of localized states for long. Each state in the super
sition corresponds to the charge moving at a different po
along thez axis, localized to withinDz'e. We assume tha
this uncertainty conforms to Eq.~15!. But if q is large
enough, the radiation modes will measure the location of
charge and reduce the uncertaintyDz to less than what Eq
~15! allows, thereby reducing the superposition in Eq.~20!.
Conversely ifq is small, vacuum fluctuations will dominate
and the radiation modes will not reduce the uncertaintyDz to
less than what Eq.~15! allows.

We can sharpen this question by imagining an observe
a distanceD from the moving charge, who may or may n
measure its electric field to determine its position~and thus
its speed!. If there is a measurement, it reduces the super
sition in Eq.~20! to a single localized state; then we cann
postselectuC f in& and there will be no Cherenkov radiation
But if there is no measurement, and we postselectuC f in&,
therewill be Cherenkov radiation. Can this observer viola
causality? As long asD<cT, there is no problem: the ob
server is close enough to the particle to causally affect
outcome~whether or not it emits Cherenkov radiation!. But
for D.cT, the observer cannot causally affect the parti
before it emits Cherenkov radiation. We are left with an a
parent violation of causality; how can the radiation from t
particle be consistent with later measurements?

To answer the question, let us suppose that the obse
locates the particle by measuring its electric field. At a d
tanceD from the particle, the electric-field strengthE is E
5q/D2, thus D5Aq/E. Then DD5(D3/2q)DE. Inferring
the positionz of the particle from this measurement ofE, we
haveDz'(D3/2q)DE. The condition for a weak measure
ment ofvz is Eq.~15!, with Dz taking the place ofe; that is,

AN~D3/2q!DE'AN~Dz!@^vz&wT. ~26!

Since we assumeD>cT, Eq. ~26! implies AND2DE@2q.
Now vacuum fluctuations in a region of volumeD3, over a
time D/c, induce uncertainty in the electric field that
roughly DE'A\c/D2 in magnitude@7#. Thus

\c.4q2/N ~27!
2-4
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is the condition for weak measurement and Cherenkov ra
tion. If q satisfies Eq.~27!, then weak Cherenkov radiation
consistent with causality. Indeed, even a strong interac
with the electromagnetic field can show Cherenkov rad
tion: for any givenq, N must satisfy Eq.~27!, and then mea-
surements will show superluminal weak speed and Che
kov radiation. Forq'e, N is approximately the inverse fine
structure constant; for largerq, N must be larger, as well.

Thus Cherenkov radiation does not, by itself, imply s
perluminal weak speed; we must still postselectuC f in&.
Given the condition\c.4q2/N, postselection ofuC f in& im-
plies Cherenkov radiation, but the reverse does not h
Cherenkov radiation does not imply postselection ofuC f in&.
Without postselection, Cherenkov radiation may be an er
a fluctuation of the vacuum.

In this example, we preselectuC in& and postselectuC f in&
to get superluminal weak speed. In Eq.~5!, which defines
these states, all the coefficients are real, and therefore
weak speed is real. For other preselections and posts
tions, however, the weak speed could be complex. Comp
weak values can induce nonunitary time evolution. We w
present elsewhere an example of an imaginary weak di
moment which shows a remarkable interplay between im
nary weak values and entanglement. Here, however, we
cuss only real weak values.

V. RELATIVISTIC CAUSALITY

Weak measurements—measurements that yield w
values—are internally consistent because they obey
rules. On one hand, they are weak, hence they hardly dis
the measured system. On the other hand, they are inacc
and can yield, ‘‘by error,’’ weak values. These two rules a
intimately related. In our example, the change in the ini
wave functionF(x,0) is proportional topz . Thus, for the
measurement to be weak,pz must be bounded. But ifpz is
bounded, then the wave function is analytic@3# in z. And
sinceF(x,0) is analytic inz, the probability density does no
vanish for any interval inz. Thus we can localize the particl
by error in a region it could not have reached without sup
luminal speed. What if we were to try to eliminate the po
sibility of error, either by choosing the initial wave functio
to be a Dirac delta function, or by otherwise imposing
sharp cutoff on the initial wave function? In either cas
the initial wave function would not be an analytic functio
But then the expansion of Eqs.~7! and ~10! in powers of
pz would not be valid. The exponential of2 ipzvzt/\ in
Eq. ~6! is a unitary operator that translatesF(x,0) to
F(x,y,z2vzt,0). This unitary operator acts on any wa
function with a Fourier transform. But the Taylor-series e
pansion of this unitary operator applied toF(x,0),

(
m50

`
~2 ipzvzt/\!m

m!
F~x,0!, ~28!

equals the Taylor-series expansion ofF(x,y,z2vzt,0)
aroundF(x,0) only if F(x,0) is an analytic function. Thus
the weak valuêvz&w emerges in this experiment only if th
initial wave functionF(x,0) is analytic.
04210
a-

n
-

n-

-

d:

r,

he
ec-
x

l
le
i-
is-

ak
o
rb
ate

l

r-
-

,

-

Once we understand the role of analyticity in the em
gence of^vz&w , we can answer another question: How c
^vz&w.c be consistent with relativistic causality? We ha
seen that the particle moves with velocity^vz&w only if
F(x,0) is analytic. But ifF(x,0) is analytic, then its value
and the value of its derivatives at any one point determine
value at all points. HenceF(x,t)5F(x,y,z2^vz&wt,0) does
not transmit any message, because it is the same messag
all x and t. SinceF(x,t) does not transmit any message,
does not, in particular, transmit a superluminal message,
there is no violation of relativistic causality.

Thus superluminal weak speed is consistent with rela
istic causality and with other measurements. There are
distinct ways in which weak measurements can be con
tent. On one hand, if a weak measurement ofvz on a prese-
lected and postselected ensemble yields^vz&w.c, any weak
measurement of the electromagnetic fieldon the same prese
lected and postselected ensemblewill show Cherenkov ra-
diation. That is, weak measurements are consistent as lon
they apply to the same preselected and postselected
semble. On the other hand, if measurements do not app
the same preselected and postselected ensemble, the
consistent even if they yield different measured values.
example, we can follow a weak measurement ofvz with
either a postselection or a precise measurement ofvz . If we
postselect the stateuC f in&, we interpret the result of the
weak measurement as the weak value^vz&w ; if we precisely
~re!measurevz , we may interpret the result of the weak me
surement as an error. But these two interpretations of a m
sured value are consistent, for they apply to differe
ensembles—the former to a preselected and postselecte
semble and the latter to a preselected ensemble. Thus,
we interpret a measured value depends on what we choo
measure next. Here we have considered weak measurem
on a single preselected and postselected ensemble. Tog
these measurements yield a consistent picture of a ch
moving in vacuum at superluminal speed and emitting Ch
enkov radiation.

APPENDIX A

We will prove @8# the following representation fo
V(x8,t;vz):

V~x8,t;vz!5qE
2`

`

dt
d~ t2t2ux82xu/c!

ux82xu
. ~A1!

Here ux82xu5@(x8)21(y8)21(z82vzt)2#1/2. We evaluate
the d function at its zeros according to the rule

d„g~t!…5(
i

d~t2t i !

udg~t!/dtu
, ~A2!

wheret i satisfiesg(t i)50 and here

g~t!5t2t2@~x8!21~y8!21~z82vzt!2#1/2/c. ~A3!

To obtain the zeros, we solve the quadratic equation

c2~ t2t!25~x8!21~y8!21~z82vzt!2 ~A4!

and requiret>t. There is one zero foruvzu,c,
2-5
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ct5
ct2vzz8/c1$@~x8!21~y8!2#~12vz

2/c2!1~z82vzt !
2%1/2

12vz
2/c2 , ~A5!
r

d

h

n
or

c

e

e
-

and the integral yields

V~x8,t;vz!5q$@~x8!21~y8!2#~12vz
2/c2!1~z82vzt !

2%21/2,

~A6!

as before. This representation ofV(x8,t;vz) will be very use-
ful in Appendix B.

APPENDIX B

We will show that the weak speed^vz&w replacesvz in V
andA in Eq. ~20!. We first show it in the limitm→`, i.e.,
we first consider only the scalar potentialV. Then we gener-
alize to finitem and considerA too.

Let us focus on the term in angular brackets in Eq.~20!
and begin by noting thatV(x8) as defined in Eq.~18! can
also be written asV(x82x,0;vz), as defined in Eq.~16!.
Hence~in the limit m→`) we can write the term in angula
brackets as

^C f inue2 iq8V/\e2 ipzvzT/\uC in&

5^C f inue2 iq8V(x82x,0;vz)/\e2 ipzvzT/\uC in&

5^C f inue2 ipzvzT/\e2 iq8V(x82x,T;vz)/\uC in&. ~B1!

The trick is to take the dependence onvz out of V(x8
2x,T;vz) and put it in a more convenient place. To this en
we refer to the representation in Eq.~A1! and note that all
the dependence onvz is contained in the expressionux8
2xu which, for V(x82x,T;vz), equals @(x82x)21(y8
2y)21(z82z2vzt)2#1/2. It follows that the combination

M5eipz8vzt/\e2 iq8V(x82x,T;vz)/\e2 ipz8vzt/\ ~B2!

is actually independentof vz and we can write the term in
angular brackets as

^C f inue2 ipzvzT/\e2 ipz8vzt/\Meipz8vzt/\uC in&, ~B3!

whereM is independent ofvz . We would like to moveM out
of the angular brackets. Indeed we can do so, even thougM

does not commute witheipz8vzt/\. The reason is that we ca
always writeV(x8,0) as a sum of Fourier components. F
each Fourier component in the sum, we can moveM out of
the angular brackets, and later move it back in; hence we
do so for the sum itself. Thus we can rewrite Eq.~B3! as

^C f inue2 ipzvzT/\e2 i (pz82 p̄z8)vzt/\uC in&M

5^C f inuC in&e2 ipz^vz&wT/\e2 i (pz82 p̄z8)^vz&wt/\M ,

~B4!
04210
,

an

wherep̄z8 represents an eigenvalue ofpz8 for a given Fourier
component.@We have taken the limitN→`; compare Eqs.

~6!–~11!.# Now we can pulleip̄z8^vz&wt/\ back to the right side
of M, turn p̄z8 back intopz8 , drop the factor̂ C f inuC in& ~to
normalize!, and rewrite the term in angular brackets as

e2 ipz^vz&wT/\e2 ipz8^vz&wt/\Meipz8^vz&wt/\

5e2 ipz^vz&wT/\e2 iq8V(x82x,T;^vz&w)/\. ~B5!

Applying Eq. ~B5! to the combined stateF(x,0)V(x8,0) of
the moving charge and the test particle, we obtain at timeT,

F~x,T!V~x8,T!

5e2 ipz^vz&wT/\e2 iq8V(x82x,T;^vz&w)/\F~x,0!V~x8,0!

5e2 iq8V(x82x,0;^vz&w)/\F~x,y,z2^vz&wT,0!V~x8,0!.

~B6!

Equation~B6! corresponds to Eqs.~24! and~25! in the limit
m→`.

Now let m be finite. SinceAz(x8) equals (vz /c)V(x8),
we can define a representation ofAz(x8,t;vz) to be (vz /c)
times the representation ofV(x8,t;vz) in Eq. ~A1!. But how
do we deal with this extra dependence onvz in Az(x8,t;vz)?
We can expand the exponential term

e2 i [(p82q8A)2/2m1q8V]/\ ~B7!

in Eq. ~20! as a Taylor series. If we then replaceAz(x8)
5(vz /c)V(x82x,0;vz) by its representation, there will b
powers ofvz in the series. But we have, for anyn and in the
limit N→`,

^C f inuvz
ne2 i (pzT1pz8t2 p̄z8t)vz /\uC in&

5S i\

T

]

]pz
D n

^C f inue2 i (pzT1pz8t2 p̄z8t)vz /\uC in&

5^C f inuC in&S i\

T

]

]pz
D n

e2 i (pzT1pz8t2 p̄z8t)^vz&w /\

5^C f inuC in&~^vz&w!ne2 i (pzT1pz8t2 p̄z8t)^vz&w /\, ~B8!

so we can replacevz by ^vz&w everywhere it appears in th
series. Then we obtain Eqs.~24! and ~25! as the generaliza
tion of Eq. ~B6!.
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1687 ~1993!.
@5# Suppose at timet0 we measurevzt0 with precisionct0 /AN,

e.g., the interaction Hamiltonian for the measurement isHint

5d(t2t0)PdvzAN/c, wherePd is the momentum conjugat
to the positionQd of a pointer on the measuring device. The
since vz5(c/N)(sz

( i ) , the strength of the interaction with
each state (u↑ i&1u↓ i&)/A2 is proportional to 1/AN; and the
probability that the measurement leaves this state unchan
equals the expectation value^cos2(Pd /AN)&. The probability
that the measurement leaves the whole stateuC in& unchanged

is ^cos2N(Pd /AN)&, which, for largeN, approacheŝe2Pd
2
& and

can be arbitrarily close to 1.
@6# We can obtain a vector potentialA(x8,t;vz), as we obtained

V(x8,t;vz), via a Lorentz boost of the Coulomb potenti
V(x8,t;0). Or we canobtain it from a retarded Green functio
G(x8,t;x,t) satisfying the wave equation
04210
.

ed

F 1

c2S ]

]tD
2

2~“8!2GGz~x8,t;x,t!54pvzqd~x82x!d~ t2t!,

just as we can obtainV(x8,t;vz) from a retarded Green func
tion satisfying the equation given in Ref.@8#.

@7# See, for example, J. J. Sakurai,Advanced Quantum Mechanic
~Addison-Wesley, London, 1967!, p. 35.

@8# This representation ofV(x8,t;vz) ~in the Lorentz gauge!
comes from a retarded~causal! Green functionG(x8,t;x,t)
satisfying the wave equation

FS 1

c2

]

]tD
2

2~“8!2GG~x8,t;x,t!54pqd~x82x!d~ t2t!.

The solution is

G~x8,t;x,t!5q
d~ t2t2ux82xu/c!

ux82xu
.

It is the scalar potential atx8,t due to the charge atx,t. See,
for example, J. D. Jackson,Classical Electrodynamics, 2nd ed.
~Wiley, New York, 1975!, pp. 223–225. To obtain Eq.~A1!
from G(x8,t;x,t), we multiply the above equation by
d(x)d(y)d(z2vzt) and integrate with respect tot.
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