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Cherenkov radiation of superluminal particles
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Any charged particle moving faster than light through a medium emits Cherenkov radiation. We show that
charged particles moving faster than light through vaeuumemit Cherenkov radiation. How can a particle
move faster than light? Theeakspeed of a charged particle can exceed the speed of light. By definition, the
weak velocity(V),, is (W¢in| V|V ){ W 1in| Vin), wherev is the velocity operator anfiV;,) and|V¥y;,) are,
respectively, the states of a particle before and after a velocity measurement. We discuss the consistency of
weak values and show that superluminal weak speed is consistent with relativistic causality.
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[. INTRODUCTION trates the general principle that all values measured on a
preselected and postselected ensemble are consistent.
In quantum mechanics, it is axiomatic that the only al-

lowed values of an observable are its eigenvalues. With these Il. QUANTUM WALK

allowed values come, in turn, allowed interpretations. For ) . ] )

example, a quantum particle can tunnel through a potential- Consider a particle constrained to move along zlexis.

energy barrier greater than its total energy. Can it have negS @ model Hamiltonian for our particle, we take

tive kinetic energy? The axiomatic answer is “No, the eigen-= Pzvz. Wherep,=—i#%d/dz andv, acts on an internal Hil-

values of kinetic energy are all positive.” This answer doesPert space of the particle:

not allow us an intuitive interpretation of quantum tunneling N

as a negative kinetic-energy phenomenon. But we can go v :E E o0 @)

beyond the axiomatic answer to define theakvalue(A),, CNEZE

of an observablé on a systenj1,2]: ] ) . )
The Pauli matrices operate on the internal Hilbert space.

(Vsinl Al Pin) (They do not represent spin—the particle has no electric or
<A>W:W' (1) magnetic dipole momentThe eigenvalues of, are —c,
fint =in —c+2c¢/N, ... c—2c/N,c, wherec is the speed of light.

Here |[¥;,) and |¥y;,) are, respectively, the states of the The particle moves with velocity, in the z direction,
system before and after a measuremerA.dflust as we can . ) ) . ) .
preselec{W;,), we can postseledt;,); thus we measure X=[XH1/iA=0, y=[y,H}/i2=0, z=[zH]/ih=v,;

A on a preselected and postselected enseimbleak values 3
are measurable. If the measurement interaction is wWeaKence the change in positiaris a measure of, .
enough[1,2], measurements on a preselected and postse- |t the only allowed values of, are its eigenvalues, the

lected ensemble yield the weak val(®),,, and(A), need  gyaeq of the particle cannot exceed the speed of light. But

not be an eigenvalue. Indeed, it need not be any classically,nsider the following weak measurementvgf We prese-
allowed value. The weak kinetic energy of a tunneling parect the particle in an initial statéW;,)d(x.0), where

ticle is negative[3]. Weak values allow many new interpre- g,y 0 represents a particle approximately localizedxat
tations, in addition to negative kinetic energy. Here we show_ (x,y,2)=0

that the weak speed of a particle can exceed the speed of

light, and we discuss the consistency of weak values. q)(X,O)Z(627T)_3/4e_)(2/2€2, (4)
We will begin by showing how the weak speed of a

charged particle can exceed the speed of ligitacuo Such  and postselect a final stat® ;). For|W;,) and|¥;,) we

behavior seems completely inconsistent with the laws othoose

physics. But we then compute the electromagnetic field of

the particle and find that it corresponds to Cherenkov radia- Wi =2"N2N (|1)+]11),
tion: like any charged particle moving faster than light
through a medium, a superluminal particle emits Cherenkov Wiy =@ (| Ti)+a | 11)), (5)

radiation. Finally, we prove that superluminal weak speed
does not contradict relativistic causality. Weak speed illuswith @; and « real anda%+ ale. Our chances of post-
selecting the statgl;,) may be very small, but if we repeat
the experiment again and again, eventually we will postselect
*Email address: rohrlich@wicc.weizmann.ac.il |Wsin). Thus®(x,t) is
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D (x,1) =(Vgip|e” P22 W) d(x,0), (6)

up to normalization. For short enough tintesve can expand
the exponent:

D (X, 1) ~(Wyin| L=ip 0 /A Win) P (x,0)
=(Wiin| 1= ipLv)ut/ 7| Vin)®(x,0)
~(Wiple™ P2 W ) D (x,0)
=(Win| Vi) @(X,Y,2— (v )ut,0). (7

Thus at timet the particle is displaced by ,),t along thez
axis. Note that the weak value of,,

<U > :<\Pfin|vz|q,in> _ a—a c

PN (Wi Vi) agta)

8

exceeds in magnitude ifa;« is negative. Thus the weak

speed of the particle could be superluminal.

This result is surprising enough to merit a second deriva
tion. We can rewrite Eq(6) by evaluating the exponent ex-

actly:
(I)(X,t): 27N/2(aTefipzct/Nﬁ+ aleipZCt/Nh)NCI)(X,O)

N Nl
— N2 n_N-n :
2 nzo “T nI(N=n)!

X e*i(2n7N)pZCt/th)(X,0).

9)
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a coin. In Eq.(9), we toss a quantum coin—a spin—to gen-
erate a quantum random wel]. If the coefficientse; and

a, in Eqg. (9) were probabilities, the expansion of E@)
would generate a classical random walk; each term in the
expansion would represent a possible random walk, with a
coefficient equal to its probability. A classical random walk
of N steps vyields a typical displacement gN steps, and
never more thaiN. But the coefficientsy; and« | are prob-
ability amplitudes; the quantum random walk superposes all
possible classical random walks and yields arbitrary dis-
placements.

IIl. CONSISTENCY OF WEAK VALUES

We have derived Eq(7) in two ways, but we have not
explained how such a surprising result as superluminal speed
could coexist with relativistic causalityi.e., the constraint
—c<v,=<c that applies taw, and its eigenvalugesThe ex-
planation is that superluminal speed depends on apparent
“errors” of measurement. A hint of this dependence appears
already in Eq(4), where we define the initial wave function
®(x,0) of the particle to be a Gaussian with an uncertainty in
position of aboute. If € vanished,®(x,0) would be aé
function of position and no superluminal behavior could
emerge from Eq(9); there would be no tails on the wave
function that could interfere constructively far~ (v )ut.
However, e does not vanish, our initial and final measure-
ments are uncertain, and we can obtain, “by error,” a dis-
placement corresponding to superluminal speed. Thus the
weak value emerges only if it could be an error; yet the weak

Equation (9) represents a superposition of many displacevalue does noseemto be an error. On the contrary, when-
ments of the particle. Applying the binomial theorem, we ever our preselections and postselectionsich are indepen-

find that®(x,t) is a superposition ab(x,0) displaced along

the z axis by at mostt in either direction. So how can Eg.

(6) represent a particle displaced Qy,),t if (v )t is out of

dent of &(x,0)] yield the weak valuév,),,, measured val-
ues of the displacement of the particle over a tinwuster
about(v Hyt.

this range? Here is the surprise. Apparently the displaced We can quantify the dependence of weak speed on mea-

states interfereconstructivelyfor z=~(v,),t and destruc-
tively for other values ok Indeed, we can verify this inter-
ference. Since

e PLUNG Ly @iPCUNA
~a(1—ip,ct/INA)+a (1+ip,Ct/NA)
=(a;+a))—(a;—a))ip,Ct/NA
=(aT+al)(1—ipz(vZ)Wt/Nh) (10

and

lim (1—ipv,)t/NA)N=e PLoduwlh

N—oo

(11

we find that, for large enougN, Eqg. (9) does indeed imply
Eq. (7).

Mathematically, Eq(9) does not look like Eq(7). Equa-
tion (9) corresponds to a superposition of waessP2/",
wherev,=—c,—c+2c/N, ... c—2c/N,c. If e Pvuwt/h

surement error as follows. Equatiof® and(9) agree in the
limit N—oo, but let us take into account the fact thdtis
finite. To do so, we define a functiof(1/N)=(1+s/N)N
with s constant, and expanfd1/N) in a Taylor-series expan-
sion aroundf(0):

f(LN)=f(0)+f'(0)/N+f"(0)/2N?>+..., (12
Wheref(O)zlim,\Hoc f(1/N), etc. We obtain

L s\M L s> 3s*+8s® 13

N e e ) @9

Hence Eqgs(9) and(10) imply

2 2
pz(”z wt2

1
SN2 +O(—) }CI)(X,O),

(I)(X,t):eipz<vz>wt/ﬁ{l+ L
(14

up to normalization. The exponential factor outside the

is not one of these waves, how can we obtain it by superpossrackets displace® (x,0) by (v ,),t, but terms of order N

ing them? Physically, Eq9) is analogous to a random walk.

can change the shape @f(x,0). To make the change negli-

We can generate a random walk in one dimension by tossingible, we require
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1>(vz>3vt2/NeZ. (15) along thez axis with z=v,t. The simplest way to obtain
V(x',t;v,) is via a Lorentz boost, by, in thez direction, of

Equation (15) relatesN to the width e of ®(x,0): to de- the Coulomb potentia¥/(x",t;0). We obtain

creasee, we increaséN. As long as Eq(15) holds, the par-

ticle will move with weak speedw,),, over a timet. V(X' to) = a{[(x) 2+ (y)2(1—v3lc?) +(2' —v )2} 2
Equation(15) is crucial to the consistency of weak speed. (16)

Does it seem that we get superluminal speed by playing a

“game of errors” with the measuring device? Perhaps; butit  So far, V(x’,t;v,) represents the classical potential of a
is a remarkably consistent game: whenever we preselegoint charge moving along the axis with=v,t. But we
|Wi,) and postseledt¥;,) of Eq. (5), we get superluminal want to treat the field as quantum mechanical. We could do
speedup to the uncertainty that characterizes the measuringo with quantum field operators, but the treatment would be
device. For this consistency to hold, the probability of post- ynnecessarily complicated. Instead, let us write down an ef-
selecting| ¥ ;,) must besmallerthan the probability of get-  fective two-particle interaction between the moving charge
ting the superluminal speed “by error.” Otherwise, when we and a test particle. Namely, td= p,v,, the Hamiltonian of
postselectVy;,), we would most likelynotget superluminal  the moving charge, we add the Hamiltonigr of a (nonrel-

speed. _ _ ativistic) test particle:
Let us check: on the one hand, a particle with wave func-

tion ®(x,0) may be found, by error, a=(v,),t a timet 1

later. 2T2he2 probability of such an error is proportional to H’=2—(p’—q’A)2+q’V. (17)
e (v2wt/<" which by Eq.(15) is much greater thae N. On m

the other hand, the probability of postselecting the state

|Win) is approximately &;a +1/2)V. If we compare the InH’, the test particle has chargé, and the scalar potential
two probabilities and recall that,«, is negative fov,),, 1S

>c, we find that the probability of an error dominates the

probability of postselecting¥ ;). VX)=g{[ (X' —x)2+(y' —y)?]
Then why all the fuss about postselection? If we measure
v, and obtain the value,>c, how does it matter whether or X (1-v2lc?)+(z' —2)% 12 (18)

not we postselect? The answer is tloaly if we postselect

are measured values consistein example may help clarify - the yector potential has only one nonzero component,

this answer. Suppose we measure the displacement of t mely,A,, which is[6]

particle at timet with a weak measurement interaction. If we e

do not postselect, the most likely displacement at tine

ct/\N, because the expectation valuevgfin the statg¥;,) AX) = &{[(x’ —X)2+(y' —y)?]

is a random walk oN steps of siz&/N. Yet there is a small z c

chance of obtaining a displacemestt Such a value might

be an error and, indeed, if we remeasygrthere is again only

a small chance of measuring such a large displacement.

Since each measurement hardly disturbs the paftidlehe  Note that if we substitute (00,t) for (x,y,z), thenV(x’)

probability that the next measurement yields a displacemergqualsV(x’,t;v,) as defined above in Eq416) and A,(x’)

ct remains small. Thus, without postselection, there is naquals ¢,/c)V(x’,t;v,). The equations of motion flowing

consistency in measurement errors. Unless and until we posfrom H+H' yield (x,y,z)=(0,0p,t), together with the cor-

select, they are just errors. With postselection, however, meaect motion of the test particle due to the electromagnetic

surement “errors” yield a consistent pattern. Repeated weakield of the moving charge(The equation of motion for the

measurements on an ensemble of particles preselected in theomentump of the moving charge is unphysical, but it has

state|¥;,) and postselected in the stgt¥;,) yield errors no measurable consequengddow we treatV and A, as

consistent with the superluminal weak value. quantum operators and calculate their effect on the test par-
Equations(7) and(9) show that the weak speed of a par- ticle. We will see that if the moving charge has weak speed

ticle can consistently exceexl We now give the particle a (y,),,, then(v,),, replaces, in Egs.(18) and(19).

chargeq and show that its electromagnetic field, too, is con-  Namely, suppose we preselect the moving charge in the

sistent with superluminal weak speed. state|¥;,)®(x,0) and, after a timél, postselect the state

|W+i,) [see Egs(4) and(5)]. We also prepare the test particle

in a localized stat&)(x’,0), where(x’,0) is analytic in

x". For simplicity, and because we want the test particle to
What is the electromagnetic field of the particle? Let usmeasure the instantaneous valuesAgfandV at the end of

treat the scalar potential; the treatment of the vector potentiahis evolution(and not their average values during or after

is similar. To begin with, suppose tha is well defined, i.e., the evolution, we “turn on” H’ instantaneously at timg,

thatv, equals one of its eigenvalues. é(x’,t;v,) denote i.e., we multiplyH’ by 8(t—T). The state of the moving

the scalar potential at’,t of a particle of chargeg moving  charge and the test particle after the postselection is then

X (1—-v2lc?)+(z' —2)% 12 (19)

IV. CHERENKOV RADIATION
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d(xTHQX,T)= (T, |e—i[(p’—q'A)2/2m+q’V]/ﬁ and then, as before, replacgby (v,),, . And what holds for
' ’ " weak speed holds for other weak values.
x e P21y, \d(x,0)Q(x",0). (20) With our effective two-particle interactiorl’, we have

neglected the radiation modes of the electromagnetic field,
The potentials/ andA in Eq. (20) are defined by Eqg18)  just as we often neglect these radiation modes in treating the

and (19). But we now show that the weak speéd,),, re-  interaction between two charged particles via the Coulomb
placesv, in Egs.(18)—(20). Here we present a short proof, potential. When can we consistently neglect the radiation
while Appendix B contains a long rigorous proof. modes? A particle of charggreveals its position through its
Let us focus on the right-hand side of HQO) and note  electromagnetic field; each mode of the electromagnetic field
that we can expand the first exponential, is, in effect, a measuring device. What assures us that the
superposition of localized states in EQO) lasts a timeT, if
e il(p' ~a'A)Z2m+a’ VA (21)  each localized state has a distinct electromagnetic field? In

other words, how can we postselect the staltg;,) if the
as a power series i, . Thus, the right-hand side of EO0) radiation modes can reduce the superposition to a localized

is a sum of terms of the form state corresponding to one eigenvalue ¢?
_ The answer to this question depends on the magnitude of
(W inlvte™ P22, Y (22)  the chargey. If qis large,®(x,t) will not remain a superpo-

sition of localized states for long. Each state in the superpo-
multiplied on either side by functions that do not depend orsition corresponds to the charge moving at a different point

v,. But we have, for any and in the limitN— o, along thez axis, localized to withidz~e. We assume that
_ this uncertainty conforms to Eql5). But if q is large
(W inlvoe™ P22, Y enough, the radiation modes will measure the location of the
. n charge and reduce the uncertaidty to less than what Eg.
:(f i) (W le P2, ) (15) allows, thereby reducing the superposition in E2[).
T ap,) * " " Conversely ifq is small, vacuum fluctuations will dominate,
i g \n and the radiation modes will not reduce the uncertaityto
:(xpﬁn|q;m><_ _) e 1IPAvwT/h less than what Eq15) allows.
T ap, We can sharpen this question by imagining an observer at
:<‘I’fin|‘1’m>(<vz>w)ne_ipz<vz>wm- 23) a distanceD from the moving charge, who may or may not

measure its electric field to determine its positiamd thus

Compare Eas(6)—(11).1 So we can simplv replace. b it_s.spe_eai If there is a measurement, it reduces the superpo-
[ P as(6)~(11).] o Smply rep’ace; by sition in Eq.(20) to a single localized state; then we cannot

everywhere it appears in the series. We drop the facto ) o
{02l y bp P postselectW¥y;,) and there will be no Cherenkov radiation.

(Win|¥in) (10 normalizg and obtain But if there is no measurement, and we postsef8ts,),
(I)(X,T)Q(Xr,T)zefi[(p’fq’A)ZIZerq’V]/h, therevv_ill be Cherenkov radiation. (_Zan this obseryer violate
causality? As long a®=<cT, there is no problem: the ob-
X D(X,y,2—(v,)wT,00Q(x",0), (24 server is close enough to the particle to causally affect the
outcome(whether or not it emits Cherenkov radiatjoBut
where for D>cT, the observer cannot causally affect the particle
before it emits Cherenkov radiation. We are left with an ap-
A=({v)wlc)V=({v)w/c)V(X'—Xx,0;{(v,)w). (25  parent violation of causality; how can the radiation from the
particle be consistent with later measurements?
SinceV(x’' —x,0;(v,)y) equalsV(x’) as defined in Eq(18) To answer the question, let us suppose that the observer
with (v,),, taking the place of,, the scalar and vector po- locates the particle by measuring its electric field. At a dis-
tentials are exactly the potentials of a charge moving withtanceD from the particle, the electric-field strengkhis E
weak speedv,),, (folded with the width of the localized =q/D?, thus D= \q/E. ThenAD=(D32q)AE. Inferring
state®) and have the corresponding effect on the test parthe positionz of the particle from this measurementBfwe
ticle. Now if (v,), exceeds the speed of light, and A,  haveAz~(D3/2q)AE. The condition for a weak measure-
correspond to Cherenkov radiation, the shock wave of ament ofv, is Eq.(15), with Az taking the place o§; that is,
charged particle moving faster than light through a medium.
_ Cherenkov radiation is a striking illustration of the prin- \/N(D3/2q)AE~\/N(Az)><vZ)WT. (26)
ciple that all weak values measured on a preselected and
postselected ensemble are consistent. There is more consis- o )
tency here than what we have noted. We have shown that 2iNc€ We assumb=cT, Eq. (26) implies VND?AE>2q.
particle emits weak Cherenkov radiation consistent with its\OW vacuum fluctuations in a region of VO"?'ﬁe_g’ overa
superluminal weak speed. But we need not limit ourselves t§Me D/c, induce Uzm_:erta'nty in the electric field that is
the HamiltonianH’ in Eq. (17). Given any Hamiltonian roughly AE~\7%c/D? in magnitude{7]. Thus
H’(v,) that is analytic inv,, we can write the time evolu-
tion operator exp-ifH'(v,)dt/A] as a power series in,, hc>49%N (27
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is the condition for weak measurement and Cherenkov radia- Once we understand the role of analyticity in the emer-
tion. If g satisfies Eq(27), then weak Cherenkov radiation is gence of(v,),,, we can answer another question: How can
consistent with causality. Indeed, even a strong interactiofv,),,>c be consistent with relativistic causality? We have
with the electromagnetic field can show Cherenkov radiaseen that the particle moves with velocity,), only if
tion: for any giveng, N must satisfy Eq(27), and then mea- ®(x,0) is analytic. But if®(x,0) is analytic, then its value
surements will show superluminal weak speed and Chererand the value of its derivatives at any one point determine its
kov radiation. Folg~e, N is approximately the inverse fine- value at all points. Henc®(x,t) = ®(x,y,z— (v )ut,0) does
structure constant; for largey N must be larger, as well. not transmit any message, because it is the same message for
Thus Cherenkov radiation does not, by itself, imply su-all x andt. Since®(x,t) does not transmit any message, it
perluminal weak speed; we must still postselgét;;,). does not, in particular, transmit a superluminal message, and
Given the conditior.c>4qg?/N, postselection of¥ ;) im- there is no violation of relativistic causality.
plies Cherenkov radiation, but the reverse does not hold: Thus superluminal weak speed is consistent with relativ-

Cherenkov radiation does not imply postselectiof®f;,,). istic causality and with other measurements. There are two
Without postselection, Cherenkov radiation may be an errorlistinct ways in which weak measurements can be consis-
a fluctuation of the vacuum. tent. On one hand, if a weak measurement pbn a prese-

In this example, we preselect';,) and postseledt¥ ;) lected and postselected ensemble yiélds,,>c, any weak
to get superluminal weak speed. In E§), which defines measurement of the electromagnetic fietdthe same prese-
these states, all the coefficients are real, and therefore thected and postselected ensemiid show Cherenkov ra-
weak speed is real. For other preselections and postselediation. That is, weak measurements are consistent as long as
tions, however, the weak speed could be complex. Complethey apply to the same preselected and postselected en-
weak values can induce nonunitary time evolution. We willsemble. On the other hand, if measurements do not apply to
present elsewhere an example of an imaginary weak dipolthe same preselected and postselected ensemble, they are
moment which shows a remarkable interplay between imagieonsistent even if they yield different measured values. For
nary weak values and entanglement. Here, however, we digxample, we can follow a weak measurementvgfwith

cuss only real weak values. either a postselection or a precise measuremen, off we
postselect the statfVy;,), we interpret the result of the
V. RELATIVISTIC CAUSALITY weak measurement as the weak valug,, ; if we precisely

_ agja)measure;z, we may interpret the result of the weak mea-
Weak measurements—measurements that yield weak rement as an error. But these two interpretations of a mea-

values—are internally consistent because they obey_ tWQured value are consistent, for they apply to different

rules. On one hand, they are weak, hence they hardly disturBhsemples—the former to a preselected and postselected en-
the measured system. On the other hand, they are inaccuraigmple and the latter to a preselected ensemble. Thus, how
and can yield, “by error,” weak values. These two rules are,ye interpret a measured value depends on what we choose to
intimately related. In our example, the change in the initialmeasure next. Here we have considered weak measurements
wave function®(x,0) is proportional top,. Thus, for the o 5 single preselected and postselected ensemble. Together,
measurement to be weag, must be bounded. But i, iS  these measurements yield a consistent picture of a charge

bounded, then the wave function is analyt} in z And  moving in vacuum at superluminal speed and emitting Cher-
since®(x,0) is analytic inz, the probability density does not ankov radiation.

vanish for any interval irz. Thus we can localize the particle
by error in a region it could not have reached without super- APPENDIX A

luminal speed. What if we were to try to eliminate the pos-

sibility of error, either by choosing the initial wave function ~ We will prove [8] the following representation for
to be a Dirac delta function, or by otherwise imposing aV(x',t;v,):

sharp cutoff on the initial wave function? In either case, o S(t—
the initial wave function would not be an analytic function. V(x’,t;vz)zqf dr

But then the expansion of Eq§7) and (10) in powers of -
p, would not be valid. The exponential ofip,v,t/A in
Eq. (6) is a unitary operator that translateB(x,0) to
d(x,y,z—v,t,0). This unitary operator acts on any wave

7—|x" —x|/c)
X" = x|

(A1)

Here |x' —x|=[(x")?+(y")?+(z' —v,7)?]¥2 We evaluate
the & function at its zeros according to the rule

function with a Fourier transform. But the Taylor-series ex- 5(g( )):2 o(t— 1) (A2)
pansion of this unitary operator applied&gx,0), gt ™ |dg(7)/d7|’
—ipptih)™ where 7; satisfiesg(7;)=0 and here

ey ®(x,0), (289

o (
>
m=0

equals the Taylor-series expansion df(x,y,z—v,t,0)  To obtain the zeros, we solve the quadratic equation

g(n=t—7—[(X)2+(y")2+(z' —v,m?*"¥c. (A3)

around®(x,0) only if ®(x,0) is an analytic function. Thus cA(t—1)2=(x")2+(y")?+ (2 —v,7)? (A4)
the weak valugv,),, emerges in this experiment only if the
initial wave function®(x,0) is analytic. and require= 7. There is one zero fdw,|<c,
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ct—v,Z' lcH{[(X")?+ (y)2(1—v2c?) + (2 —v )%}

cr=

and the integral yields

V(X' v =a{[(x)?+(y)?)(L—vi/c?) + (2 —v)?} M2
(A6)

as before. This representation\ofx’,t;v,) will be very use-
ful in Appendix B.

APPENDIX B

We will show that the weak spe€d,),, replaces, in V
andA in Eq. (20). We first show it in the limitm—x, i.e.,
we first consider only the scalar potential Then we gener-
alize to finitem and consideA too.

Let us focus on the term in angular brackets in E2)
and begin by noting tha¥/(x’) as defined in Eq(18) can
also be written asv/(x’ —x,0;v,), as defined in Eq(16).

Hence(in the limit m— o) we can write the term in angular

brackets as
<\I,fin|efiq’V/ﬁefipzuZT/h|q,in>
— <q,fin|e—iq’V(x’—x,O;uz)/ﬁe—ipszT/h|\l,in>
— <\]fﬂn|e*ipzuzT/ﬁe*iq’V(X’*XvT?Uz)/ﬂ\Ifm)_

(B1)

The trick is to take the dependence on out of V(X'

—X,T;v,) and put it in a more convenient place. To this end

we refer to the representation in E@1) and note that all
the dependence on, is contained in the expressiox’
—x| which, for V(x'—x,T;v,), equals [(x'—x)%+(y’
—y)2+(z' —z—v,7)?]"2 It follows that the combination

M = eip;uzf/he—iq’V(x’ —x,T;vz)/ﬁe—ip;vzr/ﬁ (B2)

1-v?/c? ’

(A5)

where@ represents an eigenvalue @f for a given Fourier
component[We have taken the limiN—c; compare Egs.

(6)—(11).] Now we can pullelPz 2w hack to the right side

of M, turn p, back intop, drop the factof Wy;,|¥;,) (to
normalize, and rewrite the term in angular brackets as

e” i pz<vz>wTH'7 e~ ip;(”z)wﬂﬁ M ei p;<”z>wﬂﬁ

:e—ipz(vz)WT/he—iq’V(x’—x,T;(vZ>W)/h‘ (B5)

Applying Eq. (B5) to the combined staté(x,0)(2(x’,0) of
the moving charge and the test particle, we obtain at fiine

O(x,T)Q(x',T)
:e*ipz<vZ)WT/ﬁefiq'V(x'7X,T;(vz)w)lhq)(X,0)Q(Xr,0)
:e_iq,V(X,_X’O;<UZ>W)/h(I)(X,y,Z_<UZ>WT,0)Q(X,,0).

(B6)
Equation(B6) corresponds to Eq$24) and(25) in the limit
m— oo,
Now let m be finite. SinceA,(x’) equals ¢,/c)V(x'),

we can define a representation Af(x’,t;v,) to be @,/c)
times the representation ®(x’,t;v,) in Eq. (Al). But how

'do we deal with this extra dependencewnn A,(x’,t;v,)?

We can expand the exponential term
e—i[(p’—q’A)2/2m+q’V]/h (B7)

in Eq. (20) as a Taylor series. If we then repladg(x’)
=(v,/c)V(X'—X,0;v,) by its representation, there will be

is actuallyindependendf v, and we can write the term in powers ofv, in the series. But we have, for amyand in the

angular brackets as
. . ! . r
<\Pﬁn|e*lpszT/ﬁeflpszT/ﬁM elvaZT/ﬁ|\Pin>, (83)

whereM is independent of ,. We would like to moveM out

of the angular brackets. Indeed we can do so, even thbugh

. 1 ! .
does not commute witk'Pz"z"" The reason is that we can
always writeQ)(x’,0) as a sum of Fourier components. For

each Fourier component in the sum, we can mblveut of

the angular brackets, and later move it back in; hence we can

do so for the sum itself. Thus we can rewrite EB3) as

<\Pﬁn|efipszT/ﬁefi(p£*p;)vzr/ﬁ|q,in>M
:<\I’fin|\I’in>e_ipz(”z)wT/he_i(pé_aéxliZ)WT/hM ,

(B4)

limit N—oo,

(W pip|v e PP Ryl
. i )
Pz

n

ih 9 ) -
:(\Irfm|\lfin>(T 5) e 1(PLT+py 7= P, (v /fi
z

:<\I,fin|\Pin>(<vz>w)n97KpJeréT?ET)(UZ)W/h, (B8)

so we can replace, by (v,),, everywhere it appears in the
series. Then we obtain EqR4) and (25) as the generaliza-
tion of Eq. (B6).
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