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Abstract

We examine Meehan’s [2020] claim that quantum mechanics has a new “control prob-

lem” that puts limits on our ability to prepare quantum states and revises our understanding

of the no-cloning theorem. We identify flaws in Meehan’s analysis and argue that such a

problem does not exist.

Recently, Alexander Meehan ([2020]) argued for a new problem for quantum mechanics, dis-
tinct from the standard problems associated with measurement in quantum theory. His thesis
is that a new problem, which he labels the control problem, forces any interpretation of quan-
tum mechanics to take into account the preparation of states, distinct from considerations of
measurement.

Meehan’s “new problem” is an alleged inconsistency of three statements related to the prepa-
ration of quantum states. In this comment, we identify the following flaws in his argument:

• There is no compelling reason to accept one of the statements, so the inconsistency, if it
exists, does not represent a problem for quantum mechanics.

• There exists a particular set-up in which all Meehan’s claims are found to be true, so we
prove by construction that his inconsistency proof fails.

• Demonstrating his “new problem” Meehan presents a set-up involving measurement
(which is known to be a problem in quantum mechanics) together with preparation. He
tries to derive the inconsistency from the preparation of states, but makes an error (divid-
ing by zero) in his proof.

• Finally, in his critical comment regarding the no-cloning theorem of quantum mechanics,
he confuses approximate cloning with precise cloning.

In Section 1 of his paper, Meehan defines the “control problem”:
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“The following claims are jointly incompatible:

(B1) We can successfully prepare quantum states: at least some of our preparation
devices are such that, if determinately fed many inputs, they output a non-
trivial fraction of those inputs in some specified range of quantum states.
[Preparation] (here the ‘inputs’ are subsystems, and we define ‘the quantum
state of a subsystem’ in the standard way, as its reduced state).

(B2) The quantum state of an isolated system always evolves in accord with a
deterministic dynamical equation that preserves the inner product, such as
the Schrödinger equation [Unitarity].

(B3) It is always determinate whether or not a subsystem has been input into a
given (measuring or preparation) device [Determinate Input].”

By presenting (below) a counterexample we will show that Meehan’s claim is incorrect:
(B1), (B2), and (B3) are compatible. There is no control problem as stated in Meehan’s intro-
duction. Before this, let us compare, as Meehan does, the control problem with the measure-
ment problem. Meehan writes:

“The following assumptions, though individually innocent, are jointly untenable
(Maudlin [1995]):

(A1) The quantum state of a system determines, directly or indirectly, all of its
physical properties [Completeness].

(A2) The quantum state of an isolated system always evolves in accord with a
linear dynamical equation, such as the Schrödinger equation [Linearity].

(A3) Given determinate inputs, our measuring devices always produce unique, de-
terminate outcomes [Determinate Outcome].”

The obvious flaw of Meehan’s argument is that he tacitly considers (B3) as apparently true
or at least as “individually innocent”. In fact, Meehan’s error starts from imprecise quotation
of Maudlin. Maudlin writes:

“The following three claims are mutually inconsistent.

1.A The wave-function of a system is complete, i.e. the wave-function specifies
(directly or indirectly) all of the physical properties of a system.

1.B The wave-function always evolves in accord with a linear dynamical equation
(e.g. the Schrödinger equation).
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1.C Measurements of, e.g., the spin of an electron always (or at least usually)
have determinate outcomes, i.e., at the end of the measurement the measuring
device is either in a state which indicates spin up (and not down) or spin down
(and not up).”

While Meehan’s (A1) and (A2) faithfully reproduce Maudlin’s 1.A and 1.B, Meehan’s (A3)
is different from Maudlin’s (1.C). We have empirical evidence for 1.C: we usually observe
a single outcome in quantum measurement experiment. It is more difficult to find a support
for (A3): “always produce unique, determinate outcomes” does not seem to be a feature of
quantum measurements.

Anyway, Meehan’s claim for novelty is about inconsistency of (B1), (B2), and (B3). Quan-
tum theory yields (B2). Empirical evidence tells us that (B1) is true: we make many successful
quantum experiments involving preparation of quantum states. But what is the reason to accept
(B3)? The reason to accept (1.C) is that the measuring device includes a macroscopic pointer
which shows a single reading, like any classical object. In contrast, (B3) concerns a quantum,
microscopic, “subsystem” which is not expected to have determinate classical features. There
is no reason to assert that it is “always determinate whether or not a subsystem has been input
into a given (measuring or preparation) device.” Yet, this strong requirement plays an essential
role in Meehan’s incompatibility argument (Section 4.2), which states that “By Determinate
Input, it cannot be indeterminate whether Zarna feeds her subsystems into a given preparation
device”. His claim:“cannot be indeterminate” requires “always determinate” of (B3).

Meehan demonstrates his argument on several examples in all of which the preparation is
preceded by a measurement. However, there is no need to perform a measurement for preparing
a particular quantum state; it can be done unitarily. We demonstrate below one way to do this,
considering, like Meehan, the spin of a spin−1

2 particle.
Our task is to prepare the spin state |↑〉. We start with a spin-measurement set-up, but apply

only the first, unitary step of the measurement procedure, the interaction of the microscopic
part of the measuring device (MD) with the spin. This step is then followed by a second unitary
transformation: conditional flip of the spin, depending on the state of the microscopic part of
the measuring device. We need not know anything about initial state of the spin, it can even
be entangled with some other systems (to be denoted by REST). We do assume that we can
perform unitary operations on the spin and the microscopic parts of the measurement device
and that we do have a known ‘ready’ state of the measurement device |R〉MD. The initial state of
the spin and the other systems can be decomposed according to the orthogonal states of the spin
into the form α|↑〉|U〉RES T +β|↓〉|D〉RES T . In the first step, the spin interacts with the microscopic
part of the measuring device:

(α|↑〉|U〉RES T + β|↓〉|D〉RES T ) |R〉MD → α|↑〉|U〉RES T |⇑〉MD + β|↓〉|D〉RES T |⇓〉MD, (1)

with |⇑〉MD and |⇓〉MD denoting the orthogonal states of the microscopic part of the measuring
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device. The second step is the flip of the spin conditioned on the state |⇓〉MD of the microscopic
part of the measuring device. The procedure leads with certainty to the desired spin state |↑〉:

α|↑〉|U〉RES T |⇑〉MD + β|↓〉|D〉RES T |⇓〉MD → |↑〉 (α|U〉RES T |⇑〉MD + β|D〉RES T |⇓〉MD) . (2)

We presented our procedure as a gedanken experiment, but it is feasible to perform such a
demonstration in today’s laboratory. IBM or Google quantum computers can demonstrate it
(although still with a limited fidelity) Therefore, since state preparation is manifestly possible,
quantum mechanics has no fundamental state preparation problem, and (B1) should hold in
any interpretation of quantum theory. See also Wessels ([1997]) and Section 3.1 of Meehan
himself.

We argued above that there is no basis for claim (B3), so that the control problem stating
the inconsistency with (B3) is of no importance. Analyzing our example of the preparation
procedure in the framework of Bohmian mechanics we can make an even stronger claim. Our
example is a counterexample to Meehan’s inconsistency claim, so the control problem stated
in Section 1 of his paper does not exist.

According to the Bohmian interpretation every particle has a definite trajectory, so, in par-
ticular, “It is always determinate whether or not a subsystem has been input into a given (mea-
suring or preparation) device.” Thus (B3) holds, and Meehan agrees with this, see his Section
5.2. Bohmian mechanics includes Schrödinger evolution, so (B2) holds too. Our procedure
prepares an arbitrary state, so, by construction, (B1) holds as well. Inconsistency of (B1), (B2),
and (B3) is refuted.

Our method of preparation without measurement refutes Meehan’s claim about the control
problem as stated in Section 1. However, it is possible that what Meehan really understands as
the “control problem” is a set-up which does include measurement, as presented in Section 4 of
his work (which has the title “Control problem”). When introducing a new problem in quantum
mechanics he was not supposed to include measurement, which is problematic by itself. He
argues, however, that solving the measurement problem might not resolve the contradiction he
presents in his set-up. He writes:

“According to Unitarity, the inner product of the left-hand sides of (5) and (7b)
must equal the inner product of the right-hand sides. The basic observation is
that since many D and D′-states were prepared, and many of those states are very
different, the right-hand sides will actually be more orthogonal (i.e. more easily
distinguishable, i.e. inner product closer to 0) than the left-hand sides.”

This is Meehan’s argument connecting the inconsistency proof with the preparation proce-
dure. We will now analyze it more closely and will show that he is mistaken: the inner product
of the prepared states is not relevant for calculating the inner product between final states of
the whole composite system for the two alternatives: it is zero due to the measurement which
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is embedded in his set-up. Without this connection Meehan’s paper provides no support for the
existence of a problem in quantum mechanics beyond the measurement problem.

Meehan’s set-up, described in his Fig. 3, has two rooms. In the left room a measurement
is performed followed by the preparation of states in the right room. His equations (5) - (7)
represent the processes taking place in both rooms together. His “basic observation” is the
failure of Unitarity due to the fact that the final states (RHS) are “more orthogonal” than the
initial states (LHS). He attributes this change of the inner product to the preparation stage in
the right room. What he overlooks is that the measurement procedure in the left room, resulting
in different preparation instructions, ensures full orthogonality even before the preparation of
states by D and D′. Therefore, the difference between these states does not have any influence
on the inner product of the final states corresponding to different preparations. One can see
that he overlooks this fact from his Eq. 8. He writes: “|( f inal, f inal′)|2 ≤ 1 where ‘final’
and ‘final′’ denote the final quantum state of everything in the lab except the (spin of the)
successfully prepared electrons.” His set-up, however, ensures that |( f inal, f inal′)|2 = 0 due
to the parts in the left room, where the measurement has been performed. This is because the
measurement stage ends up creating one of the two different instructions: preparation by one
or another of two macroscopically distinguishable devices. The RHS of Eq. 8 is vanishing,
so Meehan cannot claim that Eq. 8 implies Eq. 9 and the connection to the preparation in the
right room is not established. We still get a contradiction, it is immediate in Eq. 8, but the
contradiction is related to the measurement that was carried out prior to the preparation taking
place.

Finally, let us comment on Meehan’s application of his result to questioning the “folklore
in the literature” (D’Ariano and Yuen [1996]; Vaidman [2015]) according to which “the no-
cloning theorem rules out the possibility of individual state determination”. Meehan’s assertion
that “the standard argument offered for this claim is unsound” loses any ground he may have
gained since there is no problem with the preparation of quantum states. But Meehan also
presented an independent argument for his worry about the no-cloning theorem. He showed
that the no-cloning argument works not only when we have a single system with an unknown
state, but also when we have a finite number of identical systems in identical unknown states.
He writes:

“Indeed it was perhaps misleading to frame the no-cloning theorem as the result
that ‘a single quantum cannot be cloned’ (Wootters and Zurek [2009]), given that a
finite ensemble of identical quanta also cannot be cloned. This is bad news for the
argument. For if the argument were sound as stated, then it would also demonstrate
the impossibility of ‘any measurement scheme for determining the wave function’,
not just ‘from a single copy of the system’, but also from any finite number N

copies of the system.”

Although Meehan considers this statement as “absurd”, it is correct. We cannot clone an
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unknown quantum state even if we have a finite number N of systems with this state. There
is no procedure to prepare M > N systems with exactly this state (Gisin and Massar [1997]).
Therefore, we cannot precisely determine the quantum state of a finite ensemble of systems
with identical states. Exact tomography of a quantum state requires unlimited number of copies.
A finite ensemble allows only for approximate determination.

In summary, fortunately, Meehan is mistaken, and quantum mechanics has no new problem.
It still has the measurement problem which has many (sometimes contradicting) solutions in
various interpretations with, unfortunately, no consensus yet about the preferred one.
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