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Although for some nonlocal variables the standard quantum measurements which are
reliable, instantaneous, and nondemolition, are impossible, demolition reliable instan-
taneous measurements of all variables are possible. It is shown that this is correct also
in the framework of the time-symmetric quantum formalism, i.e. nonlocal variables of
composite quantum systems with quantum states evolving both forward and backward
in time are measurable in a demolition way. The result follows from the possibility to
reverse with certainty the time direction of backward evolving quantum states.
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1. Introduction

There are causality constraints on nondemolition quantum measurements! which
allow measurements of only certain classes of nonlocal measurements.? Recently it
has been shown that in principle it is possible to perform an instantaneous mea-
surement of an arbitrary nonlocal variable of two spm—— particles® and, in fact,
of any composite system,* provided we do not require that the measurement is
non-demolition. Such demolition measurement distinguishes with certainty between
eigenstates of the nonlocal variable, but, contrary to the standard definition of a
quantum measurement, it might destroy the measured eigenstate. The possibility
to perform such measurement provides physical meaning for nonlocal variables in
the framework of relativistic quantum mechanics.

Recently, we are witness to a significant development of the time-symmetric
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formalism of quantum mechanics®® originated by Aharonov, Bergmann and

Lebowitz.” In this formalism, in addition to the standard quantum state evolving
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forward in time from the time of a complete measurement on the system performed
in the past, there are quantum states evolving backward in time from complete
measurements performed in the future relative to the time in question. Moreover,
in this framework one can define states evolving for one subsystem in one time
direction and in the opposite time direction for another. Thus, one can define novel
types of nonlocal variables, for which the eigenstates evolve backward in time or
even in different time directions. In this work we show that such nonlocal vari-
ables are also measurable (in the sense of demolition measurements) and this result
provides physical meaning for nonlocal variables and states of the time-symmetric
quantum formalism.

2. The Concept of Nonlocal Measurements

Let us now state more precisely the problem we want to consider. The quantum
system consists of two or more parts separated in space. We assume that we are
equipped with measuring devices which allow to measure any local variable of the
parts of the system. We also have unlimited resources of entanglement, the quantum
channels which connect the sites in which separate parts of the system are located.
Given an unlimited time, these resources would allow, through teleportation of
quantum states of different parts to one location, a measurement of an arbitrary
variable, but we require instantaneous measurement and thus there is no time to
complete the teleportation of quantum states of different parts. The meaning of
“instantaneous” is that shortly after the time of measurement, there are permanent
records in the locations of the parts of the system, which together yield the value
of the nonlocal observable.

The method should work for measurement of any variable of our composite quan-
tum system. Examples of nonlocal variables are variables with eigenstates which are
entangled (Bell operator), or variables with product state operators which cannot
be measured via measurements of local variables (which coined the name nonlocality
without entanglement).® In fact, we can consider it as a definition of nonlocal vari-
ables: variables which cannot be measured through measurements of local variables.

3. Demolition Nonlocal Measurements

Some nonlocal variables are measurable in a sense of standard (nondemolition)
quantum measurements (e.g. Bell operator.?) However, it is known that there are
nonlocal variables which are immeasurable in this sense, and this is why we have to
look for other definition of measurement: for demolition measurements all variables
are measurable. In particular, projection operator on an arbitrary quantum state
of the system is measurable and this provides physical meaning for quantum states
of the composite system including nonlocal (entangled) states.

Let us recall the basic idea of nonlocal demolition measurements* on the example
of bipartite system where each part consists of several spin—% particles. It consists of
a sequence of “half teleportations” between the sites of the system, where, say, Alice



1530 L. Vaidman & I. Nevo

and Bob are located. “Half teleportations” are teleportations without corrections
and thus they do not have a minimal time for implementation since they do not
include transmission of information.

If a quantum state has a simple form

“1/> ZHZ‘|S¢>¢, (1)

where |s;) is either |T,) or ||}, then it can be determined unambiguously through
local measurement even if it was first “half teleported” from another place, provided
we collect together the results of the spin measurements of the half-teleported state
together with the results of Bell measurements of the half-teleportation procedure.
Indeed, the only possible effects of the second half of teleportation procedure are
changes of the total phase and spin flips. The phase is irrelevant and the effect of
the spin flip can be corrected after the measurement, when the information about
the results of the Bell measurements arrives.

The procedure goes as follows. At the beginning, the state of Bob’s part of
the system is “half-teleported” to Alice. Alice assumes that “half-teleportation” is,
in fact, the full teleportation (there is a finite probability for results of Bell mea-
surements corresponding to teleportation without correction) and transforms the
eigenstates of the nonlocal variable to the orthogonal set of states in the form (1).
Then, she half-teleports the transformed state to Bob. Bob knows the results of his
teleportation Bell measurements and if they, indeed, were successful, he performs
the spin measurements in the z basis. Together with the results of Alice teleporta-
tion Bell measurements these results yield the eigenstate of the measured variable.
If the first Bob’s teleportation was not successful, he teleports the received state
back to Alice in one of the numerous quantum channels according to the results
of Bell measurements of the first teleportation attempt. Alice assumes that the
second Bob’s teleportation was successful and performs unitary transformations on
the outputs of all Bob’s channels to the form (1) and teleports each channel to
Bob. Since every round adds finite probability for success (which equals one over
the number of possible different outcomes of Bell measurements), the probability
of the success after many rounds converges to 1. The method can be generalized to
any number of sites of a composite quantum system.*

4. Demolition Nonlocal Measurements for Backward Evolving
Quantum States

The method cannot be applied for measurements of backward evolving states by
simple “time-reversal” of our operations. Indeed, in our procedure, Bob, starting
from the second round, teleports the quantum state in a particular channel depend-
ing on the results of his previous Bell measurement. In the time reversed procedure,
this corresponds to choosing the channel according to the result of a measurement
which has not been performed yet. Note, that standard von Neumann measurement
is applicable for measurement of backward evolving quantum state. The same pro-
cedure measures quantum states evolving forward and backward in time. It is true
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also for nondemolition nonlocal quantum measurements,? but such measurements
can be performed only for a very limited class of nonlocal variables. We remain with
the question: Is it possible to measure (in a demolition way) an arbitrary variable
for a backward evolving quantum state?

The answer is positive, and, moreover, we can measure in a demolition way any
variable also for quantum states evolving in different time directions at different
locations. The solution is very simple: the quantum state evolving backward in
time can be transformed to a state evolving forward in time and since for quantum
states evolving forward in time there is a measurement procedure which leads to a
successful measurement with any desired probability, we have, at least theoretically,
a solution for measurement of a nonlocal variable for quantum state with parts
evolving in arbitrary time directions.

Any quantum system with a finite number of states can be mapped to a system
of N spin—% particles. So all what we have to do is to change the time direction of
a spin—% particle. To this end, we perform a Bell measurement on the particle and
an ancilla and then (if needed) local operations acting on the ancilla to change the
state of the two particles to a singlet %(H}ll) —11}|1)), making the two particle an
EPR pair. In fact, we can prepare the singlet in any other way too. We also have
to ensure that there is no disturbance between the time of Bell measurement and
the time we receive the particle with the backward evolving state. Then, the ancilla
obtains the time reversed state of the particle:

a(l + B{l| — =6"[1) + a*[1). 2)

When we perform such time reversal for all parts of the system evolving backward
in time, the eigenstates of the nonlocal variable with parts of the system evolv-
ing backward in time are transformed to a well defined mutually orthogonal states
evolving forward in time. Thus, we obtain one-to one correspondence between the
eigenstates of the variable with parts evolving in different time directions and eigen-
states of a variable evolving forward in time. The latter we know how to measure
in a demolition way, thus, we got a theoretical method for demolition measurement,
of an arbitrary nonlocal variable.

5. Quantum State with One Part Evolving Forward in Time and
Another Part Evolving Backward in Time

Let us describe an example. In order to “prepare” an eigenstate of an operator
corresponding to a quantum state evolving in part A forward in time and in part
B backward in time, consider two “crossed” nonlocal (in space and time) measure-
ments, Fig.1:

01 = of!(t2) — o7 (t2),
Oy = (62(t1 — €) — 0B (t2 + €))mod4. (3)
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For time t, t; <t < tg, part A of each eigenstate evolves forward in time and part
B evolves backward in time:

O01=2: IT>A <l|Bv

O, =-2: [a (7B, (4)
1

01=0, O2=0: EODA (Me+1)a {ls),
1

01=0, O=2: E(mA (Tl = 1ha (lB)

Now, our time reversal operation (2
eigenstates into:

~

at time t — ¢ at part B transforms these

Ha 1Dz,
[a |1)B,
%mu D5~ 10a ). (5)

Z5(a [LsHa (o)
This is a nonlocal variable evolving forward in time which cannot be measured in
a nondemolition way,’ but it can be measured in a demolition way.

Although the method explained above allows to perform measurements of any
nonlocal variable, it requires unnecessary large resources. In order to make reli-
able measurement of forward evolving quantum state with parts located in several
places we need huge amount of entanglement.* In fact, if in particular location the
quantum state evolves backward in time, the measurement procedure can be much
simpler: we can save a lot of entanglement resources. Indeed, our task is to bring

p
L+ NS

Fig. 1. The “preparation” of quantum state evolving forward in time in A and backward in time
in B.



Nonlocal Time-Symmetric Measurements 1533

the states of all parts to one location. The quantum state evolving backward in
time can be moved to another place in one step which also includes the change of
the direction of the time evolution of the state. All what we have to do is to prepare
a singlet with our particle and an ancilla located in the place to which we want
to move the state of the particle. When there is a large distance between the two
places it might require a significant time, but we have this time since we can prepare
it in advance. If we cannot arrange in advance that one particle from the EPR pair
is the part of our post-selected system, we can always perform local swap opera-
tion between the member of the EPR pair and the post-selected particle. Thus, the
backward evolving quantum state or, the state with only one part evolving forward
in time, can be measured in a demolition way using very moderate resources: N — 1
quantum channels for a N part system.

6. The Two-State Vector

Until now we discussed quantum states evolving at each space-time point in one
time direction. In the framework of the time-symmetric formalism of quantum
mechanics,’ the complete description of a quantum system is given by a two-state
vector (®| |¥) such that there are both forward and backward evolving quantum
states at each part of the system. The most general description of a composite
quantum system of N parts is the generalized two-state vector:®

N
Za(’ihu’iN,jhujN) H<q)zn|n |\Ijjn>n (6)
4 n=1

A generalized two-state vector might not be reducible to a two-state vector (®| |¥).
In this case, in order to “prepare” such state at time ¢ it is necessary to have
ancilla particles guarded from the time of collective measurement of our system
and the ancilla before ¢ and until collective post-selection measurement after time
t. (Considering large enough system we can always arrive to a description by a two-
state vector, like in standard quantum mechanics, considering large enough system
we can always arrive to the description by a pure quantum state.)

The N part system described by a generalized two-state vector is equivalent
to 2N part system with quantum state in half of the parts evolving forward in
time and half of the parts evolving backward in time. Thus, preparing singlets with
ancilla particles in the location of one of the parts of the system and their pairs at
the locations of the other parts, we can bring all backward evolving parts of the
quantum state to our chosen location. From this point we should proceed with the
procedure of measuring nonlocal forward evolving state of N-part system.*

The conceptual possibility of measuring an arbitrary variable with eigenstates
which are nonlocal generalized two state-vectors provides justification for ascribing
physical meaning for nonlocal two-state vectors. Indeed, since all nonlocal variables
can be measured, in particular, projection operators on all two-state vectors are
measurable.
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7. Meaning of the Backward Evolving Quantum State

Let us now add some discussion of the concepts described above. What do we exactly
mean by “backward evolving state”? We need not to assume that at present there is
actually a backward evolving state from the future measurement, i.e. that the future
is fixed. The formalism is helpful even in a pragmatic approach when we consider a
scenario with post-selection: At a particular time we perform measurements on each
member of an ensemble of quantum systems. Later, somebody performs another
measurement and post-selects a subensemble of systems with particular result of
his measurement. There are no constrains on the post-selection measurement: any
local or nonlocal variable can be measured, since there is no requirement that it
will be instantaneous. All parts of the system can be brought to one place and
then by assumption any measurement can be performed. Then, we discard all the
results for systems which were not post-selected and consider only systems which
were successfully post-selected.

Basic requirement of a measurement, and in particular of our demolition non-
local measurement is that it reliably distinguishes the eigenstates of an observed
variable, i.e. our measurement and the post-selection should yield the same results.
Then, it seems that measurement of a variable for a backward evolving quantum
state can be performed in a much simpler way: just prepare an eigenstate of this
variable. Then, the post-selected ensemble, will consists only of cases in which the
post-selection measurement yields the same result. Preparation of nonlocal state
requires much less resources than its verification, since we can prepare the state of
all parts of the system locally in one place and then bring them to separate parts
at the right time. We assume through out the paper that the free Hamiltonian is
zero. In practice we can always compensate the free evolution.

However, preparation of a particular eigenstate is not good enough verification
measurement, of a backward evolving state. What we ask from a quantum measure-
ment is not only that it yields the correct value of the measured variable if the
state is the eigenstate of this variable, but also that if the state is a superposition of
different eigenstates then the measurement yields one of them with the appropriate
probability. If the backward evolving state is a superposition of several eigenstates
of the measured variable, preparation of one particular state yields wrong statistics.

Backward evolving state defines probability of a measurement at present only
if there is no quantum state evolving forward in time from the measurements in
the past. This is usually not the case (while it is a usual situation for the time-
reversed setup in which forward evolving quantum state is considered, since future
is considered to be unknown). Thus, the past of the quantum system has to be
erased, it should be unknown. This can be done using collective measurements
on the system and ancilla particles, but then, the procedure which replaces the
preparation is not simpler than the method described above.
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8. Reversing the Direction of Time-Evolution of a Quantum State

What allowed us to solve the problem of measurability of nonlocal variables with
arbitrary directions of time evolution for various parts of the system is a simple,
but apparently new result: we can change the time direction with certainty from
backward evolving quantum state to forward evolving quantum state.

Note that this is not so if we try to transform forward to backward evolving
state. In order to reverse the forward evolving state we need to obtain a singlet
as a result of Bell measurement performed on our particle and an ancilla. The
probability for this is i. If the result is different, we cannot correct it to a singlet,
since this operation depends on the result of the Bell measurement, but has to be
performed before the Bell measurement.

Although we do not consider here continuous systems (every real system can be
approximated well as a system with a finite number of states), it is interesting to
note that we can, conceptually, to perform a time reversal of a backward evolving
quantum state of a continuous system ¥(q) by preparing an original EPR state
(the state of the Einstein, Podolsky, Rosen paper?) for the particle and an ancilla:

la—§=0, p+p=0). (7)

Then, the backward evolving quantum state of the particle will transform into a
complex conjugate state of the ancilla:

U(g) — T (9)- (8)

If the particle and the ancilla are located in different locations, then such operation
is a combination of time reversal and teleportation of a backward evolving quantum
state of a continuous variable.!!

Acknowledgments

This research was supported in part by QAP European Integrated Project.

References

1. S. Popescu and L. Vaidman, Phys. Rev. A 49, 4331 (1994).

Y. Aharonov, D.Z. Albert and L. Vaidman, Phys. Rev. D 34, 1805 (1986).

B. Groisman and B. Reznik, Phys. Rev. A 66, 022110 (2002).

L. Vaidman, Phys. Rev. Leit. 90, 010402 (2003).

Y. Aharonov and L. Vaidman, Phys. Rev. A 41, 11 (1990).

Y. Aharonov and L. Vaidman, in Time in Quantum Mechanics J.G. Muga et al. eds.,
pp- 369-412 (Springer 2002).

Y. Aharonov, P. G. Bergmann and J. L. Lebowitz, Phys. Rev. B 134, 1410 (1964).
C. H. Bennett et al., Phys. Rev. A 59, 1070 (1999).

Y. Aharonov and L. Vaidman, J. Phys. A 24, 2315 (1991).

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

L. Vaidman, Phys. Rev. A 49, 1473 (1994).

SO w

e Lo



