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A method for measuring an integral of a classical field via local interaction of a single quantum particle in
a superposition of 2N states is presented. The method is as efficient as a quantum method withN qubits passing
through the field one at a time and it is exponentially better than any known classical method that usesN bits
passing through the field one at a time. A related method for searching a string with a quantum particle is
proposed.
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For the past two decades, we are witnessing dramatic
growth of research in the field of quantum information:
analysis of information tasks that can be performed more
efficiently using quantum devices, for example, fast compu-
tation f1,2g, fast searchingf3,4g, and efficient solution of
some communication complexity tasksf5g. Since quantum
“hardware” used for storing, transmitting, and manipulating
information is usually very different from its classical coun-
terpart, there is no unique way to make the comparison be-
tween quantum and classical systems. It has become custom-
ary to measure quantum and classical information systems
by comparing the number of basic data storage units—
namely, qubits and bits, respectively—needed for a particular
task. However, other aspects may also prove to be important.
For example, due to difficulties in arranging direct photon-
photon interactions, an extensive research of what can be
achieved using linear optical devices was donef6g. Thus, the
number of qubits stored in the Hilbert space of the quantum
system performing the information task is not always the
only sor the bestd measure by which we can evaluate the
efficiency of a quantum system. Depending on the possibility
of practical applications, various quantum schemes might
have particular advantages.

Grover’s fast search algorithmf3,4g which usesN qubits
can be performed with a single particle with 2N statesf7g.
Meyer f8g suggested that it can be done for other tasks, too,
and in this paper we present such modification for a recently
proposed task of measuring an integral of a classical field
using quantum devices.

Recently, a quantum method using a single qubit for mea-
suring the parity of an integral of a classical field,

I =E
A

B

fsxddx, s1d

provided it takes on only positive integer values, has been
suggestedf9g. This method was generalized, by Vaidman and
Mitrani sVM d f10g, to compute the value of the integral it-
self, usingN qubits represented byN spin-12 particlessor any
other two-level quantum systemsd which are sent one at a
time through the field. Furthermore, the VM method is ap-
plicable when the integral may take on noninteger values.
The precision of this method turns out to be exponentially

better than any known classical method which usesN bits
sent one at a time.

We will describe how a singlesspin-zerod particle, which
passes only once through the field, can be used to evaluate
the integral of the field with the same precision as the VM
method. We let the particle be inK=2N distinct sites, so our
method has exponentially increasing requirements for space,
time, and precisionf11,12g. However, it still has a potential
for practical advantage; see the discussion of other quantum
methodsf13,14g.

We outline the algorithm in what follows. The particle is
initially prepared to be in a superposition of equal amplitudes
and vanishing relative phases, over theK=2N consecutive
separate sites,

uCinl =
1

ÎK
o
k=1

K

ukl. s2d

Next, we send this “train of amplitudes” through the field
with constant velocityssee Fig. 1d.

We arrange a local field-particle interaction of the form

Hint = gsx,tdfsxd, s3d

in such a way that the strength of the coupling of the field to
the kth part of the particle is proportional to the index num-
ber k:

g„xkstd,t… =
k

Ka
, s4d

wherexkstd is the location of thekth part at timet anda is a
parameter that we fix depending on the given information
about possible values of the integral of the field. After the
particle completes its passage through the field, its final state
sdue to the interactiond is

FIG. 1. The “particle train” passes through the field.
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uCfinsIdl =
1

ÎK
o
k=1

K

e−i2pkI/Kaukl. s5d

For the special case ofI =am, wherem=0,1, . . . ,K−1, we
obtainK mutually orthogonal states. TheseK states represent
a basis of the Hilbert space of the particle. Thus, a measure-
ment in this basis yields the correct value ofm with prob-
ability 1, exactly like the VM method does withN=log2 K
particles.

The VM methodf10g also provides an answer with a good
precision for a more general case whenI is not necessarily a
multiple of a. In this case, the measurement always yields

one of the discrete valuesĨ =am, and the probability for the

error dI = Ĩ − I is

psdId = p
n=1

N

cos2
dIp

2na
. s6d

In our algorithm we also get one of the valuesĨ =am, and
the probability for the error is given by the squared norm of

the scalar product of the states corresponding toI and Ĩ:

psdId = zkCsĨduCsIdlz2 =
sin2 sdIp/ad

4N sin2 sdIp/2Nad
. s7d

Although expressionss6d ands7d look different, they are,
in fact, identical. This can be checked in a straightforward
manner by mathematical induction onN. The equality is not
a coincidence. In fact, from the mathematical point of view,
the two methods are isomorphic. We can make the corre-
spondence between the stateukl and a state ofN spin-12 par-
ticles which “writes” the numberk in a binary form with
u↑ l;0 and u↓ l;1. We arrange the interaction between the
spins and the field such that the spin corresponding to thej th
digit accumulates the phase −2p2jI /Ka when the spin is
“down” and zero phase when the spin is “up.” In this way the
overall phase ofN particles in a state corresponding to state
ukl will be exactly as in our case: −2pkI /Ka. Thus, if we
start withN spins originally pointing in thex direction, i.e.,
in the states1/Î2dsu↑ l+ u↓ ld, then we obtain the states5d
after the interaction, with the only change thatukl represents
a corresponding state ofN spin-12 particles. The interaction
that leads to the phase −2p2jI /Ka when the spinj is “down”
and no phase if the spin is “up” is exactly the magnetic field
in the z direction of the VM method. Therefore, mathemati-
cally, the two methods are equivalent. The implementation is
of course different. It depends on the physical system which
is easier: sendingN spins one at a time or sending the train of
2N wave packets.

The functionpsdId is exactly the interference pattern of
K=2N slits ssee Fig. 2d. It becomes well localized with large
K, but it is periodic with periodaK. In fact, what is mea-
sured isImodsaKd and the error should be understood as

sĨ − IdmodsaKd. Following VM, we consider the situation in
which I is of the order ofM =aK /10, so we can neglect the
complications following from the periodicity of the function
psdId.

The uncertainty of the measurement can be characterized
as the standard deviation

DI = ÎkI2l − kIl2 .
10M
Î2p

1
Î2N

. s8d

It is also useful to compute another measure of uncertainty,
namely, the mean absolute deviation of the measured value,

D8I = kudI ul .
10M

2p2

ln 2N

2N . s9d

The uncertainty of the corresponding classical method,
described inf10g, in which N bits are sent one at a time
through the field, is of the order of 1/ÎN, i.e., it is exponen-
tially larger than the uncertainty in quantum methods. If we
remove the constraint of sending bits one after the other, we
can construct a much better classical method, but still there is
some advantage for the quantum methods. In this case theN
bits are sent together and they function as a counter which
can go up to 2N. If we arrange that the counter “clicks” while
moving through the field with probability

dp= afsxddx, s10d

then the resulting standard deviationDIcl.Î10MI /2N is of
the same order as the standard deviation in quantum methods
s8d. However, the average of the absolute value of the error

D8Icl = kudIclul .Î 2

p
DIcl =Î20MI

p2N s11d

turns out to be larger than that of the quantum methodss9d.
It is interesting to note that a classical algorithm can

achieve the same precision by sending the bits one by one,
when local memory is allowed. We first start with a particle
sa “marker”d which goes through the field and occasionally
leaves marks with the same probability laws10d as ourN-bit
counter. Then, we use our bits to count the marks. The count-
ing of the marks can be done in the following way. At the
beginning, all bits are initialized to 0. The bits go one after
the other along the path. They all behave according to the
following rule: when a bit in a state 0 meets a mark, it erases

FIG. 2. The probability of the errorpsdId for the quantum meth-
ods forN=7. sIn the figure,dI is in units ofa.d The outcome of the

measurementĨ may be one of the valuesam, so in a particular
experimentdI may obtain only a discrete valuean+ Imoda.
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the mark and flips to 1, while when a bit in a state 1 meets a
mark, it leaves the mark undisturbed and flips to 0. It is easy
to see that the final state of the bits after they all pass through
the marked path is the binary representation of the total num-
ber of marks created by the marker.

In our method all parts of the wave function of the par-
ticle pass through all points of the field. Can we get some
information when different parts of the wave of the particle
pass through only parts of the field? We cannot find the in-
tegral of the field in this way. But there is a specially tailored
task of a similar type which can be accomplished with a
single quantum particle. The classical solution of this task
requires a large number of bits.

ConsiderK=2N local classical bits which we want to read.
There are 2K possible stringshakj, but in our special task we
consider a situation in which it is known that our set of bits
can be in one ofN+1 specific strings. Whatever the strings
are, in order to find the string, the number of bits we have to
approach is larger than log2 N because these bits have to
specify the chosen string. Since in this scenario each particle
sand in the quantum analog each part of the particle waved
approaches only one bit, classically, we need at least log2 N
particles. We will show that for a specific set of strings we
need just one quantum particle to achieve this goal.

For K=16 our set of strings is

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

.

s12d

The general rule is clear from the example. In thenth

string, the set ofK /2n−1 bits 0 is followed by the same num-
ber of bits 1, which is followed again by the same number of
bits 0, etc., until the string ends.

In our quantum method, we again use a single quantum
particle prepared in a superposition ofK states without rela-
tive phases2d. Each part of the superposition passes through
a location of one of the bits, Fig 3. The interactionsas in the
Bernstein-Vazirani problemf15gd is such that it acquires
phasep if the bit is 1 and 0 if the bit is 0. It is easy to see
that for different strings from our special set we obtain in this
way mutually orthogonal states. Thus, we have shown that a
single quantum particle can read reliably a 2N-bit string pro-
vided it is one out of the particularN+1 strings. Using clas-
sical devices, for this task we need more than log2N bits.

It seems that technology today is not at the stage of build-
ing a quantum device for the proposed task which works
better than its classical counterpart. However, experiments,
similar to those that show a proof of principle for operating a
quantum computer are certainly capable of showing the
proof of principle of the results presented here. Since the
methods presented here are applicable for measurement of an
integral of a quantum field, or the sum of values of registers
in a quantum computer, they might be useful for designing
future quantum information devices.
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FIG. 3. A single quantum particle reads a string ofK bits. Each
part of the superposition of the particle passes through the location
of one of the bits.
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