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Measurement of an integral of a classical field with a single quantum patrticle
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A method for measuring an integral of a classical field via local interaction of a single quantum particle in
a superposition of " states is presented. The method is as efficient as a quantum methdd quitiits passing
through the field one at a time and it is exponentially better than any known classical method tHathitses
passing through the field one at a time. A related method for searching a string with a quantum particle is
proposed.
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For the past two decades, we are witnessing dramatibetter than any known classical method which ulebits
growth of research in the field of quantum information: sent one at a time.
analysis of information tasks that can be performed more We will describe how a singléspin-zerg particle, which
efficiently using quantum devices, for example, fast compupasses only once through the field, can be used to evaluate
tation [1,2], fast searchind3,4], and efficient solution of the integral of the field with the same precision as the VM
some communication complexity tasks]. Since quantum method. We let the particle be k=2N distinct sites, so our
“hardware” used for storing, transmitting, and manipulatingmethod has exponentially increasing requirements for space,
information is usually very different from its classical coun- time, and precisiofil1,12. However, it still has a potential
terpart, there is no unique way to make the comparison befor practical advantage; see the discussion of other quantum
tween quantum and classical systems. It has become customethodq 13,14
ary to measure quantum and classical information systems We outline the algorithm in what follows. The particle is
by comparing the number of basic data storage units—nitially prepared to be in a superposition of equal amplitudes
namely, qubits and bits, respectively—needed for a particulaand vanishing relative phases, over tie2" consecutive
task. However, other aspects may also prove to be importanteparate sites,
For example, due to difficulties in arranging direct photon-
photon interactions, an extensive research of what can be 1 K
achieved using linear optical devices was dpgle Thus, the Wiy = ?E k). (2
number of qubits stored in the Hilbert space of the quantum VKik=1
system performing the information task is not always the
only (or the best measure by which we can evaluate the Next, we send this “train of amplitudes” through the field
efficiency of a quantum system. Depending on the possibilityith constant velocitysee Fig. 1
of practical applications, various quantum schemes might We arrange a local field-particle interaction of the form
have particular advantages.

Grover's fast search algorithi,4] which usesN qubits Hine = 9(x,1) (X), 3
can be performed with a single particle with 8tates[7].

Meygr[8] suggested that it can be don(.a_for.other tasks, 90 such a way that the strength of the coupling of the field to
and in this paper we present such modification for a recentl

; . . . thekth part of the particle is proportional to the index num-
proposed task of measuring an integral of a classical fiel P P prop

using quantum devices. erk:
Recently, a quantum method using a single qubit for mea-
suring the parity of an integral of a classical field, g(x(),t) = k (4)
1 Kal
B
| :f d(x)dx, (1) wherex(t) is the location of theth part at timet anda is a
A

parameter that we fix depending on the given information
about possible values of the integral of the field. After the

provided it takes on only positive integer values, has beeparticle completes its passage through the field, its final state
suggestedl9]. This method was generalized, by Vaidman and(due to the interactionis

Mitrani (VM) [10], to compute the value of the integral it-
self, usingN qubits represented tjyspin—% particles(or any

other two-level quantum systewhich are sent one at a e 8 2 8 8 8 ® -

time through the field. Furthermore, the VM method is ap- Dy - - k) - - k)

plicable when the integral may take on noninteger values.

The precision of this method turns out to be exponentially FIG. 1. The “particle train” passes through the field.
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For the special case ¢t am, wherem=0,1,... K-1, we

obtainK mutually orthogonal states. TheKestates represent 0.6/

a basis of the Hilbert space of the particle. Thus, a measure-

ment in this basis yields the correct value rofwith prob- 0.4

ability 1, exactly like the VM method does with=log, K

particles. 0.2k

The VM method 10] also provides an answer with a good
precision for a more general case whes not necessarily a ‘ ‘ . ‘
multiple of a. In this case, the measurement always yields % -2 0 2 4

one of the discrete valuds am, and the probability for the

~ FIG. 2. The probability of the errgu(4l) for the quantum meth-
error 1 =1-1is ods forN=7. (In the figure,dl is in units of.) The outcome of the
N measurement may be one of the valueam, so in a particular
olm experimentsl may obtain only a discrete valuen+Imoda.
p(sl) =[] cog PO (6) P Y Y
n=1 a

- The uncertainty of the measurement can be characterized
In our algorithm we also get one of the valdesam, and  as the standard deviation

the probability for the error is given by the squared norm of 1M 1

the scalar product of the states correspondindad]: Al = (1% = (1)? = —=. (8)
v 271' \2
~ sir? (8l 7l @) . .
p(dl) = [(w ()W ())*= N —. (7) It is also useful to compute another measure of uncertainty,
AN sir? (8l m/2Ne) namely, the mean absolute deviation of the measured value,
Although expression&) and(7) look different, they are, ’ 10M In 2V
in fact, identical. This can be checked in a straightforward A'l=(|al]) = 52 N 9

manner by mathematical induction dh The equality is not
a coincidence. In fact, from the mathematical point of view, The uncertainty of the corresponding classical method,
the two methods are isomorphic. We can make the corredescribed in[10], in which N bits are sent one at a time
spondence between the stitpand a state oN spm par-  through the field, is of the order of iN, i.e., it is exponen-
ticles which “writes” the numbek in a binary form with  tially larger than the uncertainty in quantum methods. If we
[1)=0 and||)=1. We arrange the interaction between theremove the constraint of sending bits one after the other, we
spins and the field such that the spin corresponding tgtthe can construct a much better classical method, but still there is
digit accumulates the phase #2I/Ka when the spin is some advantage for the quantum methods. In this casi the
“down” and zero phase when the spin is “up.” In this way thebits are sent together and they function as a counter which
overall phase oN particles in a state corresponding to statecan go up to B. If we arrange that the counter “clicks” while
|ky will be exactly as in our case: -&l/Ka. Thus, if we  moving through the field with probability
start withN spins originally pointing in the direction, i.e., _
in the state(1/v2)(|7)+||)), then we obtain the staté) dp= ag(x)dx, (10
after the interaction, with the onIy change thigtrepresents then the resulting standard deviatidi,=10M1/2N is of
a corresponding state of spm- particles. The interaction the same order as the standard deviation in quantum methods
that leads to the phase rrZJI/Ka when the spirj is “down”  (8). However, the average of the absolute value of the error
and no phase if the spin is “up” is exactly the magnetic field
in the z direction of the VM method. Therefore, mathemati- Alg={|8g) = \/EAlcl = A /&N’LI (12)
cally, the two methods are equivalent. The implementation is ™ 2
of course different. It depends on the physical system whic
is easier: sendindy spins one at a time or sending the train of
2N wave packets.

The functionp(dl) is exactly the interference pattern of
K=2N slits (see Fig. 2 It becomes well localized with large

K, but it is periodic with periodaK. In fact, what is mea- o465 marks with the same probability 1440) as ourN-bit
sured isimodaK) and the error should be understood as;qnter. Then, we use our bits to count the marks. The count-
(I-1)mod(aK). Following VM, we consider the situation in ing of the marks can be done in the following way. At the
which | is of the order oM =aK/10, so we can neglect the beginning, all bits are initialized to 0. The bits go one after
complications following from the periodicity of the function the other along the path. They all behave according to the
p(al). following rule: when a bit in a state 0 meets a mark, it erases

I?furns out to be larger than that of the quantum meth@®ds

It is interesting to note that a classical algorithm can
achieve the same precision by sending the bits one by one,
when local memory is allowed. We first start with a particle
(a “marker’) which goes through the field and occasionally
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the mark and flips to 1, while when a bit in a state 1 meets a ] = |
mark, it leaves the mark undisturbed and flips to 0. It is easy & f a @ T@ a e T &
to see that the final state of the bits after they all pass through

the marked path is the binary representation of the total num- |1> o |" > o |K>

ber of marks created by the marker. i ) ] )
In our method all parts of the wave function of the par- FIG. 3. A single quantum particle reads a string<obits. Each

ticle pass through all points of the field. Can we get somé)art of the superposition of the particle passes through the location

information when different parts of the wave of the particle of one of the bits.

pass through only parts of the field? We cannot find the in-

I . : . string, the set oK/2"? bits 0 is followed by the same num-
tegral of the field in this way. But there is a specially tailored . S .
L ) ; . ber of bits 1, which is followed again by the same number of
task of a similar type which can be accomplished with a . . .
. . X . . bits 0, etc., until the string ends.
single quantum particle. The classical solution of this task . .
. . In our quantum method, we again use a single quantum
requires a large number of bits. . . o .
i N ) . . particle prepared in a superpositionkfstates without rela-
ConsiderK=2"local classical bits which we want to read. -
There are 8 possible stringgag, but in our special task we tive phasg2). Each part of the superposition passes through
b 9380, P a location of one of the bits, Fig 3. The interacti@s in the

gg:st;ie'rnao?éuﬁmofllnsV\:ahcﬁ't:; Itstlrs'nknsov\\;Cht:taet glrjrtr?éats(t)rf nb|tss Bernstein-Vazirani problenj15]) is such that it acquires
are, in olrder to find thepstrilnI th<|a gu.mber ofvbits we halvgt haser if the bit is 1 and O if the bit is 0. It is easy to see
' 9, hat for different strings from our special set we obtain in this

apprpach is larger thgn IQQJ bepau;e these .b'ts have t_o way mutually orthogonal states. Thus, we have shown that a
specify the chosen string. Since in this scenario each partlclgngle quantum particle can read reliably "t string pro-

(and in the quantum ar_1a|og e"?‘Ch part of the particle Wavevided it is one out of the particulad+1 strings. Using clas-
approaches only one bit, classically, we need at leastNog

articles. We will show that for a specific set of strings weSiCal devices, for this task we need more thanogits.
p o . pec : 9 It seems that technology today is not at the stage of build-
need just one quantum particle to achieve this goal.

For K=16 our set of strings is ing a quantum device for the proposed task which works
- 9 better than its classical counterpart. However, experiments,
similar to those that show a proof of principle for operating a

0 0O0OO0O0ODOO0OOODOOOOOOO . .
quantum computer are certainly capable of showing the
0c6000000OO0O11111111 proof of principle of the results presented here. Since the
0000111100001 11121 methods presented here are applicable for measurement of an
0011001100110011 integral of a quantum field, or the sum of values of registers
in a quantum computer, they might be useful for designing
01 01010101010101

future quantum information devices.
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