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Qubits versus Bits for Measuring an Integral of a Classical Field

Lev Vaidman and Zion Mitrani
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,

Tel-Aviv 69978, Israel
(Received 31 December 2002; published 25 May 2004)
217902-1
Methods for measuring an integral of a classical field via local interaction of classical bits or local
interaction of qubits passing through the field one at a time are analyzed. A quantum method, which has
an exponentially better precision than any classical method we could see, is described.
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the choice of the particular aspect of the precision of the
measurement we wish to optimize. The precision of mea-
suring p achieved after sending N bits can be estimated as

of the number of counts is of the order of 2N , we can get
the uncertainty in the measurement of I proportional to
Although the retrievable information content of a
number of qubits is essentially equal to the information
content that can be stored in the same number of bits
[1], qubits are more efficient for many specifically tai-
lored tasks. Recently, Galvão and Hardy (GH) [2]
found one such task: pinpointing a particular property
of an integral of a classical field is possible using a single
qubit, but impossible with a classical bit, or even with
many bits. This motivated the current work in which we
found that qubits are more efficient than bits for a more
general task, namely, the measurement of the integral
itself.

The task is to measure the integral of a classical field,

I �
Z B

A
��x� dx; (1)

via local interactions along the path from A to B. In
one case, N bits go one at a time through the path
interacting with the field, and, in the other case, N qubits
pass through the field instead. In this task there are
no constraints on the complexity of local interactions
between the bits (qubits) and the field. The limitations
that we investigate are due to the complexity of the
carrier of the information about the field which goes
along the path.

In order to make the comparison between quantum and
classical methods simpler, we consider a non-negative
classical field and assume that it is known that the order
of magnitude of I is M. The classical method is as follows.
The bit starts at A in the state 0, and it flips with a
probability proportional to the strength of the field.
Once flipped to 1, it cannot flip back. The probability of
a flip along the path is

p � 1� e��I; (2)

where � has to be optimized for getting the best precision
[3]. The exact optimization depends on our prior infor-
mation about the probability for different values of I and
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p
. Thus, essentially for all reason-

able approaches, the uncertainty of measuring I is of the
order of M=

����
N

p
[4].

In the quantum method, we arrange an interaction that
leads to a qubit ‘‘rotation’’ proportional to the strength of
the field, for example, a spin precession in a magnetic
field. The method works equally well for negative and
general classical fields. The only important parameter is
the range of possible values of the integral. The strength
of the coupling should be such that for every value of the
integral we will get a different final state of the qubit.
Thus, we have to choose the strength of the coupling to
the field such that a rotation of more than 2� will not be
probable.

When we send N spin- 12 particles through the field, they
all rotate by the same angle. If we start with all spins
pointing in, say, the x direction and the magnetic field in
the z axis, the direction of the spin in the x-y plane will
yield the value of the integral.

The precision of measuring the direction of N parallel
spins is proportional to N�1=2. This is the same depen-
dence as in the probabilistic methods with bits. However,
Peres and Scudo [5] (see also Bagan et al. [6]) showed that
by taking N entangled spins one can reduce the uncer-
tainty to be proportional to N�1. They optimized defining
the direction in three dimensions with N spin- 1

2 particles,
while in the present problem we need to find the direction
in only two dimensions. So, some further optimization is
possible, but the uncertainty remains proportional to
N�1. This concludes the description of our quantum
method I for the measurement of integral I.

A crucial requirement for the advantage of qubits ver-
sus bits is that we are allowed to send bits and qubits only
one at a time. If we send all bits together, we can build a
probabilistic counter that can register up to 2N counts.
The counter makes counts while moving in the field with
the probability for a count proportional to the field. The
uncertainty in the total number of counts is of the order of
the square root of this number. Therefore, adjusting the
strength of the interaction such that the expectation value
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2�N=2. The uncertainty is exponentially smaller than in
the quantum method described above.

Of course, if qubits are allowed to pass along the
field together, the precision that can be achieved in the
measurement of the integral is not smaller than that in
the classical case. But can exponentially small uncer-
tainty be achieved with qubits passing through the field
one at a time? As we show below, the answer is yes, if we
allow various strengths of the interaction between the
qubits and the field. On the other hand, we do not see
how this freedom might lead to a significant advantage in
the classical case.

Indeed, it is intuitively clear (especially after the GH
proof for a particular case) that a bit passing through the
field cannot have a deterministic information about the
integral of the field. Then, the only way we can imagine
for storing information in the bit is in the value of its
probability to be 1. When we are given N bits, the un-
certainty in the measurement of the probability decreases
as N�1=2. It seems to us highly implausible that there is a
classical method that can do better than this.

Now we turn to the description of the method (referred
to hereafter as quantum method II) that employs qubits
interacting with various strengths with the field. The
strengths depend only on the number of the qubit passing
through the field and are fixed before the experiment. No
additional structure is required for the qubit.

The basis of this method is the result of Galvão and
Hardy [2]. They considered a particular case in which

I � m�; (3)

where � is known and m is an integer. GH found a method
that allows a single qubit to answer the question: Is m
even or odd [7]? They achieved the goal by tuning the
strength of the interaction in such a way that I � � yields
a rotation by �. Thus, for an odd integer, the spin flips,
and, for an even integer, it returns to its initial state.

If we send a number of qubits, one after the other, we
can modify this procedure to find m itself. To this end it is
arranged that the qubits we send interact with the field
with different strengths: the first as in the GH protocol,
the second with half of the strength of the first, the next
with half of the strength of the preceding, etc. In the first
step we find the last digit of m written in the binary way.
In the next step we find the preceding digit, and thus, after
the kth step we find m�mod 2k�.

The procedure works in the following way. If the last
digit is zero, then in the second step we repeat the GH
protocol with half of the strength of the interaction. Since
now we know that I � m02�, the protocol determines the
last digit of m0, which is the second digit from the end of
m. If the last digit of m is 1, in the second step we should
modify the procedure by additional rotation of the spin by
the angle �2 � � �

2 . In the kth step we should compensate
for all nonzero digits, as follows:
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�k � �
Xk�1

i�1

�d�i�

2�k�i�
; (4)

where d�i� is the value of digit number i from the end. The
method yields one digit for each qubit and yields zeros
once the whole number is written.

In a general case, when our only prior information
about I is its order of magnitude, we can combine the
two methods we described above. We chose � and, using
method I, we find the remainder � of the division of I by
�:

I � m�� �: (5)

After measuring � with good precision, we apply
method II for finding m. The remainder � requires addi-
tional correction angles in the application of the second
method. For the first step, the correction angle is �1 �
� ��

� and, in general, for the kth step, the correction angle
is

�k � �
Xk�1

i�1

�d�i�

2�k�i�
�

��

2k�1�
: (6)

The requirement for choosing � is that we have enough
qubits to find all digits of m. We get high probability for
that if

� �
10M
2N�N0

; (7)

where N0 is the number of qubits used in the measurement
of �. If the probability of error in the measurement of m is
negligible (when � is measured with high precision), then
the uncertainty in the value of I is, essentially, the un-
certainty in the measurement of �, which, in the best case
(Peres-Scudo method), is of the order of �

N0
.

However, the error in the measurement of m turns out
to be not too large even if there is a large error in the
measurement of �. In fact, it is more effective not to
‘‘waste’’ qubits on measurement of �. The quantum
method II works well by itself even in a general case.
Now � becomes much smaller:

� �
10M
2N

: (8)

In order to estimate the precision of the quantum
method, we calculate the probability of a particular read-
ing m given the actual value of I. We show that it is a
rapidly decreasing function of the difference between the
actual value of the integral I and the readout of the device
~II � m�. In our procedure, the last digit of m is specified
by the spin measurement. The spin rotates by the angle
	1 �

I�
� and is found in the direction specified by the

angle ~		1 �
~II�
� . Thus, the probability for this particular

outcome of the spin measurement that specifies the last
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TABLE I. The results of simulation of classical and quantum
measurements of ten values of I, In � �n��mod 10. The quan-
tum method uses 30 qubits and the classical method uses
30 bits.

n I � n�mod�10� Quantum Classical

1 3.141 592 654 3.141 592 494 3.175 583 382
2 6.283185 307 6.283185 389 4.577585 162
3 9.424 777 961 9.424 777867 9.594 107 747
4 2.566 370 614 2.566 370 611 1.689 440 418
5 5.707 963 268 5.707 963 268 5.016 553197
6 8.849 555 922 8.849 555 813 9.594 105 057
7 1.991148 575 1.991148 466 2.619198 463
8 5.132 741 229 5.132 741166 8.395 441 798
9 8.274 333 882 8.274 333 865 6.706 033 821
10 1.415 926 536 1.415 926 495 0.929 766 618
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digit is p1 � cos2 	1�
~		1

2 � cos2 �I�~II��
2� . The digit k from

the end, k > 1, is specified by the measurement of the
spin that is rotated by the angle

	k �
I�

2k�1�
� �k (9)

and found in the direction specified by the angle

~		 k �
~II�

2k�1�
� �k: (10)

Therefore, the probability for this particular outcome of
the spin measurement that specifies the kth digit is pk �

cos2 �I�~II��
2k�

. Thus, the probability for readout ~II given the
actual value of the integral I is

p�~IIjI� �
YN
k�1

cos2
�I � ~II��

2k�
: (11)

Denoting the error �I and substituting the value of � from
(8), the probability of the error is

p��I� �
YN
k�1

cos2
�I�

2k�N10M
: (12)

This function vanishes for �I � n� for integer n, except
for n � 0, where it has maxima that are equal to 1 because
the method yields no errors for I � m�. The function has
local maxima at �I � �n� 1

2��, except for n � �1; 0.
The readout value of the integral, ~II, might have only

discrete values, m�. Therefore, the error of the order of �
is unavoidable. In the worse case, Imod� � �

2 , but even
in this case we have only a small probability to get the
error that is an order of magnitude larger than �. For
large N, this probability has almost no dependence on N;
we calculate it for N � 30:

p��I > 10�� � 1� p��I < 10��

� 1�
X10

n��9

Y30
k�1

cos2
�12 � n���

2k�N10M

� 1�
X10

n��9

Y30
k�1

cos2
�12 � n��

2k
’ 0:019:

(13)

Thus, we should expect an error of the order of � (it is of
the order of 10�7 in our case) and not significantly larger.

In order to illustrate our result we performed computer
simulation of classical (30 bits) and quantum (30 qubits)
measurements of the integral for ten different fields. We
took In � �n��mod 10, n � 1; 2; . . . ; 10. We assumed that
the order of magnitude of the integral is given, M � 5,
and we chose parameter � of the classical method such
that the precision of the measurement of I for I � M is
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optimized. The uncertainty in classical measurement can
be estimated as

�I �

����������������
e�I � 1

p

�
����
N

p : (14)

For I � M it has a minimum around � � 1:2
M and for

the parameter we chose, the uncertainty �I is of the order
of 1.

The results are shown in Table I.We see that the error in
the classical method is, indeed, of the order of 1 and the
quantum error is of the order of 10�7.

The technology today is far from getting this expo-
nential advantage of the quantum method, which requires
stability and high precision for a very large range of the
interaction strength. Also, preparation of initial en-
tangled states and complicated collective measurements
of Peres-Scudo measurements are difficult for experimen-
tal implementation. However, recent progress in quantum
information experiments allows us to believe in the pros-
pects of at least partial implementation of our proposal,
which will manifest advantages of the quantum method.
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