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In order to reduce errors, error correction codes need to be implemented fast. They can correct the errors
corresponding to the first few orders in the Taylor expansion of the time evolution operator corresponding to
the Hamiltonian of the interaction with the environment. If implemented fast enough, the zeroth order error
predominates and the dominant effect is of error prevention by measuréfesrat effect rather than correc-
tion. In this “Zeno regime,” codes with less redundancy are sulfficient for protection. We describe such a simple
scheme, which uses two “noiseless” qubits to protect a large numbarjnformation qubits from noise from
the environment. The “noisless qubits” can be realized by treating them as logical qubits to be encoded by one
of the previously introduced encoding schemes.
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I. INTRODUCTION 2-qubit encoding per logical qubifor an even number of

Quantum error correction schemes based on encodindfdical qubits. In other words, error correction codes can
consist of the following stepg1) encodingn logical qubits ~ Protectn logical qubits which are encoded im Pphysical
into m>n physical ones(2) introduction of errors(3) syn- qubitg2], and previous error prevention codggeng can
drome measurement—projecting the state onto one of gchleve this for encoding inr@physical qubits.

. . In the next section we describe a “Zeno” error correction
number of subspace_s correspondmg_ to a dlscr_ete set of €ode which encodes logical qubits inn+4 physical qubits.
rors, (4) error correction[1]. For a review on various error

‘ This consists of two encoding steps. The first step consists of

correction codes see Ré8. encoding inton+2 qubits for a code that protects against
; ) > _ Single qubit errors that can occur in only a definite sehof
usually desc_rlbed_m terms of the dl_screte set of errors in SteQubits. The second step is to encode the two unprotected
(3): @ code is said to correct a discrete set of errors withypjts with the 4-qubit code of Ref8].
Certainty. Th|S makeS the treatment Vel’y Similar to the theory The typ|ca| decoherence t|me sca|es1 as We” as rates Of
of algebraic codes of classical information theory. computation, for various systems utilized in various pro-

In most of the error correction codes that have been proposed quantum computers can be found in Ref. Refer-
posed, the discrete set of errors to be corrected consists ehce [10] suggests that a particular type of noigd/f
Pauli operators acting on only a few qubits. Why is this erromoise” is the dominant one for many solid state systems and
set interesting? If one assumes that the different qubits ar@nalyzes the effect of dynamical decoupling on it. Dynamical
located at well separated physical locatigas in an ion-trap  decoupling[13] (DD) schemes of EC, utilize repeated per-
realization of a quantum compujethen it is reasonable to turbation of the system by a strong field which rotates the
assume that the environmentally induced errors for the difstate in Hilbert space, to average out noise. While this is also
ferent qubits are independent. If the correction is imple-described sometimes as a Zeno effect, it differs from our
mented fast enough, then the dominant contribution willscheme in a number of ways. DD has the advantage over
come from the first few orders in the Taylor expansion of themany other schemes, that it can effectively deal with errors
interaction with the environment, and these are spanned bgffecting many spins at once, but on the other hand requires
the discrete set. assumptions about symmetry properties of the errors. The

It is important to note, that one of the syndromes corresate of “correction” pulses required in this scheme is gov-
sponds to “no-error,” and that this corresponds to the zerotlerned by the dominant frequencies of the noise, no matter
order error. Therefore, implementing stepb)<3) often  how weak it is. On the other hand, in the proposed scheme, it
enough will also have the effect of reducing the efi@j In is the magnitude of the noisghe magnitude of the matrix
other words, measuring the syndrome often enough prevengdements of the noise operatevhich is important. A method
errors. This is the quantum Zeno effddf (QZE) (for the  called adiabatic quantum computatiptl] has been shown
syndrome degree of freedoyntepeatedly making a projec- to be applicable to various combinatorial search problems.
tive measurement can freeze the dynamics. For a discussidrhe algorithm consists of smoothly varying a Hamiltonian
of the implementability of the QZE, as well as the inversefrom one that has an easily prepared ground state, to one
effect, see Ref[5] A number of quantum codes utilizing the whose ground state encodes the solution. It was sfitijyn
error prevention that occurs in the Zeno limit have been prothat in the adiabatic limit, not only is the algorithm carried
posed[6-§]. out under noisless conditions, but in fact is also immune to

In the “Zeno regime,” the “first order” error correction decoherence. The required rate is determined by the gap be-
codes are overly redundant. It has been shown in f&f. tween the instantaneous ground state and the rest of the spec-
that in that regime, the 5-qubit codi2] can be replaced by a trum, and it is not known how to determine it in general.
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Recently, protocols combining several error correction tech- CNCin)|#)|0)en, = [iN)and ) Pery + | L ) + 0(82)|~1r'>,
nigues have been propog#d], and a unification of dynami- 4)
cal decoupling and the QZE has been suggés&dfor a

time independent noise Hamiltonian n

where| L) e [in)3,.® Heys® Hen, and|¥’) is some arbitrary
II. A ZENO ERROR PREVENTION CODE state of the system, ancilla and the environment. While it is
) o to be expected thdtL ) should be orthogonal to the initial
_ In close analogy to the Ilnear_ codes of clas_swal mf_orma-overa" state, it should be emphasized tiés orthogonal to
tion theory, a quantum code which encodemgical qubits  he injtial state of the ancillaThis means that a projective
into m=n+r physical qubits is defined to be a unitary linear measyrement on the ancilla alone will find it in the initial
mapplngQH|ogri1ca|'*_7‘fphysica| where din{Hpnysical =2™ @nd  statelin with probability 1-O(¢2), and in this case the sys-
dim(Hphysica) =2". This must be implemented by a unitary tem will be in its(unknowr) initial state,|y) (also with prob-
acting on a Hilbert space which includ&&ygica andHpnysicai ability 1-0(£?)). The O(s2) probability not to find the sys-
as subspaces. Nothing essential is lost if we assume that thisy, in state|y) even for a favorable outcome of the
large Hilbert space is simpl§{ynysicar This just means that  measurement of the ancilla, corresponds to@ife?) terms
the logical qubits are initially stored in a™2dimensional ;. Eq. (3), i.e., to higher order error@ qubit errors,n> 1).
subspace ofHpnysicat Then Hpnysical i isomorphic to the Let us show this for a 2-qubit ancillassuming the noise
product Hsysten® Hancila Where Hsystem IS iSOmorphic 10 a0tq only on the other n qubitdhe logical qubits reside
Hiogical @Nd Hancila is @ dimensional space we will call the originally in ) e Hq,ddim Hy,=2". Let us choose some
ancilla.” Now to fix the identity of the subspad@igicar W& arpitrary  basis {|a>}§=o for Hano and choose [in)anc
have to choose a one-dimensional subspacelgfi. de- _1y3 ), and define our encoding operate, to be
noted by Spafiin)..ciiab (Where “in” stands for initial stae =~ ~2<a=01“/" ! u ng op ”
SO Hiogical= Hsys® [iN)ane TO summarize, we rewrite the en- 3 n
coding operation: “state af logical qubits is mapped into — [
state ofn physical qubits,” as [#)s,s® [in)anc is Mapped to c go('axa') @ E Ta ®
encoded state of same space.” Formally then, the encoding
operation corresponds to an operar where o, acts on theith qubit in sy Then the encrypted

C:Hsys® Hane™> Heys® Hanc: (1) N*2 qubit state is

After this encoding step, some interaction with the envi- 13 _
ronment introduces noideThe most general Hamiltonian Climand¥)sys= 52 lay(®L 0 b)| ). (6)
describing an environmenta system with state Hilbert a=0
space,H.,,) interactingindependentlyith each system qu- Then forb=0
bit is '

Hooise= =€ >, o3 ® AP 2) Colc=2> |axa|(®c)ol(®pah)
i=1,...n a

b=0,...,3 i (OB
| | | =2 ool =(SlaEd)oh (0
where{o}} designates the sét oy, 0y,0,} acting on theth a a
system qubit. The time evolution for short timésgh /&, is
(b)_s+1, a=0pb
then whereca _{-1 otherwise*

. . - Forb=0, we have the trivial resu 9=1 for alla. For all
N(g) = Upoisd ei/E) = L +ie X, off ® A +0(e?). (3) b then ‘é
i.b

We claim that it suffices to use a 2-qubit ancilliee., . 1 ® ; =
dim H,nc=4) to protect an unknown state Hg,ddim Hgys Co iClim)|y) = > 2 cPlay oty =[oably), (®
=2" from the first order terms in the expansion of the noise
operator, Eq(3). Namely, for a certain choice of the initial
state of the ancilldjn),,, and encoding operat?)rc, which
will be specified below

the {|b)}p=0..._3form an orthonormal basis, af@)=|in).>
Finally, we can write the effect of encoding on the envi-
ronmentally induced errorgve assume, as before, that ini-
- tially the system is in a product state with the environment,
!Note that in a more realistic model, we would have to considerand that the latter is in a pure StaF@)em)i
noise during all the other steps as well, which would require a fault
tolerant approach. _
We make here two implicit assumptions about the environment!f the scheme works for any pure state, by linearity it will work for
First, we assumgén common with most works on error correctjon &MY Mixture as well. The first assumption is more subtle.
that it is initially in a product state with our ancilla and system. Itis nothard to see that if the original bagia)}so,... 3is chosen
Second, we assume its initial state to be pure. The latter assumptia@s the simultaneous eigenfunctionsog® 1, 1® o, the{|b>}b:0M3
is not really needed, but was made in order to simplify the notationbasis consists of the simultaneous eigenfunctions,af 1, 1® oy.
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CNdin),nd ¢,>Sy40>em (i.e. not involvingay). For the usual definition of thenoT
- _ ~ _ _ (conditional flip operator:
= |0>anA ¢>sysl PDlen +ie E |b>em0' ]b| D)s Aj'b|o>erv sys
b#0 Cy= (|0><0|)ancilla + (| 1><1|)ancilla0' X
i=1,...m
+0(9)|i') = [iN)and ) heny + €] L )+ O(e2)]4/'). (0)=ls,= +1/2), [1)=]s,=-1/2)),
(9 we have the following property:
So far we have, somewhat artificially, considered the case C.r ;yscx - f/ysa_ e o, =o Y (1)

where we have at our disposal 2 “privileged” qubits which
are exempt from noisé&he 2 qubits we had singled out as and so
our ancilly. To remedy this, we note that these ancillary
qubits can be each encoded in 5 “ordinary” physical qubits and T CNO T anc=0g",
subject to the same noise as the others, using the famous . . . _ _ .
5-qubit code[2]. Alternatively, we can encode the two spe- Which s Eq. (10) with Uenc=Ugec=C and [iN)anciia

cial qubits in 4 physical qubits using the scheme of R&F. =loUBanciia=T)- o
to get an “all Zeno” code. In order to generalize this treatment to treat general errors

(for a one qubit systemwe will need two “conditional-flip”

operators, where the “flip” denotes a Pauli opera(bi:2

=]0)(0] ® 1,+|1) (1] ® 0%(a=x,Y,2) which acts orH,® H,.
In this section we will mainly restrict the discussion to the Writing Hanc=H1 ® H, Heys=Ha, and C=C3C2° (regular

case of one logical qubitn=1) for the sake of simplicity. operator produgt then Eq.(11) generalizes to

The generalization to the case of arbitraryis straightfor-

IIl. TWO INTERPRETATIONS

. . A T
ward, and will be discussed very briefly. Cllanc® 0)C" = (0, ® 0 ® (3™,
A. Heisenberg representation C(1lanc® Uy)CJr =(1® )@ (0,)%5, (12
In the previous sections, we have concentrated on the : anc o
Schrédinger representation to make the treatment more eas- Clanc® 0,)C'= (0, ® 1)@ (0)*5,

ily comparable to the usual error correction schemes. How- , .
y P -~ .~ "which follow from
ever, a few authors have also looked at error correction in the

He|sen_berg representation, see for exanmm. Our origi- C;ia ﬁCQ'Z: (|0><0|)1U§+ (11 1(Ta0002)2
nal derivation was in the latter representation, and is perhaps 5o o
somewhat more natural. In the Heisenberg representation, =[|0X0[ + |12 (= 1)%=6* ]y 0

the encoding and decoding operators, which act before and
after the “noise operator”, respectively, are seen as acting on =
the latter operator. The choice of initial state of the ancilla, 0, ® opa#b.
and the projection onto the syndrome subspaakse defined  \oie also that
by the state of the ancilla in our schenaee seen as pre- and
post-selection steps. The desired effect of the encoding, de- Cc=(
coding and postselection should be that when the postselec-
tion of the desired subspace succeeds, the effective noise
operator becomes trivial as far as the system is concerned
To be more concrete, let us writéfor the noise operator
which acts on our system and the environment:

1® o,a=Dhb,
= 7b (13)

0v0><010|)anclsys+ (|0, 10, 1|)anc0' iys
1,0><1,0|)anca' ;ys_l_ i(|l71><1al|)anca' )s(ys1 (14)

which is almost our definitiori5) for n=1.
Let us introduce for these expressions the more compact

+(

notation:

N:Hsy5® Hen) = Hsys® Hen)’ Ca—zytT = Egnc(T 2ys (15)
Uene Ugec fOr the encoding and decoding operatarsspec- :
tively) acting on the system and ancilla: and add>=1.

With the definition, |in)=|1,,T,), and the fact that
UencdeéHsys(X) Hanc'_> Hsys® Hanc anc<in |2a| in>anc: a0s we flna”y haVe
and |in) and |out) for the preselectedrespectively, postse- andin|CUCT[iNY ane
lected states of the ancilla, then s
, = <in|exp<is HQWEa”QSch*>|in>
anc(oudUdecNUenJ“’wancoC 1sys- (10) ane ia e 2 ane
Before we write the explicit form of these objects in our - exp(ig S H. <in|2an(:$|in>0§)

scheme, let us motivate it with a simple example that works rariTa 2
for a single qubit “system” a single qubit ancilla and a noise = ex;(igz Hieom) ® 158 (16)
operator of the special formN=0§"+0[" o ¥ O05v o 3* i
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This last result can be interpreted as follows: for an an- The measurementd7) and, in general, the measurements
cilla initially in state|in), and postselected to be in the same(20) might have four possible outcomes. However, if our
state, the operatdy is effectively reduced to a harmless one system was not disturbed betwegrandt; (except for mea-
acting on the environment alone. In this form, it is very surementg20)), only a single outcome is possible:
reminiscent of dynamical error correction. Nevertheless, this
approach has the advantage, that unlike dynamical error O[5 (t,) — 0, (t, + €) JM0d4 =[ o (t; + €) — 7 (t,) Jmod4 = 0.
rection, it does not require that the noise be slowly varying, = * Y Y
only that it be “small.” (21)

B. Error prevention as teleportation in time This is the outcome which corresponds to the teleportation

Our scheme can also be written in yet another way, relate}.’:‘”tr.“.)Ut corrections. Indeed, the measqremeﬂ&) are also
to measurement theory, if we look at the controlled-not Op_yer|f|cat|on measurements of the particular type of a two-
eration as a measurement of the state of the system qubit.tlme state{18]
It was shown in[19] that “crossed nonlocal measure-
ments” performed on two separated qubits 1
P P a Wi, = "_E(<T |t1| Th,+ <l |t1| Ity (22
Loty — oty + €)Jmod4, [oy(t; + €) — 05(t;) Imod4 v

(17) which is generated by vanishing Hamiltonian at the time
yield two-way teleportation or “swapping” of the states of period [t;,t,]. If, during this period there will be a small
the qubits. The four possible outcomes of these measurelisturbance then the measurement, due to Zeno effect will,
ments define the correction which have to be performed omvith high probability, still have the outcom@1) and it also
the qubits to complete the teleportation. The particular rewill nullify the action of the disturbance, i.e., prevent errors
sults during this time.

For discussion of the general case of protectibqubits
Lowlty) — oty + € Jmod4 =[ oy (ty + €) — 0(t)JMOd4 =0 e have to look more closely on the process of measurement
(18 of the two time-variable$20). These measurements require

. . . . two qubits prepared in a particular state before ttynehich
correspond to immediate teleportation without need for Cor’undergo twocNoT (conditional flip interactions. One qubit

rections. In this teleportation procedure, the times of the N5 the o, basis at timeg, andt,+e and another, in ther,

teraction with the second qubit can be changed provided thgf, i at timeg, +e andt,. The measurements, after the in-
the order remains the same teraction with the system which verify that the test qubits
[o(ty) = oplto + €IMod4, [o,(ty + €) — apy(tp) Imod4. have not changed their state, complete the measurement. If
the system was not disturbed, then the coupling of the test
(19 qubits with the system does not prevent the test qubits to
In particular, we can arrange that>t; +e. The “identity”  Verify the absence of disturbing of another qubit using cou-
of the second particle is not important, the procedure telepling corresponding to two-time measurements performed on
ports the state of the qubit to any particle with which theanother qubit
interactions are performed. Thus, we can make the interac-
tions at timeg, andt,+ e with the particle which had the first [o)(t; = 8) — oy(t, + €+ 5)]mod4, (23)
qubit. In this case we teleport the quantum state of a particle
to the particle itself, but at a later time: teleportation in time!
In fact, teleportation in timgas well as teleportation to [oy(ty + €= 8) — ay(t, + §)]Jmod4. (29
another particle at time-like interyals much easier to per-

form than teleportgtion to a space-like interval. We have tqs poth systems are under small disturbarisech that prob-
perform the following two-time measuremerfts’] ability of flipping of both qubits is negligiblethen the pro-
[0,(ty) — 0 (t, + €)] mod4, cedyre: _preparation of the test qubits cou_p_ling of the test
qubits with the two systems, and final verification that the
test qubits have not changed their state will lead, through
Zeno effect, to prevention of errors in the two systems. The
wheret; <t,<t;<t;. These measurements are much easiegeneral case is treated as before.
to perform than measurements of nonlocal variables required It is hard to make a concrete proposal for practical appli-
for the two-way teleportation. There is no need to have encation of our method since present technology is still far
tangled particles in the measuring device. A single qubit refrom operating large numbers of qubits coherently. We might
places the entangled pair. The coupling to the qubit is thdry to speculate that the method can be implemented in the
same as the coupling to the entangled qubits of the pair andiyture in a quantum computer or quantum memory of a cryp-
in fact, it is justcNOT in the appropriate basis, exactly the tographic device operating with qubits (ions in a trap?
same interaction which was used in the procedure describeglibject to moderate decoherence. Then, between the times of
in the previous section. gate operations we send two particles of another kind which

(20
[Uy(tl + 6) - O'y(tz)]mod4,
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