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In order to reduce errors, error correction codes need to be implemented fast. They can correct the errors
corresponding to the first few orders in the Taylor expansion of the time evolution operator corresponding to
the Hamiltonian of the interaction with the environment. If implemented fast enough, the zeroth order error
predominates and the dominant effect is of error prevention by measurement(Zeno effect) rather than correc-
tion. In this “Zeno regime,” codes with less redundancy are sufficient for protection. We describe such a simple
scheme, which uses two “noiseless” qubits to protect a large number,n, of information qubits from noise from
the environment. The “noisless qubits” can be realized by treating them as logical qubits to be encoded by one
of the previously introduced encoding schemes.
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I. INTRODUCTION

Quantum error correction schemes based on encoding,
consist of the following steps:(1) encodingn logical qubits
into m.n physical ones,(2) introduction of errors,(3) syn-
drome measurement—projecting the state onto one of a
number of subspaces corresponding to a discrete set of er-
rors, (4) error correction[1]. For a review on various error
correction codes see Ref.[3].

The error correction capabilities of the various codes are
usually described in terms of the discrete set of errors in step
(3): a code is said to correct a discrete set of errors with
certainty. This makes the treatment very similar to the theory
of algebraic codes of classical information theory.

In most of the error correction codes that have been pro-
posed, the discrete set of errors to be corrected consists of
Pauli operators acting on only a few qubits. Why is this error
set interesting? If one assumes that the different qubits are
located at well separated physical locations(as in an ion-trap
realization of a quantum computer), then it is reasonable to
assume that the environmentally induced errors for the dif-
ferent qubits are independent. If the correction is imple-
mented fast enough, then the dominant contribution will
come from the first few orders in the Taylor expansion of the
interaction with the environment, and these are spanned by
the discrete set.

It is important to note, that one of the syndromes corre-
sponds to “no-error,” and that this corresponds to the zeroth
order error. Therefore, implementing steps(1)–(3) often
enough will also have the effect of reducing the error[8]. In
other words, measuring the syndrome often enough prevents
errors. This is the quantum Zeno effect[4] (QZE) (for the
syndrome degree of freedom!): repeatedly making a projec-
tive measurement can freeze the dynamics. For a discussion
of the implementability of the QZE, as well as the inverse
effect, see Ref.[5] A number of quantum codes utilizing the
error prevention that occurs in the Zeno limit have been pro-
posed[6–8].

In the “Zeno regime,” the “first order” error correction
codes are overly redundant. It has been shown in Ref.[8]
that in that regime, the 5-qubit code[2] can be replaced by a

2-qubit encoding per logical qubit(for an even number of
logical qubits). In other words, error correction codes can
protect n logical qubits which are encoded in 5n physical
qubits[2], and previous error prevention codes(Zeno) can
achieve this for encoding in 2n physical qubits.

In the next section we describe a “Zeno” error correction
code which encodesn logical qubits inn+4 physical qubits.
This consists of two encoding steps. The first step consists of
encoding inton+2 qubits for a code that protects against
single qubit errors that can occur in only a definite set ofn
qubits. The second step is to encode the two unprotected
qubits with the 4-qubit code of Ref.[8].

The typical decoherence time scales, as well as rates of
computation, for various systems utilized in various pro-
posed quantum computers can be found in Ref.[9]. Refer-
ence [10] suggests that a particular type of noise(“1 / f
noise”) is the dominant one for many solid state systems and
analyzes the effect of dynamical decoupling on it. Dynamical
decoupling[13] (DD) schemes of EC, utilize repeated per-
turbation of the system by a strong field which rotates the
state in Hilbert space, to average out noise. While this is also
described sometimes as a Zeno effect, it differs from our
scheme in a number of ways. DD has the advantage over
many other schemes, that it can effectively deal with errors
effecting many spins at once, but on the other hand requires
assumptions about symmetry properties of the errors. The
rate of “correction” pulses required in this scheme is gov-
erned by the dominant frequencies of the noise, no matter
how weak it is. On the other hand, in the proposed scheme, it
is the magnitude of the noise(the magnitude of the matrix
elements of the noise operator) which is important. A method
called adiabatic quantum computation[11] has been shown
to be applicable to various combinatorial search problems.
The algorithm consists of smoothly varying a Hamiltonian
from one that has an easily prepared ground state, to one
whose ground state encodes the solution. It was shown[12]
that in the adiabatic limit, not only is the algorithm carried
out under noisless conditions, but in fact is also immune to
decoherence. The required rate is determined by the gap be-
tween the instantaneous ground state and the rest of the spec-
trum, and it is not known how to determine it in general.
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Recently, protocols combining several error correction tech-
niques have been proposed[14], and a unification of dynami-
cal decoupling and the QZE has been suggested[15] (for a
time independent noise Hamiltonian).

II. A ZENO ERROR PREVENTION CODE

In close analogy to the linear codes of classical informa-
tion theory, a quantum code which encodesn logical qubits
into m=n+r physical qubits is defined to be a unitary linear
mappingC:Hlogical°Hphysical where dimsHphysicald=2m and
dimsHphysicald=2n. This must be implemented by a unitary
acting on a Hilbert space which includesHlogical andHphysical
as subspaces. Nothing essential is lost if we assume that this
large Hilbert space is simplyHphysical. This just means that
the logical qubits are initially stored in a 2m dimensional
subspace ofHphysical. Then Hphysical is isomorphic to the
product Hsystem̂ Hancilla where Hsystem is isomorphic to
Hlogical and Hancilla is a dimensional space we will call the
“ancilla.” Now to fix the identity of the subspaceHlogical, we
have to choose a one-dimensional subspace ofHancilla, de-
noted by Spanhuinlancillaj (where “in” stands for initial state),
so Hlogical=Hsys^ uinlanc. To summarize, we rewrite the en-
coding operation: “state ofm logical qubits is mapped into
state ofn physical qubits,” as “uclsys^ uinlanc is mapped to
encoded state of same space.” Formally then, the encoding
operation corresponds to an operatorC,

C:Hsys^ Hanc° Hsys^ Hanc. s1d

After this encoding step, some interaction with the envi-
ronment introduces noise.1 The most general Hamiltonian
describing an environment(a system with state Hilbert
space,Henv) interactingindependentlywith each system qu-
bit is

Hnoise= − E o
i=1,. . .,n

b=0,. . .,3

sb
si ^ Aenv

i,b , s2d

wherehsb
sij designates the seth1,sx,sy,szj acting on theith

system qubit. The time evolution for short times,t=«" /E, is
then

Ns«d ; Unoises«"/Ed = 1 + i«o
i,b

sb
si ^ Aenv

i,b + Os«2d. s3d

We claim that it suffices to use a 2-qubit ancilla(i.e.,
dim Hanc=4) to protect an unknown state inHsyssdim Hsys

=2nd from the first order terms in the expansion of the noise
operator, Eq.(3). Namely, for a certain choice of the initial
state of the ancilla,uinlanc, and encoding operator,2 C, which
will be specified below

CNCuinluclu0lenv = uinlancuclsuflenv + «u ' l + Os«2duC8l,

s4d

whereu' lP uinlanc
'

^ Hsys^ Henv and uC8l is some arbitrary
state of the system, ancilla and the environment. While it is
to be expected thatu' l should be orthogonal to the initial
overall state, it should be emphasized thatit is orthogonal to
the initial state of the ancilla. This means that a projective
measurement on the ancilla alone will find it in the initial
stateuinl with probability 1−Os«2d, and in this case the sys-
tem will be in its(unknown) initial state,ucl (also with prob-
ability 1−Os«2d). The Os«2d probability not to find the sys-
tem in state ucl even for a favorable outcome of the
measurement of the ancilla, corresponds to theOs«2d terms
in Eq. (3), i.e., to higher order errors(n qubit errors,n.1).

Let us show this for a 2-qubit ancilla,assuming the noise
acts only on the other n qubits. The logical qubits reside
originally in uclPHsyssdim Hsys=2nd. Let us choose some
arbitrary basis hualja=0

3 for Hanc, and choose uinlanc

= 1
2oa=0

3 ual, and define our encoding operator,C, to be

C = o
a=0

3

sualkaud ^ p
i=1

n

s a
i , s5d

wheresa
i acts on theith qubit in Hsys. Then the encrypted

n+2 qubit state is

Cuinlancuclsys=
1

2o
a=0

3

uals^ i=1
n s a

i ducl. s6d

Then forbÞ0,

Cs b
j C = o

a

ualkaus^ is a
i ds b

j s^ i8s a
i8d

= o
a

ualkaus a
j s b

j s a
j = So

a

ualkauca
sbdDs b

j , s7d

whereca
sbd=h +1, a=0,b

−1 otherwise. .
For b=0, we have the trivial resultca

s0d=1 for all a. For all
b then

Cs b
j Cuinlucl = S1

2 o ca
sbdualDs b

j ucl ; ub̃ls b
j ucl, s8d

the hub̃ljb=0,. . .,3 form an orthonormal basis, andu0̃l= uinl.3

Finally, we can write the effect of encoding on the envi-
ronmentally induced errors(we assume, as before, that ini-
tially the system is in a product state with the environment,
and that the latter is in a pure state,u0lenv):

1Note that in a more realistic model, we would have to consider
noise during all the other steps as well, which would require a fault
tolerant approach.

2We make here two implicit assumptions about the environment.
First, we assume(in common with most works on error correction)
that it is initially in a product state with our ancilla and system.
Second, we assume its initial state to be pure. The latter assumption
is not really needed, but was made in order to simplify the notation.

If the scheme works for any pure state, by linearity it will work for
any mixture as well. The first assumption is more subtle.

3It is not hard to see that if the original basishualja=0,. . .,3 is chosen

as the simultaneous eigenfunctions ofsz^ 1, 1^ sz, thehub̃ljb=0,. . .,3

basis consists of the simultaneous eigenfunctions ofsx ^ 1, 1^ sx.
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CNCuinlancuclsysu0lenv

= u0̃lancuclsysuflenv + i« o
bÞ0

j=1,. . .,m

ub̃lenvs b
j ucls Aj ,bu0lenv

+ Os«2duc8l = uinlancuclsuflenv + «u ' l + Os«2duc8l.

s9d

So far we have, somewhat artificially, considered the case
where we have at our disposal 2 “privileged” qubits which
are exempt from noise(the 2 qubits we had singled out as
our ancilla). To remedy this, we note that these ancillary
qubits can be each encoded in 5 “ordinary” physical qubits
subject to the same noise as the others, using the famous
5-qubit code[2]. Alternatively, we can encode the two spe-
cial qubits in 4 physical qubits using the scheme of Ref.[8]
to get an “all Zeno” code.

III. TWO INTERPRETATIONS

In this section we will mainly restrict the discussion to the
case of one logical qubitsn=1d for the sake of simplicity.
The generalization to the case of arbitraryn is straightfor-
ward, and will be discussed very briefly.

A. Heisenberg representation

In the previous sections, we have concentrated on the
Schrödinger representation to make the treatment more eas-
ily comparable to the usual error correction schemes. How-
ever, a few authors have also looked at error correction in the
Heisenberg representation, see for example[16]. Our origi-
nal derivation was in the latter representation, and is perhaps
somewhat more natural. In the Heisenberg representation,
the encoding and decoding operators, which act before and
after the “noise operator”, respectively, are seen as acting on
the latter operator. The choice of initial state of the ancilla,
and the projection onto the syndrome subspaces(also defined
by the state of the ancilla in our scheme) are seen as pre- and
post-selection steps. The desired effect of the encoding, de-
coding and postselection should be that when the postselec-
tion of the desired subspace succeeds, the effective noise
operator becomes trivial as far as the system is concerned.

To be more concrete, let us writeN for the noise operator
which acts on our system and the environment:

N:Hsys^ Henv ° Hsys^ Henv,

Uenc,Udec for the encoding and decoding operators(respec-
tively) acting on the system and ancilla:

Uenc,dec:Hsys^ Hanc° Hsys^ Hanc

and uinl and uoutl for the preselected(respectively, postse-
lected) states of the ancilla, then

anckoutuUdecNUencuinlanc~ 1sys. s10d

Before we write the explicit form of these objects in our
scheme, let us motivate it with a simple example that works
for a single qubit “system” a single qubit ancilla and a noise
operator of the special formN=O0

env+O1
envs y

sys+O2
envs z

sys

(i.e. not involvingsx). For the usual definition of theCNOT

(conditional flip) operator:

Cx = su0lk0udancilla + su1lk1udancillas x
sys,

su0l ; usz = + "/2l, u1l ; usz = − "/2ld,

we have the following property:

Cxs y
sysCx = s y

syss z
anc, Cxs z

sysCx = s z
syss z

anc s11d

and so

anck↑xuCNCu↑xlanc= O0
env,

which is Eq. (10) with Uenc=Udec=C and uinlancilla
= uoutlancilla= u↑xl.

In order to generalize this treatment to treat general errors
(for a one qubit system), we will need two “conditional-flip”
operators, where the “flip” denotes a Pauli operator:Ca

1,2

= u0l1k0u ^ 12+ u1l1k1u ^ sa
2sa=x,y,zd which acts onH1 ^ H2.

Writing Hanc=H1 ^ H2, Hsys=H3, andC=Cy
1,3Cz

2,3 (regular
operator product), then Eq.(11) generalizes to

Cs1anc ^ sxdC† = ssz ^ szdanc
^ ssxdsys,

Cs1anc ^ sydC† = s1 ^ szdanc
^ ssydsys, s12d

Cs1anc ^ szdC† = ssz ^ 1danc
^ sszdsys,

which follow from

Ca
1,2s b

2Ca
1,2= su0lk0ud1s b

2 + su1lk1ud1ssasbsad2

= fu0lk0u + u1lk1us− 1ddab+1g1s b
2

= H 1 ^ sb a = b,

sz ^ sb a Þ b.
s13d

Note also that

C = su0,0lk0,0udanc1sys+ su0,1lk0,1udancs z
sys

+ su1,0lk1,0udancs y
sys+ isu1,1lk1,1udancs x

sys, s14d

which is almost our definition(5) for n=1.
Let us introduce for these expressions the more compact

notation:

Csa
sysC† = Sa

ancs a
sys s15d

and addS0=1.
With the definition, uinl= u↑x,↑xl, and the fact that

anckin uSau inlanc=da0, we finally have

anckinuCUC†uinlanc

. anckinuexpSi«o
i,a

Hi,a
envSa

anc,sisa
siDuinlanc

. expsi« o Hi,akinuSa
anc,siuinlsa

sid
= expSi«o

i

Hi,0
envD ^ 1sys. s16d
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This last result can be interpreted as follows: for an an-
cilla initially in state uinl, and postselected to be in the same
state, the operatorU is effectively reduced to a harmless one
acting on the environment alone. In this form, it is very
reminiscent of dynamical error correction. Nevertheless, this
approach has the advantage, that unlike dynamical error cor-
rection, it does not require that the noise be slowly varying,
only that it be “small.”

B. Error prevention as teleportation in time

Our scheme can also be written in yet another way, related
to measurement theory, if we look at the controlled-not op-
eration as a measurement of the state of the system qubit.

It was shown in[19] that “crossed nonlocal measure-
ments” performed on two separated qubits

fs1xst1d − s2xst1 + edgmod4, fs1yst1 + ed − s2yst1dgmod4

s17d

yield two-way teleportation or “swapping” of the states of
the qubits. The four possible outcomes of these measure-
ments define the correction which have to be performed on
the qubits to complete the teleportation. The particular re-
sults

fs1xst1d − s2xst1 + edgmod4 =fs1yst1 + ed − s2yst1dgmod4 = 0

s18d

correspond to immediate teleportation without need for cor-
rections. In this teleportation procedure, the times of the in-
teraction with the second qubit can be changed provided that
the order remains the same

fs1xst1d − s2xst2 + edgmod4, fs1yst1 + ed − s2yst2dgmod4.

s19d

In particular, we can arrange thatt2. t1+e. The “identity”
of the second particle is not important, the procedure tele-
ports the state of the qubit to any particle with which the
interactions are performed. Thus, we can make the interac-
tions at timest2 andt2+e with the particle which had the first
qubit. In this case we teleport the quantum state of a particle
to the particle itself, but at a later time: teleportation in time!

In fact, teleportation in time(as well as teleportation to
another particle at time-like interval) is much easier to per-
form than teleportation to a space-like interval. We have to
perform the following two-time measurements[17]

fsxst1d − sxst2 + edg mod4,
s20d

fsyst1 + ed − syst2dgmod4,

where t1, t2, t18, t28. These measurements are much easier
to perform than measurements of nonlocal variables required
for the two-way teleportation. There is no need to have en-
tangled particles in the measuring device. A single qubit re-
places the entangled pair. The coupling to the qubit is the
same as the coupling to the entangled qubits of the pair and,
in fact, it is just CNOT in the appropriate basis, exactly the
same interaction which was used in the procedure described
in the previous section.

The measurements(17) and, in general, the measurements
(20) might have four possible outcomes. However, if our
system was not disturbed betweent1 andt28 (except for mea-
surements(20)), only a single outcome is possible:

fsxst1d − sxst2 + edgmod4 =fsyst1 + ed − syst2dgmod4 = 0.

s21d

This is the outcome which corresponds to the teleportation
without corrections. Indeed, the measurements(20) are also
verification measurements of the particular type of a two-
time state[18]

Ct1,t2
=

1
Î2

sk↑ut1u ↑ lt2
+ k↓ut1u ↓ lt2

, s22d

which is generated by vanishing Hamiltonian at the time
period ft1,t2g. If, during this period there will be a small
disturbance then the measurement, due to Zeno effect will,
with high probability, still have the outcome(21) and it also
will nullify the action of the disturbance, i.e., prevent errors
during this time.

For discussion of the general case of protectionN qubits
we have to look more closely on the process of measurement
of the two time-variables(20). These measurements require
two qubits prepared in a particular state before timet1 which
undergo twoCNOT (conditional flip) interactions. One qubit
in the sx basis at timest1 and t2+e and another, in thesy
basis at timest1+e and t2. The measurements, after the in-
teraction with the system which verify that the test qubits
have not changed their state, complete the measurement. If
the system was not disturbed, then the coupling of the test
qubits with the system does not prevent the test qubits to
verify the absence of disturbing of another qubit using cou-
pling corresponding to two-time measurements performed on
another qubit

fsx8st1 − dd − sxst2 + e + ddgmod4, s23d

fsyst1 + e − dd − syst2 + ddgmod4. s24d

If both systems are under small disturbance(such that prob-
ability of flipping of both qubits is negligible) then the pro-
cedure: preparation of the test qubits coupling of the test
qubits with the two systems, and final verification that the
test qubits have not changed their state will lead, through
Zeno effect, to prevention of errors in the two systems. The
general case is treated as before.

It is hard to make a concrete proposal for practical appli-
cation of our method since present technology is still far
from operating large numbers of qubits coherently. We might
try to speculate that the method can be implemented in the
future in a quantum computer or quantum memory of a cryp-
tographic device operating withn qubits (ions in a trap?)
subject to moderate decoherence. Then, between the times of
gate operations we send two particles of another kind which
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have a smaller coupling with the environment(polarized
photons?) to interact successively with the qubits as we de-
scribed above. Since other proposals for quantum error cor-
rection require a larger number of qubits, our proposal can be
one of the first to be implemented in practice.
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