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It is shown, under the assumption of the possibility to perform an arbitrary local operation, that all
nonlocal variables related to two or more separate sites can be measured instantaneously, except for a
finite time required for bringing to one location the classical records from these sites which yield the
result of the measurement. It is a verification measurement: it yields reliably the eigenvalues of the
nonlocal variables, but it does not prepare the eigenstates of the system.

DOI: 10.1103/PhysRevLett.90.010402 PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.Hk
outcome, these classical results are later combined at a
point within the future light cones of all the observers.

this variable does contradict causality. Assume that at
time t such an ideal measurement is performed. Then
Seventy years ago Landau and Peierls [1] claimed that
the instantaneous measurability of nonlocal variables
(i.e., variables which related to more than one small
region of space) contradicts relativistic causality. Twenty
years ago, Aharonov and Albert [2] showed that some
nonlocal variables (e.g., the Bell operator; see below) can
be measured instantaneously and that this does not con-
tradict causality. They also showed explicitly how the
possibility of performing instantaneous von Neumann
measurements of some other nonlocal variables does
contradict causality. The question ‘‘What are the observ-
ables of relativistic quantum theory?’’ remains topical
even today [3].

A variable can obtain the status of an observable if it
can be measured. However, the standard (von Neumann)
definition of quantum measurement is too restrictive for
defining a physical observable: the von Neumann defini-
tion requires that eigenstates of the measured variable are
not changed due to the measurement process. The exis-
tence of a verification measurement which yields the
eigenvalue of a variable with certainty, if prior to the
measurement the quantum system was in the correspond-
ing eigenstate, is enough for giving the status of an ob-
servable for such a variable, even if the measurement does
not leave the system in this eigenstate as the von
Neumann measurement does. (If, initially, the system is
in a superposition or mixture of the eigenstates of the
observable, then the verification measurement yields one
of the corresponding eigenvalues according to the quan-
tum probability law.)

The meaning of ‘‘instantaneous measurement’’ is that
in a particular Lorentz frame, at time t, observers per-
form local actions for a duration of time which can be as
short as we wish. At the end of the measurement inter-
actions, the information about the outcome of the mea-
surement is classically recorded in the results of local
(irreversible) measurements. In order to infer which ei-
genvalue of the nonlocal variable the system had origi-
nally, or to generate the correctly distributed probabilistic
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Note the difference with the case of exchange mea-
surements [4] which can also be performed for all non-
local variables. In the exchange measurement, local
operations of swapping lead to swapping between the
quantum state of the composite system and the quantum
state of the local separated parts of the measuring device.
In order to find out which eigenvalue the system had
originally, it is required coherent maintaining of all these
parts until they enter the forward light cone of all of the
original subsystems one wishes to measure where final
local joint measurement is performed. After instantane-
ous swapping, the outcome of the measurement is not
written in the form of classical information and, in
fact, the outcome of the quantum measurement does not
exist yet: at this stage the exchange measurement can be
reversed and the system can be brought back to its origi-
nal (in general unknown) state.

In this Letter, I show that apart from variables related
to the spreadout fermionic wave function, all nonlocal
variables have the status of observables in the framework
of relativistic quantum mechanics, i.e., all variables re-
lated to two or more separate sites are measurable in-
stantaneously using verification measurements. This
includes variables with entangled eigenstates and non-
local variables with product eigenstates [5].

Verification measurements have been considered be-
fore. It has been shown [6] that verification measurements
of some nonlocal variables erase local information and,
therefore, cannot be ideal von Neumann measurements.
Recently, Groisman and Reznik [7] showed that there are
instantaneous verification measurements for all spin var-
iables of a system of two separated spin- 1

2 particles.
Consider, for example, a nonlocal variable of two spin- 12
particles located in separate locations A and B, whose
eigenstates are the following product states:

j�1i � j"ziAj"ziB; j�2i � j"ziAj#ziB;

j�3i � j#ziAj"xiB; j�4i � j#ziAj#xiB:
(1)

An instantaneous ideal von Neumann measurement of
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we can send a superluminal signal from A to B in the
following way. We prepare in advance the system in the
state j�1i and agree that Bob at site B measures the spin z
component of his particle shortly after time t. Now, in
order to send a superluminal signal, Alice at site A can at
a very short time before time t flip her spin. If she does so,
then after the nonlocal measurement at time t, the system
will end up either in state j�3i on in state j�4i. In both
cases Bob has a nonvanishing probability to find his spin
‘‘down’’ in the ẑz direction, while this probability is zero if
Alice decides not to flip her spin.

The method for the verification measurement I present
here uses the teleportation technique [8]. The first step is
the teleportation of the state of the spin from B (Bob’s
site) to A (Alice’s site). Bob and Alice do not perform the
full teleportation (which invariably requires a finite pe-
riod of time), but only the Bell measurement at Bob’s site
which might last, in principle, as short a time as we wish.
(I will continue to use the term ‘‘teleportation’’ just for
this first step of the original proposal [8].)

In the teleportation procedure for a spin- 12 particle we
start with a prearranged EPR (Bohm) pair of spin- 1

2
particles one of which is located at Bob’s site and another
at Alice’s site, j��iAB � �1=

���

2
p

	�j"iAj#iB � j#iAj"iB	. The
procedure is based on the identity

j�i1j��i2;3 �
1
2�j��i1;2j�i3 
 j�
i1;2j ~��

�z	i3


 j��i1;2j ~��
�x	i3 
 j�
i1;2j ~��

�y	i3	; (2)

where j��i � �1=
���

2
p

	�j"ij#i � j#ij"i	, j��i � �1=
���

2
p

	 �
�j"ij"i � j#ij#i	 are eigenstates of the Bell operator and
j ~���z	i signifies the state j�i rotated by 
 around the ẑz
axis, etc. Thus, the Bell operator measurement performed
on the two particles in Bob’s site ‘‘collapses’’ (or effec-
tively collapses) to one of the branches of the superposi-
tion, the right-hand side of (2), and, therefore, teleports
the state j�i of Bob’s particle to Alice except for a
possible rotation by 
 (known to Bob) around one of
the axes.

The second step is taken by Alice. She can perform it at
time t without waiting for Bob. She measures the spin of
her particle in the z direction. If the result is ‘‘up,’’ she
measures the spin of the particle teleported from Bob in
the z direction, and if her spin is ‘‘down,’’ she measures
the spin of Bob’s particle in the x direction.

This completes the measurement except for combining
local results together for finding out the result of the
nonlocal measurement. Indeed, the eigenstates of the
spin in the z direction and in the x direction are tele-
ported without leaving their lines. Thus, Bob’s knowledge
about possible flip together with Alice’s results distin-
guish unambiguously between the four eigenstates (1).

The method I presented above can be modified for
measurement of other nonlocal variables of two spin- 1

2
particles. However, I turn now to another, universal,
method which is applicable to any nonlocal variable
O�qA; qB; . . .	, where qA belongs to region A, etc. I do
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not try to optimize the method or consider any realistic
proposal: my task is to show that, given unlimited re-
sources of entanglement and arbitrary local interactions,
any nonlocal variable is measurable.

I start with the case of a general variable of a composite
system with two parts. First (for simplicity), Alice and
Bob perform unitary operations which swap the states of
their systems with the states of sets of K spin- 1

2 particles.
In this way Alice and Bob will need the teleportation
procedure for spin- 1

2 particles only. Teleportation of the
states of all K individual spins leads to teleportation of
the state of the set, be it entangled or not.

The general protocol is illustrated in Fig. 1. The re-
sources include numerous teleportation channels ar-
ranged in a particular way: two channels for the first
round of back and forth teleportations, then 4K � 1 clus-
ters; each includes two channels for the second round of
back and forth teleportations and 42K � 1 subclusters.
Each subcluster, in turn, includes two channels for the
third round of teleportation and 42K � 1 similar sub-
sub-clusters, etc. The protocol consists of the following
steps:

(i) Bob teleports his system (K spin- 12 particles)
to Alice and records the outcome of the Bell measure-
ments n.

As before, ‘‘teleports’’ means that Bob performs the
Bell measurements but does not send the outcome to
Alice. The number of possible outcomes is N � 4K. We
signify them by n � 1; 2; . . .N, with n � 1 corresponding
to singlets in all Bell measurements, i.e., to teleportation
without distortion.

(ii) Alice performs a unitary operation U on the com-
posite system of her and the teleported spins which, under
the assumption of nondistorted teleportation, transforms
the eigenstates of the nonlocal variable (which now ac-
tually are fully located in Alice’s site) to product states
in which each spin is either up or down along the z
direction.

(iii) Alice teleports the complete composite system (2K
spin- 12 particles) to Bob.

Note that if the system is in one of the product states in
the spin z basis, then it will remain in this basis.

(iv) If n � 1 Bob measures the teleported system in the
spin z basis.

In this case (the probability for which is 1
N ), Bob gets

the composite system in one of the spin z product states
and his measurements in the spin z basis complete the
measurement of the nonlocal variable.

If n � 1 Bob teleports the system back to Alice in the
teleportation channel of cluster n. He records the outcome
of the Bell measurements m1 which can have values from
1 to M � 42K.

Since in this case Alice’s operations do not bring the
eigenstates of the nonlocal variable to the spin z basis,
Bob teleports the system back to Alice ‘‘telling’’ her the
outcome of his previous Bell measurements via the chan-
nel he uses for the teleportation.
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FIG. 1. The scheme of the measurement of a nonlocal variable of a two-part system. In the example shown, the results of the Bell
measurement in Bob’s site were n;M; 1. Thus, the nonlocal measurement has been essentially completed after three teleportation
rounds.
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(v) Alice performs unitary operations on each system
in N � 1 teleportation channels of the second round
which, under the assumption of no distortion in these
teleportations, transforms the eigenstates of the nonlocal
variable to product spin z eigenstates.

Alice’s operations include corrections required due to
her and Bob’s teleportations and her unitary transforma-
tion of the first round.

(vi) Alice teleports all N � 1 systems back to Bob.
(vii) If m1 � 1 Bob measures the system teleported

from Alice in cluster n in the spin z basis.
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Again, in that case, the spin measurements complete
the measurement of the nonlocal variable, since their
results together with the outcomes of Alice’s and Bob’s
Bell measurements specify uniquely the eigenvalue of the
nonlocal variable.

If m1 � 1 Bob teleports the system back to Alice in the
teleportation channel of subcluster m1 of cluster n. He
records the outcome of the Bell measurements m2.

(viii) Alice performs unitary operations on each sys-
tem in �N � 1	�M� 1	 teleportation channels of the third
round. The operation on each system is such that if Bob,
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indeed, teleported the system in this channel, and if his
last teleportation happened to be without distortion, then
the eigenstates of the nonlocal variable are transformed
into product spin z states.

Alice’s operations include corrections required due to
her and Bob’s teleportations and her unitary transforma-
tions of the first and second rounds.

(ix) Alice teleports all �N � 1	�M� 1	 systems back
to Bob.

(x) If m2 � 1 Bob measures the system teleported from
Alice in subcluster m1 of cluster n in the spin z basis.

If m2 � 1 Bob teleports the system back to Alice in the
teleportation channel of sub-sub-cluster m2 of subcluster
m1 of cluster n. He records the outcome of the Bell
measurements m3.

Alice and Bob continue this procedure. The nonlocal
measurement is completed when, for the first time, Bob
performs a teleportation without distortion. Since, con-
ceptually, there is no limitation for the number of tele-
portation rounds, and each round (starting from the
second) has the same probability for success, 1

M , the
measurement of the nonlocal variable can be performed
with probability arbitrarily close to 1. Given the desired
probability of the successful nonlocal measurement,
Alice and Bob decide about the number of rounds of
teleportations. The number of entangled pairs required
for each round grows exponentially with the number of
rounds. While Bob uses only one teleportation channel in
each round and stops after his first teleportation without
distortion, Alice has to perform all teleportations in all
channels.

The generalization to a system with more than two
parts is more or less straightforward. Let us sketch it
for a three-part system. First, Bob and Carol teleport
their parts to Alice. Alice performs a unitary transfor-
mation which, under the assumption of undisturbed tele-
portations of both Bob and Carol, transforms the
eigenstates of the nonlocal variable to product states in
the spin z basis. Then she teleports the complete system to
Bob. Bob teleports it to Carol in a particular channel nB
depending on the results of the Bell measurement of his
first teleportation. Carol teleports all the systems from the
teleportation channels from Bob back to Alice. In par-
ticular, the system from channel nB she teleports in the
channel �nB; nC	 depending on her Bell measurement
result nC. The system corresponding to �nB; nC	 � �1; 1	
is not teleported but measured by Carol in the spin z basis.
Alice knows the transformation performed on the system
which arrives in her channels �nB; nC	 except for correc-
tions due to the last teleportations of Bob and Carol. She
assumes that there was no distortion in those and tele-
ports all the systems back to Bob after the unitary
operation which transforms the eigenstates of the variable
to product states in the spin z basis. Alice, Bob, and Carol
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continue the procedure until the desired probability of
successful measurement is achieved.

The required resources, such as the number of tele-
portation channels and required number of operations,
are very large, but this does not concern us here. We have
shown that there are no relativistic constraints preventing
instantaneous measurement of any variable of a quantum
system with spatially separated parts, answering the
above long-standing question. This question is relevant
for quantum cryptography and quantum computation
performed with distributed systems. The practical advan-
tage of the method presented in this Letter is that it relies
on prior entanglement and does not require coherent
transportation of quantum systems.

Can this result be generalized to a quantum system
which itself is in a superposition of being in different
places? The key to this question is the generality of
the assumption of the possibility to perform any local
operation. If a quantum state of a particle which is in a
nonlocal superposition can be locally transformed to (an
entangled) state of local quantum systems, then any
variable of the particle is measurable through the mea-
surement of the corresponding composite system.
However, while for bosons it is clear that there are such
local operations (transformation of the photon state to the
entangled state of atoms has been achieved in the labora-
tory [9]); for fermion states the situation is different [10].
If the transformation of a superposition of a fermion state
to local variables is possible, then these local separated in
space variables should fulfill anticommutation relations.
This is the reason to expect superselection rules which
prevent such transformations.
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