15 An Impossible Necklace

Lev Vaidman

A game which a quantum team can win against any classical team is proposed.
The game is based on a Zeno-type proof of Bell’s inequality. The unusual
feature of this game is that a person who does not know about quantum
mechanics might be led to belive in the existence of impossible necklaces.

When I approached John Bell in 1987 asking to be his Post-Doctoral student
working on foundations of quantum mechanics, his reply was that his main
work is particle physics and, therefore, he cannot take anybody who wants
to work on foundations. Nevertheless, John Bell played an important role in
my research. I find his works to be exceptionally clear and of tremendous
importance. I met Bell in the relaxed atmosphere of Erice in 1989. Our dis-
cussions there and following e-mail correspondence played a very important
role in forming my views. The most important influence on me was, however,
made by his works showing the miraculous features of quantum theory. In
this brief note I want to present an elaboration of a Bell-type proof [1] which
exhibits one of such miracles.

Conceptually, the most simple, surprising, and convincing among the Bell-
type experiments is Mermin’s version [2] of the Greenberger—Horne—Zeilinger
(GHZ) setup [3]. I find that it can be best explained as a game [4]. A team of
three players is allowed to make any preparations before the players are taken
to three remote locations. Then, at a certain time, each player is asked one of
two possible questions: “What is X7” or “What is Y77 to which they must
quickly give one of the answers: “1” or “—1”. According to the rules of the
game, either all players are asked the X question, or only one player is asked
the X question and the other two are asked the ¥ question. The team wins if
the product of their three answers is —1 in the case of three X questions and
is 1 in the case of one X and two Y questions. It is a simple exercise to prove
that if the answer of each player is determined by a local hidden variable
theory, then the best strategy of the team will lead to 75% probability to
win. However, a quantum team equipped with ideal devices can win with
certainty. Each player performs a spin measurement of a spin-1/2 particle:
o, measurement for the X question and o, measurement for the ¥ question
and gives the answer 1 for spin “up” and —1 for spin “down”. Quantum theory
ensures that if the players have particles prepared in the GHZ state, the team
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always wins. Actually constructing such devices and seeing that, indeed, the
quantum team wins the game with probability significantly larger than 75%
will be a very convincing proof of Bell-type inequalities.

Apart from the GHZ game just described there have been several other
proposals: an interesting variation of the GHZ game by Sieane and van
Dam [5], a game based on the original Bell proof by Tsirelson [6], the
“quantum cakes” game based on a non-maximally entangled state by Kwiat
and Hardy [7] (see also related experiment [8]). Note also the proposal of
Cabello [10] for a two-party Bell-inequality proof which can be transformed
into a game, too. Let me present here one more game. My game is called
an “impossible necklace” and it is based on the Zeno-type Bell inequalities
proof [9].

A team of two players wants to persuade a third party, “the interrogator,”
that they found a secret of making an “impossible necklace”. The impossible
two-colored neclace has an even number of beads N and all adjacent beads
are of different colors except beads 1 and IV which are of the same color.
The team does not want to reveal the “secret coloring”, but the players are
ready to reveal the colors of any two adjacent beads of the necklace. They
claim to have identical necklaces of this kind, one necklace for each player.
The interrogator arranges to ask one player the color of any single bead and
ask the other player, at a space-like separated region, the color of one of the
adjacent beads. If the team succeeds in giving the correct answers in many
repeated experiments (with new necklaces each time), a naive interrogator
might be persuaded that the team knows how to make such necklaces. Indeed,
if it is a “classical team”, and the players decide in advance what answer
they will give for every question, then the probability to fail is at least 1/N.
(There are N different pairs and there is no way to arrange that all have
correct coloring.) Therefore, the probability to pass the test, say 5N times is

1 5N
Probalassical = (1 — N) ~ e7% ~ 0.01. (15.1)

The quantum team can do much better. The players do not make any neck-
laces. Each player takes with him a spin f% particle from the EPR (Einstein-
Podolski-Rosen) pair. When a player is asked the color of a bead 4, he
measures the spin component in the direction 0; in the z—z plane which
makes an angle 0; = mi/N with the z-axis. He says “green” if the result is
“up”, and “red” if the result is “down”. His partners do the same. For all
pairs, the measurements are in the directions which differ by the angle /N
except for the pair {1, N} in which case the angle is #(N — 1)/N. Therefore,
the probability to fail the test is sin?(7/2N). The probability to pass 5NV tests
is

.9 W \BN w2\ =5n?
pTObquantum = (1 — S1I ﬁ) ~[1- m ~ e 4N | (152)
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For N = 100 the quantum team has probability of almost 90% to succeed,
compared with 1% of a classical team,

Technological problems will not allow an experiment with a large num-
ber N in a near future. Putting aside the attempt to “fool” the interrogator
that the team has impossible necklaces, the game can be defined as the
competition of two-player teams to pass the interrogator tests a maximal
number of times. For any number N > 4, the quantum team has an advantage
over a classical team, so this game is a realistic proposal for demonstrating
Bell-type inequalities. A succesful experiment of this type will show that
quantum technology is capable of performing communication tasks which
are impossible when classical devices are used.
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