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Abstract
An alternative proof for existence of ‘quantum nonlocality without
entanglement’, i.e. existence of variables with product-state eigenstates which
cannot be measured locally, is presented. A simple ‘nonlocal’ variable for
the case of one-way communication is given and the limit for its approximate
measurability is found.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.−a

1. Introduction

A nonlocal variable is a property of a compound quantum system which cannot be measured
using measurements of local properties only. Aharonov and his collaborators performed an
extensive analysis of nonlocal variables [1–3] motivated by the question: to what extent do
quantum states and quantum variables have ‘physical reality’? Here ‘real’ corresponds to
‘measurable’. For this analysis, it was crucial that the measurements of local properties were
performed simultaneously (in some Lorentz frame). The resources were not constrained:
measuring devices included, in particular, entangled quantum systems. It was found that
there are nonlocal variables which are measurable using only local interactions and prior
entanglement. In particular, the Bell operator, the eigenstates of which are four maximally
entangled states, is measurable. On the other hand, it was proven that there are unmeasurable
variables too.

Today, nonlocal variables have become an important concept for practical applications in
the field of quantum communication. The constraint of simultaneity of local measurements
is, usually, not relevant for these considerations, but instead there are constraints on resources.
The standard question is: what can be measured with local measurements and unlimited
classical communication? It is assumed that the measuring devices do not include entangled
systems; otherwise, the quantum states of the parts of the composite systems could be all
teleported [4] to one place and then the ‘nonlocal’ variable becomes effectively local. The
analysis of the locality of variables according to this definition was recently performed by
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Bennettet al [5] who found that there are variables with product-state eigenstates which are
unmeasurable.

In the present work we suggest an alternative, more simple, proof of the main result of
Bennettet al. We apply our method first to a similar problem in which only one-way classical
communication is allowed, and at the end, to a generalization of the result of Bennettet al
which they suggested as a conjecture.

2. One-way classical communication constraint

We are looking for a variable of a composite system consisting of two partsA andB which has
product-state eigenstates|�i〉 = |φi〉a |ψi〉b and which is not measurable via local interactions
andone-way communication fromA to B. We take a minimal definition of ‘measurable’: the
measurement has to tell with certainty if the system is in a particular eigenstate of the measured
variable. There is no requirement that the measurement is ideal, i.e. that the eigenstates are
not changed in the process of measurement: it might be a demolition measurement. Given
that it identifies all the eigenstates, the linearity of quantum theory ensures that if the initial
state is a superposition of the eigenstates, then the measurement will yield the outcomes with
the probabilities governed by the quantum theory.

It turns out that there is a very simple example of such a variable. The nondegenerate
eigenstates of this variable are:

|�1〉 = |0〉a |0〉b
|�2〉 = |1〉a |0〉b (1)|�3〉 = 1√

2
(|0〉a + |1〉a) |1〉b

|�4〉 = 1√
2
(|0〉a − |1〉a)|1〉b

where|0〉a, |1〉a is the basis atA and|0〉b, |1〉b is the basis atB. Let us formulate the problem
again. The system is prepared by an external party in one of the four mutually orthogonal
product states|�i〉. The prepared state is unknown to Alice who is located atA and to Bob
who is located atB. The aim of the measurement is to find out in which initial state the system
has been prepared. The one-way communication channel is from Alice to Bob. Bob cannot
transmit any information to Alice and cannot act on Alice’s state; therefore, Alice has to start
first. Alice performs a sequence of measurements and local operations on her part of the
system and gets a particular outcomek. She can also perform her operations step by step, but
there is no principal difference between one step and many steps strategy; ‘k’ signifies the final
outcome after Alice has completed all her measurements. Alice reports outcomek to Bob.

Alice’s quantum measurement can be described by two stages: at the first stage the
evolution of the quantum state is unitary, at the second stage a collapse of the quantum state
(real or effective) occurs. It is enough to consider only the first stage. The unitary evolution
on Alice’s part can be described as:

|φi〉a |A〉 �→
K∑
k=1

αik |wik〉a (2)

where|A〉 is the initial quantum state of Alice’s measuring devices,|wik〉a is the quantum
state of the particle and Alice’s measurement devices corresponding to a particular outcome
k, and the summation is over all possible outcomes.

There are the following relations between possible initial states in the site of Alice:

|φ3〉 = 1√
2
(|φ1〉 + |φ2〉) |φ4〉 = 1√

2
(|φ1〉 − |φ2〉) (3)
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The unitary evolution (2) keeps these relations:

∑
k

α3k|w3k〉 = 1√
2

(∑
k

α1k|w1k〉 +
∑
k

α2k|w2k〉
)

(4)∑
k

α4k|w4k〉 = 1√
2

(∑
k

α1k|w1k〉 −
∑
k

α2k|w2k〉
)
.

We choose amplitudesαik to be real and nonnegative. This is always possible because the
phase can be included in the definition of|wik〉. Quantum states|wik〉 and|wjk′ 〉 with different
k andk′ are orthogonalbecause they correspond to different outcomes of the measuring devices
(which by definition are macroscopic).Therefore, the relations (4) hold for eachk separately:

α3k|w3k〉 = 1√
2
(α1k|w1k〉 + α2k|w2k〉)

(5)
α4k|w4k〉 = 1√

2
(α1k|w1k〉 − α2k|w2k〉).

Initially, the states in Alice’s site are mutually orthogonal in each pair:〈φ1|φ2〉a = 0 and
〈φ3|φ4〉a = 0. Thus, Alice is able to distinguish between the states in each pair. It is important
because Bob’s corresponding local states are identical, so he cannot distinguish between the
states|�1〉 and|�2〉 and between the states|�3〉 and|�4〉. Therefore, whatever Alice does,
she must retain distinguishability between the states in each pair. This means that if a particular
outcomek might come out for both initial states|�1〉 and|�2〉 (or |�3〉 and|�4〉), then, at
every stage, the corresponding quantum states at Alice’s site must be orthogonal. This can be
formulated in the following equations:

α1kα2k〈w1k|w2k〉 = 0 α3kα4k〈w3k|w4k〉 = 0. (6)

From (5) after some manipulation we obtain:

α2
1k = 1

2

(
α2

3k + α2
4k + 2α3kα4k〈w3k|w4k〉

)
α2

2k = 1

2

(
α2

3k + α2
4k − 2α3kα4k〈w3k|w4k〉

)
(7)

α2
3k = 1

2

(
α2

1k + α2
2k + 2α1kα2k〈w1k|w2k〉

)
α2

4k = 1

2

(
α2

1k + α2
2k − 2α1kα2k〈w1k|w2k〉

)
.

Substituting (6) in (7), we obtain four equations forαik which result in the equality

α1k = α2k = α3k = α4k. (8)

Therefore, ifk is a possible outcome for one initial state|�i〉, i.e. the corresponding coefficient
αik does not vanish, thenk is a possible outcome for all initial states. From (6) it follows that
for all such outcomesk, the orthogonality condition holds:

〈w1k|w2k〉 = 0. (9)

Substituting (8) into (5) we obtain, for each possible outcomek, the following relations:

|w3k〉 = 1√
2
(|w1k〉 + |w2k〉)

(10)
|w4k〉 = 1√

2
(|w1k〉 − |w2k〉).
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Thus, the evolutions for different initial states of the quantum state of the system and Alice’s
measuring devices which ended with the outcomek are:

|�1〉|A〉 → |w1k〉a |0〉b
|�2〉|A〉 → |w2k〉a |0〉b

(11)|�3〉|A〉 → 1√
2
(|w1k〉a + |w2k〉a) |1〉b

|�4〉|A〉 → 1√
2
(|w1k〉a − |w2k〉a)|1〉b.

Taking into account (9), we see that this structure is isomorphic with the initial structure (with
the correspondence|0〉a|A〉 ↔ |w1k〉a , |1〉a|A〉 ↔ |w2k〉a). Therefore, we have shown that
if there is a constraint on Alice’s actions such that she cannot lead to a situation in which it
is impossible in principle to distinguish with certainty between different initial states|�i〉,
then she cannot make any progress towards distinguishing the states. Thus, Alice cannot
give Bob any useful information. Bob can perform operations on his local part, but he
obviously cannot distinguish between the states|�1〉 and|�2〉 and between the states|�3〉
and |�4〉. This completes the proof of unmeasurability of the variable with nondegenerate
eigenstates (1).

Note that this proof is easily generalized for the variable with nondegenerate eigenstates

|�1〉 = |0〉a |0〉b
|�2〉 = |1〉a |0〉b (12)|�3〉 = (cosθ |0〉a + sinθ |1〉a) |1〉b
|�4〉 = (sinθ |0〉a − cosθ |1〉a)|1〉b

where 0< θ < π
2 .

3. The two-way classical communication constraint

In this section we will reproduce the result of Bennettet al [5] using the method of the previous
section. We will prove that certain variables with product-state eigenstates cannot be measured
(even in the above demolition way) using local operations and unlimited classical two-way
communication.

The variable which Bennettet al found has the following nondegenerate eigenstates:

|�1〉 = 1√
2
|0〉a (|0〉b + |1〉b)

|�2〉 = 1√
2
|0〉a (|0〉b − |1〉b)

|�3〉 = 1√
2
|2〉a (|1〉b + |2〉b)

|�4〉 = 1√
2
|2〉a (|1〉b − |2〉b)

|�5〉 = 1√
2
(|0〉a + |1〉a) |2〉b (13)

|�6〉 = 1√
2
(|0〉a − |1〉a)|2〉b

|�7〉 = 1√
2
(|1〉a + |2〉a) |0〉b

|�8〉 = 1√
2
(|1〉a − |2〉a)|0〉b

|�9〉 = |1〉a |1〉b
where|0〉, |1〉 and|2〉 are local bases in Alice’s and Bob’s sites.
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In our approach, in contrast with the original proof, we will show that if we impose
the constraint of not allowing for any probability to fail in the measurement, i.e. of reaching
a state in which it is in principle impossible to distinguish with certainty between different
initial states|�i〉, then Alice and Bob cannot make any progress towards completing the
measurement. We note that even if the two-way communication is allowed, one party has to
start. Since they have only a classical channel, a measurement which ends up with a particular
outcome has to be performed in one of the sites. Thus, constructing the proof similar to that
of the previous section, but for the variable with the eigenstates (13), is sufficient.

Since the eigenstates (13) have a symmetry betweenA andB, we can assume without
losing generality that the first step is performed by Alice who performs the measurement with
possible outcomesk. The unitary evolution on Alice’s part can be described as

|φi〉a |A〉 �→
∑
k

αik |wik〉a. (14)

From|φ1〉 = |φ2〉 and|φ3〉 = |φ4〉, we immediately obtain

α1k = α2k α3k = α4k (15)|w1k〉 = |w2k〉 |w3k〉 = |w4k〉.

The evolution (14) should keep the relations between initial states, and since all states|wik〉a
with differentk must be orthogonal, the same relations hold for each individual possiblek:

α1k|w1k〉 = 1√
2
(α5k|w5k〉 + α6k|w6k〉)

α3k|w3k〉 = 1√
2
(α7k|w7k〉 − α8k|w8k〉)

α5k|w5k〉 = 1√
2
(α1k|w1k〉 + α9k|w9k〉)

(16)
α6k|w6k〉 = 1√

2
(α1k|w1k〉 − α9k|w9k〉)

α7k|w7k〉 = 1√
2
(α9k|w9k〉 + α3k|w3k〉)

α8k|w8k〉 = 1√
2
(α9k|w9k〉 − α3k|w3k〉).

Bob, obviously, cannot distinguish between states|�5〉 and|�6〉 and between states|�7〉
and |�8〉. He also might fail to distinguish between|�1〉 and |�9〉 and between|�3〉 and
|�9〉 because the states|�1〉, |�3〉 are nonorthogonal to|�9〉 on Bob’s side. Therefore, Alice
should be able to distinguish between these pairs, i.e. for all possible outcomesk the following
conditions must be kept at Alice’s site:

α5kα6k〈w5k|w6k〉 = 0 α7kα8k〈w7k|w8k〉 = 0
(17)

α1kα9k〈w1k|w9k〉 = 0 α3kα9k〈w3k|w9k〉 = 0.

After some straightforward algebraic manipulations, (16) and (17) yield that all nine
coefficientsαik are equal, and that|w1k〉a , |w3k〉a and |w9k〉a are mutually orthogonal.
Therefore, the evolutions for different initial states of the quantum state of the system and
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Alice’s measuring devices ended with the outcomek is

|�1〉|A〉 → 1√
2
|w1k〉a (|0〉b + |1〉b)

|�2〉|A〉 → 1√
2
|w1k〉a (|0〉b − |1〉b)

|�3〉|A〉 → 1√
2
|w3k〉a (|1〉b + |2〉b)

|�4〉|A〉 → 1√
2
|w3k〉a (|1〉b − |2〉b)

|�5〉|A〉 → 1√
2
(|w1k〉a + |w9k〉a) |2〉b (18)

|�6〉|A〉 → 1√
2
(|w1k〉a − |w9k〉a)|2〉b

|�7〉|A〉 → 1√
2
(|w9k〉a + |w3k〉a) |0〉b

|�8〉|A〉 → 1√
2
(|w9k〉a − |w3k〉a)|0〉b

|�9〉|A〉 → |w9k〉a |1〉b.
This structure is isomorphic with the structure of the initial state (with the correspondence
|0〉a|A〉 ↔ |w1k〉a, |1〉a|A〉 ↔ |w9k〉a and|2〉a|A〉 ↔ |w3k〉a). Therefore, we have shown that
if there is a constraint on Alice’s actions such that she cannot lead to a situation in which it
is impossible in principle to distinguish with certainty between different initial states|�i〉,
then she cannot make any progress towards distinguishing the states. Thus, Alice cannot
give Bob any useful information. If Alice’s operation (the first round) yields no progress
towards the solution of the problem, then all following rounds cannot change the situation
either.

We can apply this method to prove unmeasurability of a more general variable suggested
in Bennett’s paper as a conjecture. The set of nondegenerate eigenstates of this variable is

|�1〉 = |0〉a (cosη|0〉b + sinη|1〉b)
|�2〉 = |0〉a (sinη|0〉b − cosη|1〉b)
|�3〉 = |2〉a (cosξ |1〉b + sinξ |2〉b)
|�4〉 = |2〉a (sinξ |1〉b − cosξ |1〉b)
|�5〉 = (cosθ |0〉a + sinθ |1〉a) |2〉b (19)

|�6〉 = (sinθ |0〉a − cosθ |1〉a) |2〉b
|�7〉 = (cosγ |1〉a + sinγ |2〉a) |0〉b
|�8〉 = (sinγ |1〉a − cosγ |2〉a)|0〉b
|�9〉 = |1〉a |1〉b

where all anglesη, ξ, θ, γ are strictly inside the interval(0, π2 ). Indeed, considering Alice to
make the first step and following the arguments above, we obtain again relations (15) and also
the following relations:

α2
1k − α2

9k = cos 2θ
(
α2

5k − α2
6k

)
α2

5k − α2
6k = cos 2θ

(
α2

1k − α2
9k

)
(20)

α2
9k − α2

3k = cos 2γ
(
α2

7k − α2
8k

)
α2

7k − α2
8k = cos 2γ

(
α2

9k − α2
3k

)
.

The only solution of these equations is that all coefficientsαik are equal, i.e. that Alice cannot
make any progress if she makes the first step. Similar equations are obtained if Bob is to make
the first step, so he cannot make any progress either.
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4. Optimal local estimation measurements: the case of one-way communication

In the previous sections we proved that 100% reliable measurements of certain variables are
impossible. Let us show now, for the case of one-way communication, that not just the ideal
case is impossible but also that it is impossible to get close to it. To show this we will relax
both the requirement of 100% success and the requirement of 100% reliability, and will ask
the following question: what is the optimal measurement which can get the best guess of
the prepared state? The ‘best’ means that on average we obtain maximal probability for the
correct guess. If the maximal probability does not approach 1, it means that it is impossible
to construct a protocol in which success and reliability will approach 100%.

We consider again the situation after Alice completes the measurements at her site.
Equations (2)–(5), (7) still hold, but the orthogonality conditions (6), (9) are not imposed.
Alice has to distinguish between the states|�1〉 and |�2〉 and between the states|�3〉 and
|�4〉. For eachk she makes her guess according to the maximal coefficientαik in each pair
α1k, α2k andα3k, α4k. Bob distinguishes between the pairs with 100% efficiency; therefore,
for a givenk, on average according to the initial state, the probability for the correct guess is

p = 1

2

max
{
α2

1k, α
2
2k

}
α2

1k + α2
2k

+
1

2

max
{
α2

3k, α
2
4k

}
α2

3k + α2
4k

. (21)

Our task is to find the strategy for Alice such that, on average on all outcomesk, the probability
p will become maximal. As before, since the constraints are separate for eachk, we just have
to look for a maximum for a particulark. From (7) we obtain

α2
1k + α2

2k = α2
3k + α2

4k. (22)

Without losing generality we can assume thatα1k > α2k andα3k > α4k. Let us define
parametersγ , ε andδ:

α2
1k = γ (1 + ε) α2

2k = γ (1 − ε)

α2
3k = γ (1 + δ) α2

4k = γ (1 − δ).

Thenp, the probability we have to maximize, becomes

p = 2 + ε + δ

4
. (23)

From (7) and (23) we obtain

p = 1

4

(
2 + ε +

√
1 − ε2 〈w1k|w2k〉

)
. (24)

The maximum value ofp is obtained when〈w1k|w2k〉 = 1. Then, the optimization on different
values ofε yields a maximum forε = 1√

2
, and thus, the probability for the correct guess of

the prepared state is not more than

pmax = 1

2
+

1

2
√

2
. (25)

This bound is, in fact, tight, since it can be realized via the measurement in the basis

|χ1〉a = sin

(
π

8

)
|0〉a + cos

(
π

8

)
|1〉a

(26)

|χ2〉a = cos

(
π

8

)
|0〉a − sin

(
π

8

)
|1〉a.

If the state|χ1〉 is obtained, then the team announces that its guess is|�2〉 or |�3〉, according
to the results of Bob,|0〉b or |1〉b. If the state|χ2〉 is obtained, then the team announces|�1〉
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or |�4〉 according to the results of Bob. It can be seen from a straightforward trigonometric
manipulation that the probability for the correct result is indeedpmax:

|〈φ2|χ1〉|2 = |〈φ3|χ1〉|2 = |〈φ1|χ2〉|2 = |〈φ4|χ2〉|2 = 1

2
+

1

2
√

2
. (27)

Note that the probability of the successful guess is the same for all initial states|�i〉.

5. Conclusions

In this paper we have discussed measurability of variables of a composite system consisting
of two separated parts. The variables we have considered have nondegenerate product-state
eigenstates. We have shown that, assuming one-way classical communication and local
interactions, there is a simple example of an unmeasurablevariable of this kind with eigenstates
given by (1). We have simplified the proof and made certain generalizations of the results by
Bennettet al regarding measurability of such variables when two-way classical communication
is allowed.

It was shown before [3] that the variable with product-state eigenstates (1) is unmeasurable.
However, this proof was under different assumptions. The main difference is that the proof
was only for unmeasurability of ideal (nondemolition) measurements. In this case it was
easy to show that measurability leads to superluminal signalling and this was the proof that
it is impossible. The current work considers the more difficult question of the possibility
of ‘demolition’ measurements in which it is not required that the eigenstates are unchanged
during the measurement. Under certain constraints regarding allowed operations, it has been
shown that a variable with an entangled (but not maximally entangled) eigenstate cannot be
measured even in a demolition way [1, 2]. When the constraints were removed [3], the
unmeasurability was not true anymore, but it was shown that measurement of such a variable
invariably erases relevant local information. It seems that more results can be obtained in
this framework. In particular, a recently developed formalism ofsemicausal operations seems
very promising as it has already led to useful results in quantum communication [6].

Just before the completion of this work, an actual experiment with the eigenstates (13) has
been proposed by Carolloet al [7]. An experiment with nine eigenstates (13) is significantly
more difficult than an experiment with four states (1). The impossibility of distinguishing
the states (1) with local measurements and one-way classical communication represents the
same basic feature as the impossibility of distinguishing the states (13) with the two-way
communication channel. Thus, we suggest modifying this experimental proposal for the case
of four states and to start with this easier experiment.

Carollo et al also proved that even if the nine eigenstates are available locally, they
cannot be discriminated using linear optical elements. It means that even the existence of
prior entanglement does not allow reliable discrimination of the nine bipartite states (13)
with linear elements, and not just because the teleportation cannot be performed [8, 9]. The
question of reliable discrimination of the four bipartite states (1) with linear optics, one-way
communication and prior entanglement remains open.
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