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Counterfactuals in quantum theory are briefly reviewed and it is argued that they
are very different from counterfactuals considered in the general philosophical
literature. The issue of time symmetry of quantum counterfactuals is considered
and a novel time-symmetric definition of quantum counterfactuals is proposed .
This definition is applied for analyzing several controversies related to quantum
counterfactuals .

1. COUNTERFACTUALS IN THE CONTEXT OF QUANTUM

THEORY

There are very many philosophical discussions on the concept of counter-
factuals and, especially, on the time’s arrow in counterfactuals. There is
also a considerable literature on counterfactuals in quantum theory. In
order to be a helpful tool in quantum theory, counterfactuals have to be
rigorously defined. Unfortunately, the concept of counterfactuals is vague3

and this leads to several controversies. I, however, believe that since quan-
tum counterfactuals appear in a much narrower context than in general
discussions on counterfactuals, they can be defined unambiguously. I briefly
review counterfactuals in quantum theory and propose a rigorous defini-
tion which can clarify several issues, in particular, those related to the time
symmetry of quantum counterfactuals.
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1 The present paper, which has been in the public domain as a preprint, ( 1) is critically
analyzed in a forthcoming paper by Kastner. ( 2)

2 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel-Aviv 69978, Israel.

3 `̀Counterfactuals are infected with vagueness, as everybody agrees’’ (Ref. 3, p. 34).



A general form of a counterfactual is as follows.

( i) If it were that A , then it would be that B .

The basic approach to analyzing counterfactuals is to consider the actual
world, the world that we know, in which A is in general not true, and a
counterfactual world, closest to the actual world, in which A is true. The
truth of the counterfactual ( i) depends on the truth of B in this counter-
factual world.

There is a general philosophical trend to consider counterfactuals to
be asymmetric in time. Even Bennett, ( 4) who was challenging this claim in
1984, reversed his position (as I learned from private correspondence). In
the most influential paper on this subject, Lewis (Ref. 3, p. 37) writes,

I believe that indeterminism is neither necessary nor sufficient for the asym-
metries I am discussing. Therefore I shall ignore the possibility of indeterminism
in the rest of this paper, and see how the asymmetries might arise even under
strict determinism.

In contrast to this opinion, I believe that the indeterminism is crucial for
allowing nontrivial time-symmetric counterfactuals and that Lewis’s and
other general philosophical analyses are irrelevant for the issue of counter-
factuals in quantum theory. The key questions in these analyses are related
to A : Why A , if in the actual world A is not true? Do we need a
`̀miracle’’ ( i.e., breaking the laws of physics) for A ? Does A come by itself,
or it is accompanied by other changes? In contrast, in the context of quan-
tum theory there are no important questions related to A . In some cases,
A is related to an external entity which might vary freely by fiat; in other
cases, the indeterminism of the theory allows different A without need for
`̀miracles’’± ± the main topic of discussion on counterfactuals in general
philosophy.

The main source of vagueness in counterfactuals is in the definition of
a counterfactual world closest to the actual world. Clearly, it differs in A .
In a deterministic world, other differences are also required: a `̀miracle’’ for
A to happen, etc. There is no rigorous specification of aspects of a counter-
factual world which are fixed to be identical to those of the actual world.
The definition of such specification is missing in most discussions on quan-
tum counterfactuals too. The main result of this work is a proposal for
such definition. The most important feature of this definition is that it is
also applicable for time-symmetric situations.

In the literature on quantum theory there are two main (different)
concepts named `̀counterfactuals.’’ Quantum counterfactuals of the first
type are events which did not happen in our world but somehow influenced
it. To present this concept, let me quote Penrose (Ref. 5, p. 240):
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What is particularly curious about quantum theory is that there can be actual
physical effects arising from what philosophers refer to as counterfactuals ± ± that
is, things that might have happened, although they did not happened.

In particular, Penrose’s quotation relates to interaction-free measurements (6 )

in which a location of supersensitive mine, which explodes if anything
`̀ touches’’ it, can be found without an explosion. The counterfactual here is
the explosion which could have happened but didn’t. What allows such
counterfactuals without miracles is the indeterminism of the quantum
theory (with collapse) . In a noncollapse deterministic interpretation such as
the Many-Worlds Interpretation of quantum theory, ( 7, 8 ) the explanation is
different ( and, in my option, is particularly clear). The counterfactuals are
`̀actual’’ in other worlds (Ref. 9, p. 275). Thus, in the situations considered
by Penrose, `̀ things’’ did happen in the physical universe ( the union of all
worlds) and thus their effect on some other facts in the physical universe
is not so surprising.( 10)

The counterfactuals of the first type are certainly helpful: they provide
deeper explanations of many peculiar quantum phenomena. For example,
we can understand why there is an `̀ interaction-free’ ’ measurement which
can ascertain that in a certain location there is a supersensitive mine, but
there is no `̀ interaction-free’’ measurement ascertaining that in a certain
location there is no supersensitive mine: in the latter there is no counter-
factual world (such as the world with the explosion in the previous case)
different from the actual one. However, quantum counterfactuals of the
first type cannot be brought to the general form (i) and they are not the
main topic of this paper.

Quantum counterfactuals of the second type are statements in form ( i)
related to a close quantum system. A defines which experiments are per-
formed on this system by an external observer and B is related to the
results of these experiments. The decision of the observer which experiments
to perform is assumed to be independent on the state of the quantum
system under investigation. One can freely change everything outside the
quantum system in question. This aspect represents a crucial difference
between quantum counterfactuals and the counterfactuals in the general
philosophical literature where A is related to the whole world.

Most examples of quantum counterfactuals discussed in the literature
are in the context of EPR-Bell-type experiments. ( 11± 13) Bedford and
Stapp( 14) presented an analysis of a Bell-type argument in the formal
language of the Lewis theory of counterfactuals.( 15) Most recently the work
of Stapp, ( 16) based on the Hardy-type experiment, ( 17 ) was followed by
intensive polemic. ( 13± 18) A typical example is a consideration of an array of
incompatible measurements on a composite system in an entangled state.
Various conclusions are derived from statements about the results of these
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measurements. Since these measurements are incompatible, they cannot all
be performed together, so it must be that at least some of them were not
actually performed. This is why they are called counterfactual statements.

2. DEFINITION OF TIME-SYMMETRIZED QUANTUM

COUNTERFACTUALS

Quantum counterfactuals are usually explicitly asymmetric in time.
The asymmetry is neither in A nor in B ; both are about the present time.
The asymmetry is in the description of the actual world. The past but not
the future of a system is given.

My purpose here is to avoid the asymmetry in time and to allow both
the past and the future of counterfactual worlds to be fixed. However, it
seems that A changes the future and therefore the future cannot be kept
fixed. Indeed, the complete description of a quantum system is given by its
quantum state, and the choice of measurements, described by A , changes
the future quantum state to be one of the eigenstate of the measured
variable. Therefore, we cannot hold fixed the quantum state of the system
in the future.

The way to overcome this difficulty is not to use a quantum state as
the description of a physical system. For solving the current problem we
can consider the quantum state only as a mathematical tool for calculating
the probabilities of the results of measurements, and not as a description
of the `̀ reality’ ’ of a quantum system. Indeed, counterfactual statements are
related to our experience which is connected to a quantum system through
results of experiments. Therefore, we can define counterfactuals in terms of
results of experiments without entering the issue of the `̀ reality’’ of a quantum
system. The advantage of this pragmatic approach is that it is universal: it
fits all interpretations of quantum theory. Thus, my proposal for defining
counterfactuals in quantum theory is as follows.

( ii) If measurement M ¢ instead of measurement M has
been performed on a system S , then the outcome of M ¢ would
have property P . The results of all other measurements performed
on system S are fixed .

M and M ¢ consist, in general, of measurements of several observables per-
formed at space± time points P i . The property P is a certain relation
between the results of these measurements or a probability for such relation
to happen.

What makes my definition different and rigorous is the clarification of
what is fixed. Usually, this is not spelled out and it is tacitly assumed that
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the quantum state of the system prior to the times of the space± time points
P i is fixed.

In usual time-asymmetric situations, in which the past relative to P i

exists but the future does not, the counterfactuals according to my defini-
tion are identical to those in the usual approach. Indeed, the results of all
measurements in the past define the quantum state uniquely. No controver-
sies appear in such cases: the past of the counterfactual worlds is fixed to
be the past of the actual world. The problems arise when there is some
information about the future of a system, sometimes, `̀ future’’ only according
to a particular Lorentz frame. (For systems consisting of spatially
separated parts, the `̀past’’ and `̀ future’’ depend on the choice of the
Lorentz frame.) Following the principle that only the past is fixed and
bringing together `̀ true’’ counterfactuals from various Lorentz frames
frequently leads to paradoxes.( 16, 24, 25 ) In contrast, my definition ( ii) is
unambiguous in such situations. It yields well-defined statements when we
are given results of measurements both in the past and in the future of P i

and in cases when the space± time points P i are such that future and past
cannot be unambiguously defined.

For a simple time-symmetric case in which M ¢ describes a single mea-
surement of a variable A performed between two complete measurements
which fix the states |Y 1 ñ at t1 and |Y 2 ñ at t2 , definition ( ii) becomes the
following.

( iii) If a measurement of an observable A has been performed
at time t, t1 < t < t2 , then the probability for A = a i would be
equal to pi , provided that the results of measurements performed
on the system at times t1 and t2 are fixed .

The probabilities pi are given by the ABL formula: ( 26, 27)

Prob(a i ) º p i =
| á Y 2 | PA = a i

|Y 1 ñ |2

å j | á Y 2 | P A = a j |Y 1 ñ | 2 ( 1)

The application of the time-symmetric formula (1) to counterfactual situa-
tions led to considerable controversy.( 28± 35) I believe that the time-sym-
metric definition ( iii) provides a consistent way for application of the ABL
rule for counterfactual situations, thus resolving the controversy.

3. ELEMENTS OF REALITY

Definition ( iii) is also helpful in analyzing various attempts to prove
that realistic quantum theory leads to a contradiction with relativistic
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causality. The `̀ element of reality’’ can be considered as an example of a
counterfactual ( iii) in the particular case of probability 1 for a certain out-
come. A time-symmetrized definition of element of reality is as follows.( 36)

( iv) If we can infer with certainty that the result of a
measurement at time t of an observable A is a, then, at time t,
there exists an element of reality A = a.

The word `̀ infer’’ is neutral relative to past and future. The inference about
results at time t is based on the results of measurements on the system
performed both before and after time t.

An important feature of time-symmetric elements of reality ( iv) of a
pre- and postselected quantum system is that the `̀product rule’’ does not
hold. The product rule means that if A = a and B = b are elements of
reality, then AB = ab is also an element of reality.

A simple example of this hind is a system of two spin-1
2 particles

prepared at t1 in a singlet state,

|Y 1 ñ =
1

Ï 2
( | - ñ 1 | ¯ ñ 2 2 | ¯ ñ 1 | - ñ 2) ( 2)

At t2 the particles are found in the state

|Y 2 ñ = | - x ñ 1 | - y ñ 2 ( 3)

A set of elements of reality for these particles at an intermediate time
t is [use the ABL formula (1) to see this]

{ s 1y} = 2 1 (4)

{ s 2x} = 2 1 (5)

{ s 1y s 2x} = 2 1 (6)

where the notation {X} signifies the outcome of a measurement of X.
Indeed, the product rule does not hold: { s 1y s 2x} Þ { s 1y}{ s 2x}. Note that
a measurement of the nonlocal variable in Eq. ( 6), the product of local
variables related to separated locations, is not disallowed due to locality of
physical interactions. This particular measurement can be performed using
local interactions only.( 37 )

The failure of the product rule plays an important role in discussing
Lorentz invariance of a realistic quantum theory, especially, in the light of
recent proposals to prove the impossibility of a realistic Lorentz invariant
quantum theory that applied the product rule, ( 24, 25) which generated con-
siderable controversy.( 38± 41)
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4. ANALYSIS OF STAPP’S NONLOCALITY ARGUMENT

It seems to me that the proposed definition for counterfactuals should
also help to resolve the recent controversy generated by the proposal of
Stapp( 16) mentioned above. My definition resolves the vagueness in these
discussions, pointed out by Finkelstein, ( 22) about what is fixed in the coun-
terfactual worlds.

I claim that quantum theory does not support the second locality con-
dition of Stapp( 16) (his LOC2). Stapp considers two spatially separated
spin-1

2 particles. In his example, a certain counterfactual statement related
to a particle on the right can be proved given that a certain action was per-
formed before that on a spatially separated particle on the left. He then
notes that in another Lorentz frame the action on the particle on the left
is performed after the time to which the counterfactual statement is related.
Stapp concludes that since an action in the future cannot influence the
past, the action on the left side can be replaced by some other action
without changing the truth of the counterfactual related to the particle on
the right.

The argument which led Stapp to his locality condition LOC2 does
not go through if we adopt the definition of counterfactuals ( ii) , consider-
ing measurements on the particle on the right while keeping fixed the
results of all other measurements on our system ( the system consisting ot
the two spin-1

2 particles). Then the truth of the counterfactual requires only
the existence of a Lorentz frame in which the measurements on the right
side are after the measurement on the left, and the consideration of the
other Lorentz frames is irrelevant.

In Stapp’s example we indeed have a situation in which an action in
a space-like separated region on the left side changes the truth of a certain
counterfactual statement about measurement on the right. However, I do
not see that the failure of LOC2 proves the `̀nonlocal character of quantum
theory’’ as the title and the spirit of Stapp’s paper suggest. In order to
demonstrate the meaning of LOC2, let me present another example where
it fails.

Consider again two spatially separated spin-1
2 particles prepared in a

singlet state ( 2). At time t a Stern± Gerlach experiment with the gradient of
a magnetic field in the positive ẑ direction is performed and the result
s 2z = a is obtained. Now consider the following counterfactual statement.

CF: If the measurement were performed with the gradient
pointing in the negative ẑ direction instead, the same result,
s 2z = a, would be obtained.
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The truth of this statement depends on actions on particle 1 in a space-like
separated region: if the measurement of s 1z were performed, then CF
would be true; if no measurement were performed or, say, s 1x were
measured instead, then the truth of CF would not follow. Indeed, if s 1z was
measured, then, in the actual world ( in which s 2z = a was obtained), the
outcome would be s 1z = 2 a. Since in a counterfactual world the results of
measurements in space-like regions are not changed, the outcome of s 2z = a

must be found in all counterfactual worlds, irrespective of the type of
measuring device which is used for this measurement. In our case, a coun-
terfactual world with a reversed gradient of the magnetic field, the outcome
s 2z = a corresponds to the spot in the opposite location. If s 1x were
measured instead, then irrespective of the outcome of this measurement,
both results of the measurement of s 2z , a and 2 a, would be possible, and
therefore, CF might not be true.

Note the even more dramatic difference in the framework of the
Bohm± Bell hidden-variable interpretation:( 42, 43) CF is true if s 1z is
measured and CF is false if s 1x is measured. Indeed, if s 1x is measured, the
assumption of the same initial hidden variables ( the Bohmian positions) in
the actual and the counterfactual worlds leads to the spot in the same posi-
tion in the Stern± Gerlach experiment even in the case of a reversed
gradient of the magnetic field. The same spot with a reversed gradient
corresponds to the opposite result of the measurement of s 2z . Therefore,
CF is false. In the case of s 1z measurement, the standard quantum theory
yields definite prediction about the s 2z measurement: CF is true. Therefore,
all valid interpretations, including Bohmian interpretation, must yield the
same prediction.

Of course, since CF cannot be tested, no contradiction with relativistic
causality can arise. Still, there is some nonlocality in this example. For me,
the framework of the MWI yields the clearest picture of this nonlocality.
By performing measurements on particle 1, we split our world into two
worlds, creating a mixture of two worlds for particle 2. With different
choices of measurement on particle 1, we create different mixtures of worlds
for particle 2, for example, two worlds with definite s 2z ( for which CF is
true) or two worlds with definite s 2x ( for which CF does not follow).
Although the worlds are different, the two mixtures are physically equiv-
alent for particle 2 and therefore there was no nonlocal action in the physi-
cal universe which incorporates all the worlds. The nonlocality is as
follows: the world (branch) in the MWI is a nonlocal entity which, in our
case, is defined by properties in the location of the two particles. The choice
of a local measurement on particle 1 defines the set of worlds into which
the present world will be split. In this way an action on particle 1 leads to
various sets of possible properties related to particle 2.
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5. APPARENT WEAKNESSES OF THE TIME-SYMMETRIZED

QUANTUM COUNTERFACTUALS

I have to mention a property of definition ( ii) which might be con-
sidered its weakness. The outcome of measurement M performed in the
actual world plays no role in calculating the truth of the counterfactual
statement ( except trivial cases in which P involves a comparison between
the outcome of M and that of M ¢ as in the previous example) . It is
assumed that properties of the outcome of M ¢ are independent on the out-
come of M . This is what standard quantum theory tells us, but this is not
true, in general, for hidden-variable theories: the outcome of M can yield
certain information about hidden variables, information which might help
to ascertain the properties of the outcome of M ¢ . In the framework of the
hidden-variables theories, definition ( ii) is incomplete; we must add a state-
ment about hidden variables, for example, by fixing hidden variables in a
counterfactual world to be equal to the hidden variables in the actual
world. I have adopted this approach two paragraphs above, but it should
be noted that it is explicitly time-asymmetric: the hidden variables are fixed
only in the past. I do not know how to approach the problem of time-sym-
metric hidden variables.

The proposed definitions of counterfactuals ( ii) and ( iii) are also
applicable for counterfactuals in classical physics. However, due to the
determinism of classical theory, we cannot fix independently the results of
a complete set of measurements in the past and the results of the complete
set of measurements in the future. Note that there are certain limitations
of this kind in the quantum case too. For example, consider a spin-1

2 par-
ticle with three consecutive measurements, s z ( t1) = 1, s x ( t) = 1, and
s z ( t2 ) = 2 1 , t1 < t < t2 . Then a counterfactual statement, `̀ If at time t a
measurement of s z were performed instead, the result would be s z ( t) = 1,’’
is neither true or false, but meaningless, because the results of measure-
ments s z ( t1 ) = 1 and s z ( t2) = 2 1 are impossible when s z , instead of s x , is
measured at time t. Nevertheless, such constrains are not strong and they
leave room for numerous nontrivial counterfactuals.

In classical physics the counterfactuals ( ii) have an even more serious
problem. M ¢ consists of measurements of some observables. We can make
a one-to-one correspondence between `̀The outcome of a measurement of
an observable O is o i ’ ’ and `̀ The value of O is o i .’’ The latter is independent
of whether or not the measurement of O has been performed, and there-
fore, statements which are formally counterfactual about results of possible
measurements can be replaced by `̀ factual’’ (unconditional) statements
about values of corresponding observables. In contrast, in standard quantum
theory, observables, in general, do not have definite values and therefore
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we cannot always reduce the above counterfactual statements to `̀ factual’’
statements.

I do not expect that everybody will agree with my proposals for
resolving the controversies discussed above. I hope only that the main
result of this work will not be controversial: a consistent definition of coun-
terfactuals in quantum theory, a definition that is equivalent to the
standard approach for the time-asymmetric cases in which only the past of
the system is given, but that is applicable to the time-symmetric situation
( such as pre- and postselected systems)± ± a definition which is a useful tool
for the analysis of many current problems.
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