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We present a two-party protocol for “quantum gambling,” a new task closely related to coin tossing.
The protocol allows two remote parties to play a gambling game such that in a certain limit it
becomes a fair game. No unconditionally secure classical method is known to accomplish this task.
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Quantum cryptography is a field which combines quanity to have secure (nonideal) coin tossing. Nevertheless,
tum theory with information theory. The goal of this field we were able to construct a protocol which gives a solu-
is to use the laws of physics to provide secure informatiortion to a closely related task. Quantum gambling is very
exchange, in contrast to classical methods based on (usimilar to placing bets at a casino located in a remote site.
proven) complexity assumptions. In particular, quantumAs in a real casino, for instance, when playing roulette, the
key distribution protocols [1] became especially importantplayer’s possible choices give him some probability to win
due to technological advances which allow their imple-twice the amount of his bet or a smaller probability to win a
mentation in the laboratory. However, the last importantigger sum. However, in our protocol the player has only
theoretical result in the field was of a negative characterpartial control over these choices. In spite of its limitations
Mayers [2] and Lo and Chau [3] showed that quantum bitour protocol provides a quantum solution to a useful task,
commitment is not secure. Their work also raised seriousvhich cannot be performed securely today in the classical
doubts on the possibility of obtaining any secure two-partyframework. Assuming ideal apparata and communication
protocol, such as oblivious transfer and coin tossing [4]. Irchannels, the protocol is unconditionally secure, depend-
this Letter we present a secure two-party quantum cryptang solely on the laws of physics.
graphic task—*"quantum gambling,” which has no classi- Let us start by defining exactly the gambling task
cal counterpart. considered here. The casino (Alice) and the player (Bob)

Coin tossing is defined as a method of generating are physically separated, communicating via quantum and
random bit over a communication channel between twalassical channels. The bet of Bob in a single game is
distant parties. The parties, traditionally named Alicetaken for simplicity to be one coin. At the end of a game
and Bob, do not trust each other, or a third party. Theythe player wins one aR coins, or loses one coin (his bet),
create the random bit by exchanging quantum and classicdepending on the result of the game. We have found a
information. At the end of the protocol the generated bitprotocol which implements this game while respecting two
is known to both of them. If a party cheats, i.e., changesequirements: First, the player can ensure that, irrespective
the occurrence probability of an outcome, the other partyf what the casino does, his expected gain is not less than
should be able to detect the cheating. We would consides coins, wheres is a negative function aR which goes to
a coin tossing protocol to be secure if it defines a parametearero whenr goes to infinity. The exact form &f(R) will
such that when it goes to infinity the probability to detectbe specified below. Second, the casino can ensure that,
any finite change of probabilities goes to 1. Using a secur@respective of what the player does, its expected gain is
protocol the parties can make certain decisions dependingpt less than zero coins.
on the value of the random bit, without being afraid that We will now present the protocol, defined by the
the opponent may have some advantage. For instancejles of the game and the strategies the players should
Alice and Bob can play a game in which Alice wins if the follow.
outcome is “0” and Bob wins if it is “1.” Note that if bit The rules of the game-Alice has two boxesA and
commitment were secure, it could be used to implemenB, which can store a particle. The quantum states of
coin tossing trivially: Alice commits bitz to Bob; Bob  the particle in the boxes are denoted f) and |b),
tells Alice the value of bith; the random bit is the parity respectively. Alice prepares the particle in some state and

bit of a andb. sends boxB to Bob.
It is not known today if a secure quantum coin tossing Bob wins in one of the two cases:
protocol can be found [5]. Itis only known thikeal coin (1) If he finds the particle in boR, then Alice pays him

tossing, i.e., in which no party can change the expected digne coin (after checking that bokis empty).
tribution of the outcomes, is impossible [6]. Based on our (2) If he asks Alice to send him bax for verification
efforts in this direction, we are skeptical about the possibil-and he finds that she initially prepared a stéifferentfrom
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lpo) = Ny (la)y + 1b)),

then Alice pays hinR coins.

(1)

In any other case Alice wins, and Bob pays her one

coin.

a different preparation other thaut,) (after failing to find
|b)); the probability for this event il — Pp). Thus, the
expectation value of Bob’s gain is

Gp =P, + (1 — P,)[PpR — (1 — Pp)]. (3)
For the calculations oP, and P, we will consider the

The players’ strategies which ensure (independently) ag,st general state Alice can prepare. In this case the
expectation value of Alice’s gaiG, = 0 (irrespective of _particle may be located not only in boxdsand B, but
Bob’s actions) and an expectation value of Bob's gainysq in other boxes;. The stateda), |b), and|c;) are

Gp = & (irrespective of Alice’s actions) are as follows:  a1ly orthogonal. She can also correlate the particle to
Alice’s strategy—Alice prepares the equally dis- g gncilla|d), such that the most general preparation is

tributed statd i in Eq. (2)].
aob's. Staeay - Aftr foceiin W) = ala) |, + BB 1D, + 3 yiled 190). (4)

Bob’s strategy—After receiving box B, Bob splits
the particle into two parts; specifically, he performs the i

following unitary operation: where|®,), |,), and|d,,) are the states of .the ancilla
andla|?> + |87 + 3, |yi|> = 1. After Bob splits|b), as
1bY = V1 = n1b) + ym1b'), (2)

described by Eq. (2), the state changes to
where(b'|b) = 0. The particular splitting parametey W) = ala)|®,) + BG/T — 1 1b) + 7 |b")|Dy)
he uses isyp = 7(R) (to be specified below). After the : v ’

splitting Bob measures the projection operator on the state + Z yile) | @Y. (5)
|b), and then: ; '

(I) If the measurement yields a positive result, i.e., heThe probability to find the statéh) (in step | of Bob's
finds the particle, he announces to Alice that he won. strategy) is

(1) If the measurement yields a negative result, he asks o= b T2 = 18121 — 6
Alice for box A and verifies the preparation. b |,|< ol IBI( - ©)
This completes the formal definition of our protocol. T Bob does not findb), then the state reduces to
In order to prove the security of the scheme, we will . ,
analyze the average gain of each party as a result of her/ ¥2) = N(a|a> [Pa) + By 167 [Py)
his specific strategy [7]. It is straightforward to see that
Alice’s strategy ensure6, = 0. Alice’s preparation of + Z vilei) |(Dcl>>’ (7)

the statdy) gives Bob no meaningful way of increasing
his odds beyond0%: if he decides to open bo& he has —1/2 AT
a probability of0.5 to win one coin and a probability of (1= n) Bl ] 2. On the other hanq, it Alice prepares
0.5 to lose one coin. He cannot cheat by claiming that héhe statey) instead of W), then at this stage the particle

found the particle when he did not, since Alice learns thdS I the state

result by opening boA. If, instead, he decides to verify _ 1 n ,

the preparation he will find the expected state, so he will l92) = 1+ la) + \/ 1+7 167 (8)

lose one coin. Therefors = 0, and since this is a zero- 15 the best verification measurement of Bob is to make

sum game, Alice’s gain iy = 0, whatever Bob does. 5 h5iection measurement on this state. If the outcome
Now we will prove that Bob, using the splitting param- js negative, Bob knows with certainty that Alice did not

etern = 4, can ensur&p = 5. The values oy andd  pranare the sta The probability of detecting such a
are determined by the calculation of Bob’s expected gaingiffgrent preparﬂ:'fi(gﬁ is giv%n by Y J

whereN is the normalization factor given kv = [1 —

Gp. We will try to maximizeGp under the assumption

— _ 2
that Alice uses the worse strategy for him, namely, the onef’» =1 G2 | W)

which minimizesGg for Bob's particular strategy. There-
fore, we will first minimize the functio;g for any n, and
then we will find the maximum of the obtained function,
with that computingé. We will also compute the value
of n at the peaky, which will be the chosen splitting pa-
rameter of Bob.

Let us first write down the expression f6. Bob gets
one coin if he detects the stdt); denote the probability
for this event to occur byP,. He getsR coins if he
detects a different preparation other thép) (after failing

1 _ a2 a Bn 2

9)
Since Alice wants to minimiz&p, she tries to minimize
both P, and Pp,. From Eg. (9) we see that in order to
minimize Pp, the states of the ancillé®,) and |®;)
have to be identical (up to some arbitrary phase), i.e.,
Kd,| D) = 1. That is, Alice gets no advantage using
an ancilla, so it can be eliminated. Then, in order to

to find the statgb), an event with a related probability maximizeN'|a@ + 87/, Alice should set ally; to zero, as
of 1 — P;); denote the probability to detect a different itis clear from the normalization constraiat|> + |3|> =
preparation byP,,. He loses one coin if he does not detect] — >, |y;|>. This operation has no conflict with the
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minimization ofP,,, since Eq. (6) contains only3|. Also, 2

the maximization is possible if the coefficientsand 3, if 8~ —x" (19)
seen as vectors in the complex space, point in the same

direction. Therefore, Alice gains nothing by taking |

and g8 to be complex numbers; it is sufficient to use real 7 =~ \/: (20)
positive coefficients. Taking all these considerations into 2R

account, the state prepared by Alice can be simplified to

1 1

lyy = 5+e|a>+ E_E|b>' (20)

Now, the state after Bob splité) reads

1 1
lp1) = >t €la) + 5 e/l — nlb)

+ /b)), (11)

and so the probability to fingh) becomes

1

Py =GP = (5 = )0 =m. @2

When Bob does not find the stdte), |41) reduces to
) — V14 2€ela) + n(1 — 2¢e)|b")

2 J1 + 2e + n(1 — 2¢)
which in turn leads to

. (13

L e 2n(l = V1 — 4€2)
Pp =1~ Kl ypI* = A+ 72+ 2 =)
(14)

Substituting Egs. (12) and (14) into Eq. (3), we fi6g
in terms of the splitting parameten, the preparation
parametek andR:

[2¢(1 = %) + m(n + V1 — 4e?)
— (1 =1 - 462)R]. (15)

In order to calculate the minimal gain of Bols,

1
G=_
i 1 +7

irrespective of the particular strategy of Alice, we will first

minimize Gp for € and then maximize the result fer.
8(R) = max,[min. Gg(R, n, €)]. (16)
The calculations yield
1

i Rr2-JREE T
X[2+[R—\/(R+2)2—1}

><|:1—\/R+2—\/(R+2)2—1:“, a7)

obtained for Bob's splitting parameter,

7~7=\/R+2—1/(R-|—2)2—1. (18)

In the range oR > 1, these results can be simplified to

o =

3358

We have shown that if Bob follows his strategy with
n = 7, then his average gain is not less ti&rhis bound
converges td), i.e., to the limit of a fair game, faR — oo.

This is true for any possible strategy of Alice, therefore,
the security of the protocol is established.

To compare our scheme to a real gambling situation,
let us consider the well-known roulette game. A bet of
one coin on the red or black numbers, i.e., half of the
36 numbers on the table, rewards the gambler with one
coin once inl8/38 turns (on average, for a spinning wheel
with 38 slots); this gives an expected gain of abe0t053
coins. To assure the same gain in our schefes 700
is required. Note that extremely large valuespfare
practically meaningless, one reason being the limited total
amount of money in use. Nevertheless, the boundon
is not too restrictive when looking at the first prizes of
some lottery games: a typical value Bf= 10° gives a
reasonably smald of about—0.0014.

It is also interesting to consider the caseRof= 1. This
case corresponds to coin tossing, since it has only two
outcomes: Bob’s gain is either1 coin (stands for bit “0”)
or 1 coin (stands for bit “1”). The minimal average gain
of Bob is about-0.657, which translates to an occurrence
probability of bit 1 of at leash.172 (instead of).5 ideally),
whatever Alice does. This is certainly not a good coin
tossing scheme, however, no classical or quantum method
is known to assure (unconditionall@ny bound for the
occurrence probability of both outcomes.

Our analysis so far was restricted to a single instance
of the game, but the protocol may be repeated several
times. AfterN games Bob’s expected gainisg = N6
and Alice’s expected gain i§4 = 0. Of course, Alice
may now choose a complex strategy using ancillas and
correlations between particles/ancillas from different runs.
In this way she may change the probability distribution of
her winnings, but she cannot reduce the minimal expected
gain of Bob. Indeed, our proof considers the most general
actions of Alice, so the average gain of Bob in each game
is not less thans, and consequently, it is not less then
N after N games. A similar argument is valid for Bob’s
actions, so the average gain of Alice remains non-negative
even afterN games. In gambling games, in addition to
the average gain, it is important to analyze the standard
deviation of the gainAG. Bob will normally accept
to play a game with a negative gain only XGg >
|Ggl (unless he has some specific target in mind). In
a single application of our protocohGg = 1, so the
condition is attained for big enough values Bf [see
Eq. (19)]. However, increasing the number of games
makes the gambling less attractive to Bob: if Alice follows
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the proposed strategjGz| grows asV while AGg grows  party can increase her/his winnings beyond some limit,
only asv/N. Therefore, Bob should accept to plaijtimes ~ which converges td) when R goes to infinity, if the
onlyif N < 1/8% ~ R. opponent follows the proposed strategy. An important
Another important point to consider is the possibleaspect of our protocol is that it shows that secure two-party
“cheating” of the parties. Alice has no meaningful way quantum cryptography is possible, in spite of the failure of
to cheat, since she is allowed to prepare any quantumuantum bit commitment. The possibility of having other
state and she sends no classical information to Bob. Angncryption applications remains an open question.
operation other than preparingy), as adding ancillas We thank H.K. Lo and D. Mayers for enlightening
or putting more/less than one particle in the boxes, justliscussions on bit commitment and coin tossing. This
decreases her minimal gain. Bob, however, may tryresearch was supported in part by Grants No. 614/95 and
to cheat. He may claim that he detected a differeniNo. 471/98 of the Israel Science Foundation. Part of this
preparation other thaify), even when his verification work was done during the 1996 and 1997 Elsag-Bailey
measurement does not show that. If Alice prepares thBoundation research meetings on quantum computation.
initial state |) (with € > 0), she is vulnerable to this
cheating attempt: she has no way to know if Bob is lying
or not. For this reason Alice’s strategy is to prepare
lo) every time, such that any cheating of Bob could [1] C.H. Bennett and G. Brassard, iRroceedings of the

be invariably detected. When both parties follow the IEEE International Conference on Computers, Systems
proposed strategies, i.e,= 0 and n = 7, the game is and Signal ProcesgIEEE, New York, 1984), p. 175;
more fair for Bob than assumed in the proof: A.K. Ekert, Phys. Rev. Lett67, 661 (1991); C.H.
Bennett, Phys. Rev. Let€8, 3121 (1992); L. Goldenberg
and L. Vaidman, Phys. Rev. Left5, 1239 (1995).
G, = —Ga,, = —\/R +2—yR+2?*-1. [2] D. Mayers, Phys. Rev. Let8, 3414 (1997).

(21) [3] H.K. Lo and H.F. Chau, Phys. Rev. Le#8, 3410 (1997).
[4] For other impossible tasks beyond bit commitment, see

For R > 1 we getGp,, =~ —1/v2R, which is approxi- HK. Lo, Phys. Rev. A56, 1154 (1997).
mately half of the value 06 calculated in Eq. (19). [5] Note that if we limit ourselves to spatially extended secure

The discussion up to this point assumed an ideal experi- sites located one near the other, then secure coin tossing
mental setup. In practice errors are unavoidable, of course, Fi” be ,rea“ze?] classically, '?jy sur?ukl]tan(_aous e;(]Change.Of
and our protocol is very sensitive to the errors caused by the ~ INformation at the opposite sides of the sites. The security

. A . . of this method relies on relativistic causality.
devices used in its implementation (communication chan—[e] H.K. Lo and H.F. Chau, inProceedings of the Fourth

nels, Qetectors, etc.). Inthe presence of errors, if the par- Workshop on Physics and Computation, Boston, 1996
ties disagree about the result of a particular runitshould be  (new England Complex Systems Institute, Cambridge,

canceled. If such conflicts occur more than expected based A, 1996), p. 76; Physica (Amsterdam)20D, 177

on the experimental error rate, it means that (at least) one  (1998).

party is cheating, and the game should be stopped. Thg7] Note that, in contrast to other cryptographic protocols, a
most sensitive part to errors is the verification measure-  party who does not follow the specifiestrategyis not
ment of Bob, i.e., the detection of the possible deviation of ~ considered to be a cheater; in this case, however, her/his

the initial state fromyo). In the ideal case, using and minimal gain, G, or G, is not ensured. A cheater is a
the corresponding (the worst for honest Bob), the detec- __ Party who does not obey theles of the game.
tion probability is very smallP;, ~ \/W for R > 1 [8] In the presence of errors an alternative strategy of Bob,

without splitting statgb), is more efficient: Bob requests
box A for verification randomly (at a rate optimized for the
value of R) and measures the projection ) (not on

Clearly, for a successful realization of the protocol, the er-
ror rate has to be lower than this number. Thus, in practice,

the experimental error rate will constrain the maximal pos- ly)). Although for a givenR this strategy offers him
sible value ofR [8]. _ _ _ a lower gain § ~ —2/+/R, for R > 1), it allows using
In conclusion, we have built a simple yet effective a higherr for a given fidelity of the setup, since now

protocol for quantum gambling. We have proved thatno P, = 1/R.
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