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We present a two-party protocol for “quantum gambling,” a new task closely related to coin tossing
The protocol allows two remote parties to play a gambling game such that in a certain limit it
becomes a fair game. No unconditionally secure classical method is known to accomplish this tas
[S0031-9007(99)08868-7]
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Quantum cryptography is a field which combines qua
tum theory with information theory. The goal of this field
is to use the laws of physics to provide secure informati
exchange, in contrast to classical methods based on (
proven) complexity assumptions. In particular, quantu
key distribution protocols [1] became especially importa
due to technological advances which allow their imple
mentation in the laboratory. However, the last importa
theoretical result in the field was of a negative charact
Mayers [2] and Lo and Chau [3] showed that quantum b
commitment is not secure. Their work also raised serio
doubts on the possibility of obtaining any secure two-par
protocol, such as oblivious transfer and coin tossing [4].
this Letter we present a secure two-party quantum cryp
graphic task—“quantum gambling,” which has no class
cal counterpart.

Coin tossing is defined as a method of generating
random bit over a communication channel between tw
distant parties. The parties, traditionally named Alic
and Bob, do not trust each other, or a third party. Th
create the random bit by exchanging quantum and class
information. At the end of the protocol the generated b
is known to both of them. If a party cheats, i.e., chang
the occurrence probability of an outcome, the other pa
should be able to detect the cheating. We would consid
a coin tossing protocol to be secure if it defines a parame
such that when it goes to infinity the probability to dete
any finite change of probabilities goes to 1. Using a secu
protocol the parties can make certain decisions depend
on the value of the random bit, without being afraid th
the opponent may have some advantage. For instan
Alice and Bob can play a game in which Alice wins if the
outcome is “0” and Bob wins if it is “1.” Note that if bit
commitment were secure, it could be used to impleme
coin tossing trivially: Alice commits bita to Bob; Bob
tells Alice the value of bitb; the random bit is the parity
bit of a andb.

It is not known today if a secure quantum coin tossin
protocol can be found [5]. It is only known thatidealcoin
tossing, i.e., in which no party can change the expected d
tribution of the outcomes, is impossible [6]. Based on o
efforts in this direction, we are skeptical about the possib
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ity to have secure (nonideal) coin tossing. Nevertheles
we were able to construct a protocol which gives a sol
tion to a closely related task. Quantum gambling is ver
similar to placing bets at a casino located in a remote si
As in a real casino, for instance, when playing roulette, th
player’s possible choices give him some probability to wi
twice the amount of his bet or a smaller probability to win
bigger sum. However, in our protocol the player has on
partial control over these choices. In spite of its limitation
our protocol provides a quantum solution to a useful tas
which cannot be performed securely today in the classic
framework. Assuming ideal apparata and communicatio
channels, the protocol is unconditionally secure, depen
ing solely on the laws of physics.

Let us start by defining exactly the gambling tas
considered here. The casino (Alice) and the player (Bo
are physically separated, communicating via quantum a
classical channels. The bet of Bob in a single game
taken for simplicity to be one coin. At the end of a gam
the player wins one orR coins, or loses one coin (his bet),
depending on the result of the game. We have found
protocol which implements this game while respecting tw
requirements: First, the player can ensure that, irrespect
of what the casino does, his expected gain is not less th
d coins, whered is a negative function ofR which goes to
zero whenR goes to infinity. The exact form ofdsRd will
be specified below. Second, the casino can ensure th
irrespective of what the player does, its expected gain
not less than zero coins.

We will now present the protocol, defined by the
rules of the game and the strategies the players sho
follow.

The rules of the game.—Alice has two boxes,A and
B, which can store a particle. The quantum states
the particle in the boxes are denoted byjal and jbl,
respectively. Alice prepares the particle in some state a
sends boxB to Bob.

Bob wins in one of the two cases:
(1) If he finds the particle in boxB, then Alice pays him

one coin (after checking that boxA is empty).
(2) If he asks Alice to send him boxA for verification

and he finds that she initially prepared a statedifferentfrom
© 1999 The American Physical Society
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jc0l ­
1

p
2

sjal 1 jbld , (1)

then Alice pays himR coins.
In any other case Alice wins, and Bob pays her o

coin.
The players’ strategies which ensure (independently)

expectation value of Alice’s gainGA $ 0 (irrespective of
Bob’s actions) and an expectation value of Bob’s ga
GB $ d (irrespective of Alice’s actions) are as follows:

Alice’s strategy.—Alice prepares the equally dis-
tributed statejc0l [given in Eq. (1)].

Bob’s strategy.—After receiving box B, Bob splits
the particle into two parts; specifically, he performs th
following unitary operation:

jbl !
p

1 2 h jbl 1
p

h jb0l , (2)

where kb0jbl ­ 0. The particular splitting parameterh

he uses ish ­ h̃sRd (to be specified below). After the
splitting Bob measures the projection operator on the st
jbl, and then:

(I) If the measurement yields a positive result, i.e., h
finds the particle, he announces to Alice that he won.

(II) If the measurement yields a negative result, he as
Alice for box A and verifies the preparation.

This completes the formal definition of our protocol.
In order to prove the security of the scheme, we w

analyze the average gain of each party as a result of h
his specific strategy [7]. It is straightforward to see th
Alice’s strategy ensuresGA $ 0. Alice’s preparation of
the statejc0l gives Bob no meaningful way of increasin
his odds beyond50%: if he decides to open boxB he has
a probability of0.5 to win one coin and a probability of
0.5 to lose one coin. He cannot cheat by claiming that
found the particle when he did not, since Alice learns t
result by opening boxA. If, instead, he decides to verify
the preparation he will find the expected state, so he w
lose one coin. ThereforeGB # 0, and since this is a zero-
sum game, Alice’s gain isGA $ 0, whatever Bob does.

Now we will prove that Bob, using the splitting param
eterh ­ h̃, can ensureGB $ d. The values ofh̃ andd

are determined by the calculation of Bob’s expected ga
GB. We will try to maximizeGB under the assumption
that Alice uses the worse strategy for him, namely, the o
which minimizesGB for Bob’s particular strategy. There-
fore, we will first minimize the functionGB for anyh, and
then we will find the maximum of the obtained function
with that computingd. We will also compute the value
of h at the peak,̃h, which will be the chosen splitting pa-
rameter of Bob.

Let us first write down the expression forGB. Bob gets
one coin if he detects the statejbl; denote the probability
for this event to occur byPb . He getsR coins if he
detects a different preparation other thanjc0l (after failing
to find the statejbl, an event with a related probability
of 1 2 Pb); denote the probability to detect a differen
preparation byPD . He loses one coin if he does not dete
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a different preparation other thanjc0l (after failing to find
jbl); the probability for this event iss1 2 PDd. Thus, the
expectation value of Bob’s gain is

GB ­ Pb 1 s1 2 Pbd fPDR 2 s1 2 PDdg . (3)

For the calculations ofPb andPD we will consider the
most general state Alice can prepare. In this case
particle may be located not only in boxesA and B, but
also in other boxesCi . The statesjal, jbl, and jcil are
mutually orthogonal. She can also correlate the particle
an ancillajFl, such that the most general preparation is

jC0l ­ ajal jFal 1 bjbl jFbl 1
X

i

gijcil jFci l , (4)

where jFal, jFbl, and jFci l are the states of the ancill
andjaj2 1 jbj2 1

P
i jgij

2 ­ 1. After Bob splitsjbl, as
described by Eq. (2), the state changes to

jC1l ­ ajal jFal 1 bs
p

1 2 h jbl 1
p

h jb0ldjFbl

1
X

i

gijcil jFci l . (5)

The probability to find the statejbl (in step I of Bob’s
strategy) is

Pb ­ jjkb j C1ljj2 ­ jbj2 s1 2 hd . (6)

If Bob does not findjbl, then the state reduces to

jC2l ­ N

µ
ajal jFal 1 b

p
h jb0l jFbl

1
X

i

gijcil jFci l
∂

, (7)

whereN is the normalization factor given byN ­ f1 2

s1 2 hd jbj2g21y2. On the other hand, if Alice prepare
the statejc0l instead ofjC0l, then at this stage the particl
is in the state

jc2l ­

s
1

1 1 h
jal 1

r
h

1 1 h
jb0l . (8)

Thus, the best verification measurement of Bob is to m
a projection measurement on this state. If the outco
is negative, Bob knows with certainty that Alice did n
prepare the statejc0l. The probability of detecting such
different preparation is given by

PD ­ 1 2 jjkc2 j C2ljj2

­ 1 2 N 2

Ü
a

p
1 1 h

jFal 1
bh

p
1 1 h

jFbl
Ü2

.

(9)

Since Alice wants to minimizeGB, she tries to minimize
both Pb and PD. From Eq. (9) we see that in order t
minimize PD , the states of the ancillajFal and jFbl
have to be identical (up to some arbitrary phase), i
jkFa j Fblj ­ 1. That is, Alice gets no advantage usin
an ancilla, so it can be eliminated. Then, in order
maximizeN ja 1 bhj, Alice should set allgi to zero, as
it is clear from the normalization constraintjaj2 1 jbj2 ­
1 2

P
i jgij

2. This operation has no conflict with th
3357
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minimization ofPb, since Eq. (6) contains onlyjbj. Also,
the maximization is possible if the coefficientsa andb, if
seen as vectors in the complex space, point in the sa
direction. Therefore, Alice gains nothing by takinga
andb to be complex numbers; it is sufficient to use re
positive coefficients. Taking all these considerations in
account, the state prepared by Alice can be simplified t

jc 0
0l ­

s
1
2

1 e jal 1

s
1
2

2 e jbl . (10)

Now, the state after Bob splitsjbl reads

jc 0
1l ­

s
1
2

1 e jal 1

s
1
2

2 e s
p

1 2 h jbl

1
p

h jb0ld , (11)

and so the probability to findjbl becomes

Pb ­ jjkb jc 0
1ljj2 ­

µ
1
2

2 e

∂
s1 2 hd . (12)

When Bob does not find the statejbl, jc
0
1l reduces to

jc 0
2l ­

p
1 1 2e jal 1

p
hs1 2 2ed jb0lp

1 1 2e 1 hs1 2 2ed
, (13)

which in turn leads to

PD ­ 1 2 jjkc2 j c 0
2ljj2 ­

2hs1 2
p

1 2 4e2 d
s1 1 hd2 1 2es1 2 h2d

.

(14)

Substituting Eqs. (12) and (14) into Eq. (3), we findGB

in terms of the splitting parameterh, the preparation
parametere andR:

GB ­ 2
1

1 1 h

h
2es1 2 h2d 1 hsh 1

p
1 2 4e2 d

2 hs1 2
p

1 2 4e2 dR
i

. (15)

In order to calculate the minimal gain of Bob,d,
irrespective of the particular strategy of Alice, we will firs
minimizeGB for e and then maximize the result forh:

dsRd ­ maxhfmine GBsR, h, edg . (16)

The calculations yield

d ­ 2
1

1 1

q
R 1 2 2

p
sR 1 2d2 2 1

3

(
2 1

∑
R 2

q
sR 1 2d2 2 1

∏

3

"
1 2

r
R 1 2 2

q
sR 1 2d2 2 1

#)
, (17)

obtained for Bob’s splitting parameter,

h̃ ­

r
R 1 2 2

q
sR 1 2d2 2 1 . (18)

In the range ofR ¿ 1, these results can be simplified to
3358
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s
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R

, (19)

h̃ ø

s
1

2R
. (20)

We have shown that if Bob follows his strategy with
h ­ h̃, then his average gain is not less thand; this bound
converges to0, i.e., to the limit of a fair game, forR ! `.
This is true for any possible strategy of Alice, therefor
the security of the protocol is established.

To compare our scheme to a real gambling situatio
let us consider the well-known roulette game. A bet
one coin on the red or black numbers, i.e., half of th
36 numbers on the table, rewards the gambler with o
coin once in18y38 turns (on average, for a spinning whee
with 38 slots); this gives an expected gain of about20.053
coins. To assure the same gain in our scheme,R ­ 700
is required. Note that extremely large values ofR are
practically meaningless, one reason being the limited to
amount of money in use. Nevertheless, the bound ond

is not too restrictive when looking at the first prizes o
some lottery games: a typical value ofR ­ 106 gives a
reasonably smalld of about20.0014.

It is also interesting to consider the case ofR ­ 1. This
case corresponds to coin tossing, since it has only t
outcomes: Bob’s gain is either21 coin (stands for bit “0”)
or 1 coin (stands for bit “1”). The minimal average gain
of Bob is about20.657, which translates to an occurrenc
probability of bit 1 of at least0.172 (instead of0.5 ideally),
whatever Alice does. This is certainly not a good co
tossing scheme, however, no classical or quantum meth
is known to assure (unconditionally)any bound for the
occurrence probability of both outcomes.

Our analysis so far was restricted to a single instan
of the game, but the protocol may be repeated seve
times. AfterN games Bob’s expected gain isGB $ Nd

and Alice’s expected gain isGA $ 0. Of course, Alice
may now choose a complex strategy using ancillas a
correlations between particles/ancillas from different run
In this way she may change the probability distribution o
her winnings, but she cannot reduce the minimal expec
gain of Bob. Indeed, our proof considers the most gene
actions of Alice, so the average gain of Bob in each gam
is not less thand, and consequently, it is not less the
Nd afterN games. A similar argument is valid for Bob’s
actions, so the average gain of Alice remains non-negat
even afterN games. In gambling games, in addition t
the average gain, it is important to analyze the standa
deviation of the gain,DG. Bob will normally accept
to play a game with a negative gain only ifDGB ¿
jGBj (unless he has some specific target in mind).
a single application of our protocol,DGB $ 1, so the
condition is attained for big enough values ofR [see
Eq. (19)]. However, increasing the number of gam
makes the gambling less attractive to Bob: if Alice follow
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the proposed strategy,jGBj grows asN while DGB grows
only as

p
N . Therefore, Bob should accept to playN times

only if N ø 1yd2 , R.
Another important point to consider is the possib

“cheating” of the parties. Alice has no meaningful wa
to cheat, since she is allowed to prepare any quant
state and she sends no classical information to Bob. A
operation other than preparingjc0l, as adding ancillas
or putting more/ less than one particle in the boxes, ju
decreases her minimal gain. Bob, however, may
to cheat. He may claim that he detected a differe
preparation other thanjc0l, even when his verification
measurement does not show that. If Alice prepares
initial state jc

0
0l (with e . 0), she is vulnerable to this

cheating attempt: she has no way to know if Bob is lyin
or not. For this reason Alice’s strategy is to prepa
jc0l every time, such that any cheating of Bob cou
be invariably detected. When both parties follow th
proposed strategies, i.e.,e ­ 0 and h ­ h̃, the game is
more fair for Bob than assumed in the proof:

GBprot ­ 2GAprot ­ 2

r
R 1 2 2

q
sR 1 2d2 2 1 .

(21)

For R ¿ 1 we getGBprot ø 21y
p

2R, which is approxi-
mately half of the value ofd calculated in Eq. (19).

The discussion up to this point assumed an ideal exp
mental setup. In practice errors are unavoidable, of cour
and our protocol is very sensitive to the errors caused by
devices used in its implementation (communication cha
nels, detectors, etc.). In the presence of errors, if the p
ties disagree about the result of a particular run it should
canceled. If such conflicts occur more than expected ba
on the experimental error rate, it means that (at least) o
party is cheating, and the game should be stopped. T
most sensitive part to errors is the verification measu
ment of Bob, i.e., the detection of the possible deviation
the initial state fromjc0l. In the ideal case, using̃h and
the correspondinge (the worst for honest Bob), the detec
tion probability is very small:PD ø

p
2yR3, for R ¿ 1.

Clearly, for a successful realization of the protocol, the e
ror rate has to be lower than this number. Thus, in practi
the experimental error rate will constrain the maximal po
sible value ofR [8].

In conclusion, we have built a simple yet effectiv
protocol for quantum gambling. We have proved that n
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party can increase her/his winnings beyond some lim
which converges to0 when R goes to infinity, if the
opponent follows the proposed strategy. An importan
aspect of our protocol is that it shows that secure two-par
quantum cryptography is possible, in spite of the failure o
quantum bit commitment. The possibility of having othe
encryption applications remains an open question.
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