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Three arguments based on the Greenberger± Horne ± Zeilinger (GHZ) proof of the
nonexistence of local hidden variables are presented. The first is a description of
a simple game which a team that uses the GHZ method will always win. The
second uses counterfactuals in an attempt to show that quantum theory is nonlocal
in a stronger sense than is implied by the nonexistence of local hidden variables
and the third describes peculiar features of time-symmetrized counterfactuals in
quantum theory.

1. INTRODUCTION

Daniel Greenberger has uncovered numerous miracles of the quantum
world. Reading his work on quantum experiments with neutrons( 1 ) led me
to adopt a revolutionary view on the reality of our universe. ( 2) But another
of his discoveries, the Greenberger ± Horne± Zeilinger (GHZ) nonlocality
proof (3) influenced not just my view on quantum reality, but the views of
many thousands of people. I myself have used this work to explain the
power of quantum mechanics to hundreds of students as well as to many
friends. In this paper I discuss three arguments based on the GHZ work.

The first is a version of the GHZ argument which can convert laymen
into admirers of quantum theory by showing the miraculous power of
quantum theory. This is a combination of Mermin’s presentation( 4) of the
GHZ `̀paradox’’ and a story I heard from my students who took a course
`̀Paradoxes in Quantum Probability’’ by Boris Tsirelson at Tel-Aviv
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University. ( 5) Mermin translated the GHZ result to peculiar correlations
between the outcomes of some simple operations. Tsirelson constructed a
certain gambling game for which a quantum team has an advantage
relative to any `̀ classical’’ team by using the setup given in the original Bell
inequalities paper.( 6) I have combined these two works, suggesting a
gambling game based on Mermin’s realization of the GHZ idea. This argu-
ment is presented in Sec. 2. Section 3 is devoted to a discussion in which
this game is considered as a method for obtaining an experimental proof of
nonlocality of quantum theory. The discussion includes also some specula-
tions about possible local hidden variable theories which can explain
experiments with non-ideal detectors.

The second argument was inspired by recent polemics triggered by
Stapp’s proof of the `̀ nonlocality’’ of quantum theory.( 7) He claimed to show,
using Hardy’s setup, ( 8) the nonlocality of quantum theory beyond the result
of Bell, which is the nonexistence of a local hidden variable theory consis-
tent with predictions of quantum theory. I have already reflected on this
subject once( 9) using an analysis of the EPR state of two spin-1/2 particles,
but now I think that the GHZ setup is a better testing ground for Stapp’s
claim. In Sec. 4 I present an argument inspired by Stapp’s work, based on
the GHZ configuration, which shows a contradiction between certain
counterfactual statements. However, in the next section I present my skep-
ticism about the whole program. At this moment I cannot define for myself
what is meant by a `̀ local’’ theory which is not a local hidden variable
theory. Therefore, for me, all that is shown in Stapp’s and my proofs is that
something which I am unable to define does not exist. Thus, the signifi-
cance of the `̀ proofs’’ is not clear to me.

The last argument, presented in Sec. 6, is also related to counterfac-
tuals. Here I want to bring attention to an analysis based on the argument
by Clifton et al. ( 10) about the question of existence of a realistic relativisti-
cally covariant quantum theory. I do not think that one can prove the
nonexistence of a covariant realistic quantum theory, ( 11) but the example
allows one to show a surprising property of time-symmetrized `̀ elements
of reality’’ which I suggest be defined in terms of certain counterfactuals.
I show that such elements of reality do not obey the product rule. Clifton
et al. preferred not to give up the product rule, and in this way they arrived
at a contradiction with the existence of a realistic covariant quantum
theory.

I conclude by explaining how the analysis of the GHZ work led me to
accept the bizarre picture of quantum reality given by the many-worlds
interpretation, (12) according to which all that we see around us is only one
out of numerous worlds which all together comprise the physical universe
described by quantum theory.
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2. HOW TO WIN A GAME USING QUANTUM THEORY

When I have a conversation with a friend who is not a physicist and
I want to show her the miraculous power of quantum theory, I start with
a seemingly innocent puzzle.

I present the following game for a team of three players. The players
are allowed to make any preparations before they are taken to three
remote locations A, B, and C. Then, at a certain time t, each player is
asked one of two possible questions: `̀ What is X?’’ or `̀What is Y ?’’ ( see
Fig. 1). Each player must give an answer which is also limited to only two
possibilities: `̀ 1’’ or `̀ 2 1.’’ They have to give their answer quickly, i.e.,
before the time they might receive a message sent by another player after
the time t.

According to the rules of the game, either all players are asked the X
question or only one player is asked the X question and the other two are
asked the Y question. The team wins if the product of their three answers
is 2 1 in the case of three X questions and is 1 in the case of one X and
two Y questions. My friend is asked what should the team do in order to
win for sure.

Sometimes the problem interests friends immediately and sometimes
they are urged to work on this seemingly children’s puzzle by my promise
that there is something unusual and profound in the solution. Usually, after
less than a half an hour, I get an answer: `̀This is impossible!’’

Fig. 1. A game which only the quantum team can always win. Three separated players
should simultaneously provide a value for X and Y , which might be 1 or 2 1 , such that the
product of the values will satisfy Eq. (1).
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The most effective `̀proof ’’ for this is as follows. Since each player is
not able to get any message from the other players about which questions
they were asked before the time she has to give an answer, it seems that she
cannot gain anything by delaying the decision of which answer to give for
each question until the question is actually asked. Thus, an optimal
strategy should correspond to prior definite decisions of each player which
answers to give for possible questions. But it is easy to prove that any such
strategy cannot ensure winning for all allowed combinations of questions.
Indeed, if it does, then there must be a set of answers {XA , Y A , XB , Y B ,
XC , Y C}, where XA is the answer of the player in A on question X, etc.,
such that the following equations are fulfilled.

XA XB XC = 2 1

XA Y B Y C = 1
(1)

Y A XB Y C = 1

Y A Y B XC = 1

This, however, is impossible, because the product of all left-hand sides of
Eqs. ( 1) is the product of squares of numbers which are ± 1 and therefore it
equals 1, while the product of all right hand sides of these equation yields 2 1.

This is the shortest proof I know. Many people just show this by going
through all possible strategies of deciding in advance the answers to the
questions. After this elaborate exercise my friends have a firm belief that the
task is impossible. At this stage I tell them that using a quantum experi-
ment this can be done. Usually at first my claim is accepted with disbelief,
but when I succeed to persuade them that this is true, their surprise is enor-
mous.

The solution provided by quantum theory( 3, 4) is as follows. Each
member of the team takes with her a spin-1/2 particle. The particles are
prepared in a correlated state (which is usually called the GHZ state):

|GHZ ñ =
1

Ï 2
( | - z ñ A | - z ñ B | - z ñ C 2 | ¯ z ñ A | ¯ z ñ B | ¯ z ñ C ) ( 2)

Now, if a member of the team is asked the X question, she measures s x and
gives the answer which she obtains in this experiment. If she is asked the
Y question, she measures s y instead. Quantum theory ensures that the
team following this strategy always wins. Indeed, a straightforward calcula-
tion shows that the measurements on the system of three spin-1/2 particles
prepared in the state ( 2) fulfill the following relations:
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{ s Ax}{ s Bx}{ s Cx} = 2 1

{ s Ax}{ s By}{ s Cy} = 1
(3)

{ s Ay}{ s Bx}{ s Cy} = 1

{ s Ay}{ s By}{ s Cx} = 1

Here { s Ax} signifies the outcome of the measurement of s x by the player
in A, etc. Let us show, for example, that the first equation is true. In the
spin x bases for all particles the GHZ state [which in (2) is given in the
spin z bases] is

|GHZ ñ = 1
4 [ ( | - x ñ A + | ¯ x ñ A )( | - x ñ B + | ¯ x ñ B )( | - x ñ C + | ¯ x ñ C )

2 ( | - x ñ A 2 | ¯ x ñ A )( | - x ñ B 2 | ¯ x ñ B )( | - x ñ C 2 | ¯ x ñ C ) ]

= 1
2 ( | - x ñ A | - x ñ B | ¯ x ñ C + | - x ñ A | ¯ x ñ B | - x ñ C

+ | ¯ x ñ A | - x ñ B | - x ñ C + | ¯ x ñ A | ¯ x ñ B | ¯ x ñ C ) ( 4)

Therefore, we see explicitly that the GHZ state is a superposition of states
for each of which { s Ax}{ s Bx}{ s Cx} = 2 1.

In the quantum solution of the problem the players do not decide in
advance the answers they’ll give for each out of the two possible questions.
In the `̀proof’’ of the impossibility of this task presented above, it was
erroneously assumed that delaying the decision which answer to give until
the time the question is asked cannot help. The assumption sounds
plausible since relativistic causality prevented sending signals after the time
the questions were asked, but, nevertheless, the assumption is wrong
because it does not take into account unusual correlations which quantum
objects can exhibit.

3. THE GHZ PROOF OF NONEXISTENCE OF LOCAL HIDDEN

VARIABLE THEORIES

Performing the game with spin-1/2 particles as described above might
serve as an experimental proof of the nonexistence of local hidden variables
which produce agreement with experiment. Suppose, however, that Nature
is governed by local hidden variables. This means that the results { s Ax},
{ s Ay}, { s Bx}, { s By} , { s Cx}, { s Cy} exist prior to their measurements, and
therefore, there are answers {XA , Y A , XB , Y B , XC , Y C } prior to the time
the questions are asked. These answers can fulfill at most three out of
the four Eqs. (1), and therefore, in the game in which the four question
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patterns are chosen with equal probability, on average there will be at most
a 75 % success rate of any team playing this game. If a team shows on
average a higher result, this is an experimental proof that Nature is not
governed by local hidden variables.

The most common objection to experiments showing the nonexistence
of local hidden variables is that, due to limited efficiency of detectors,
a significant fraction of particles is lost. If every member of our team using
the quantum strategy described above makes a random choice when she
does not detect the spin component of the particle, then the success rate of
the team is

Prob(win ) = Prob(all detected ) + 1
2 ( 1 2 Prob(all detected ) ) ( 5)

Therefore, to ensure that Prob(win ) > 0.75 ( the maximal value achievable
by a classical team) , so that the nonexistence of the hidden variables is
shown, it is enough that Prob(all detected ) > 0.5, i.e., that the efficiency of
each detector is bigger than 0.51/3 ~ 0.8. Note much more sophisticated
studies of limitations posed by detector efficiencies by Greenberger et al. ( 13)

and Larsson.( 14)

It is interesting to think about possible local hidden variable theories
that can produce results equivalent to those of quantum theory. For the
experiment with limited efficiency detectors in which Prob(all detected ) <
0.5 such a theory exists.( 15 ) The spin-1/2 particles of a GHZ triple, when they
were locally created, and then moved to their locations A, B, and C, carry
with them `̀ instruction kits’’ how to respond to various measurements.
There are instructions for every possible direction of the spin measurement,
which are `̀ up,’’ `̀ down,’’ or `̀be not detected.’’ Indeed, it is always possible
to construct instructions how each spin is to respond to s x and s y measure-
ments such that two of Eqs. ( 3) are fulfilled and just one spin-1/2 particle
has an instruction `̀ be not detected’’ for one of the directions and therefore
the other two Eqs. (3) are not tested. In this situation, on average, in half of
the measurements there will be triple detections for all of which the results
are in accordance with (3). (Note that in this model in every run at least two
particles are detected, i.e., no single or null detections can occur. This is not
expected according to quantum theory, which does not have predictions
about correlations between detection or not detection of particles.)

The naive local hidden variable theory proposed above fails to explain
the GHZ correlations in a more sophisticated setup. Roughly speaking I
propose `̀ teleportation’’( 16 ) of the states of the GHZ particles to three par-
ticles in even more remote locations and testing the GHZ correlations on
the remote particles. Quantum theory predicts such correlations but the
naive local variables theory cannot. Indeed, the remote particles have no
`̀common cause;’’ they were not locally created, and therefore they cannot
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carry with them instruction kits created in a single location. Thus, the
naive hidden variable theory cannot explain why the three remote particles
exhibit quantum correlations.

More precisely, I propose the following experiment. Three EPR pairs
are prepared as for the teleportation of the states of the GHZ particles as
shown in Fig. 2. Then, simultaneously, three Bell operator measurements
are performed on the pairs of spin-1/2 particles consisting of one GHZ par-
ticle and one particle from the EPR pair at A, B, and C. At the same time
spin-x or spin-y components of the three particles at A ¢ , B ¢ , and C ¢ are
measured according to the usual GHZ rule: either three x or just one x and
two y components are measured.

In the original teleportation scheme, ( 16) the outcome of the Bell
measurement is transmitted to the remote particle and a p rotation around
one of the three axes (or no rotation) is performed according to that out-
come. In the proposed experiment, no message is sent and no rotation is
performed, because the spin component measurement is performed before
the message about the result of the Bell measurement could have arrived.
The significance of the Bell measurement is that it makes the connection
between the result of the spin measurement on the remote particle of the
EPR pair and the result of possible direct measurement of the same spin
component of the GHZ particle. For two out of four possible results of the

Fig. 2. A proposal for experiment for ruling out `̀naive’’ local hidden variable theories.
There is a free choice of measurements in A ¢ , B ¢ , and C ¢ and fixed (Bell) measurements in A,
B, and C. Quantum theory predicts certain correlations between the outcomes of these
measurements, but since the particles in A ¢ , B ¢ , and C ¢ had no common origin, they cannot
carry instruction kits to produce such correlations.
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Bell measurement ( corresponding to no rotation and the rotation around
the axis of the direction of the spin component measurement ) measurement
of the remote particle is identical to the direct measurement performed on
the GHZ particle. For two other results, the outcome of the measurement
on the remote particle is `̀ flipped’’ relative to the measurement performed
on the GHZ particle. After taking into account these flips the correlations
between the outcomes of the spin measurements on the remote particles
turn out to be the GHZ correlations.

Since simultaneous detection of nine particles is necessary for the case
when the correlation can be tested, there will be only a small fraction of
such events. But in this setup the remote particles cannot carry with them
instruction kits created at a single place because the particles never were
together at a single location. Therefore, it is not clear how a hidden
variable theory can produce any correlation between the outcomes of the
measurement of the remote particles. I do not have a proof that a more
complicated local hidden variable theory according to which the instruc-
tions for each particles will involve not just dependence on the experimen-
tal setup of the detectors, but also dependence on the local hidden variables
of the other particles, cannot be created. However, it seems to be highly
improbable to have such a theory which would not look artificial.

The GHZ proof is the most clear and persuasive proof of nonexistence
of local hidden variables. In the GHZ example we have perfect correlations
which cannot be reproduced by any local hidden variable theory. This,
however, does not mean that the GHZ-type experiment is the best
candidate for experimental proof of the nonexistence of local hidden
variables. There are serious technological difficulties with experiments
involving GHZ type correlation. [Note, however, that the entanglement
swapping (teleportation), discussed in the modified test of local hidden
variables above, has been performed in the laboratory.( 17)] Today, the best
choices for experimental proof of the nonexistence of local hidden variables
are still experiments based on the two-particle quantum correlations, either
via the original Bell proposal or through ideas of Hardy ( 8) using which one
can construct another game for a two-player team such that the success in
the case of the existence of a local hidden variable theory must be less than
the success predicted by quantum theory.

4. THE STAPP NONLOCALITY ARGUMENT APPLIED TO THE

GHZ SETUP

Recently Stapp( 7) suggested that the nonlocality of quantum theory
goes beyond the nonexistence of a local hidden variable theory. In order to
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prove this, Stapp applied counterfactual reasoning to Hardy’s setup.( 8) I use
here counterfactual arguments about the GHZ setup inspired by Stapp’s
work.

The general locality principle is as follows.

L : Action at a space-like separated region does not change the
outcome of a local measurement .

My understanding of L in the context of recent publications on this sub-
ject is as follows. Assume that in the actual world a quantum experiment
has a certain outcome. Then, in a counterfactual world which differs from
the actual one prior to the measurement only in some actions performed in
a space-like separated region, the outcome of the measurement should be
the same. I believe that this is, essentially, the assumption `̀LOC1’’ of
Stapp’s paper. I suggest extending the meaning of the locality postulate
from comparing actual and counterfactual worlds to comparison between
two counterfactual worlds. Consider two counterfactual worlds in which a
certain measurement is performed. Assume that the two counterfactual
worlds are identical prior to the measurement except for some actions
performed in space-like separated regions. Then the outcomes of the
measurements in the two counterfactual worlds must be the same.

Consider the GHZ setup of three spin-1/2 particles located in three
space-like separated regions. Assume that in the actual world the outcomes
are

{ s Ax} = 1, { s Bx} = 1, { s Cx} = 2 1 (6)

Now consider three counterfactual worlds.

CFW1: s Ax , s By and s Cy are measured.

CFW2: s Ay , s Bx and s Cy are measured.

CFW3: s Ay , s By and s Cx are measured.

Since in the actual and counterfactual worlds which differ only by actions
in regions which are space-like separated from a certain space± time loca-
tion, the outcomes of local measurements in this location should be the
same, we may conclude that the results of s x measurements in the counter-
factual worlds must be identical to those in the actual world, given in (6).
Therefore, in order to fulfill ( 3) we must have

{ s By
CFW 1} = { s C y

CFW 1}

{ s A y
CFW 2} = { s C y

CFW 2} ( 7)

{ s A y
CFW 3} Þ { s By

CFW 3}

623Variations on the GHZ Proof



From the extended argument which considers two counterfactual worlds,
we can deduce that the results of s y measurements must yield identical out-
comes for each pair of the counterfactual worlds. Therefore, we obtain

{ s C y
CFW 1} = { s C y

CFW 2}

{ s By
CFW 1} = { s By

CFW 3} ( 8)

{ s Ay
CFW 2} = { s Ay

CFW 3}

It is easy to see, however, that Eqs. (7) and (8) are inconsistent. This incon-
sistency shows that predictions of quantum theory lead to failure of the
general locality principle L , i.e., that the quantum theory is nonlocal.

My argument might be attacked on the grounds that my extension of
the locality principle to comparison of two counterfactual worlds instead of
the actual world and a counterfactual world is not justified. In the
framework of a hidden variables theory, the justification of my step is tri-
vial, but without hidden variables the justification is not clear. I contend
that without hidden variables even the unextended locality principle ( such
as Stapp’s LOC1) is not clear. Therefore, it is not clear that my proof or
even the original Stapp’s proof shows anything new about the nonlocality
of quantum theory. I discuss this issue in the next section.

5. DO THE STAPP ARGUMENTS SHOW THE NONLOCALITY OF

QUANTUM THEORY BEYOND THE NONEXISTENCE OF

LOCAL HIDDEN VARIABLES?

It seems to me that the answer to the question in the title of this sec-
tion is negative, but I certainly cannot prove it because the truth of this
statement depends crucially on the meaning of `̀nonlocality’’ which differs
widely among physicists and philosophers. What I want to present here are
some arguments relevant to my understanding of nonlocality in this con-
text formed after reading an illuminating discussion by Mermin (18) of the
previous version of Stapp’s nonlocality argument. The title of Mermin’s
paper is, `̀Can You Help Your Team Tonight by Watching on TV? More
Experimental Metaphysics from Einstein, Podolsky, and Rosen.’’ The word
`̀help’’ might be too strong: the question of nonlocality, as I understand it,
is: `̀ Can you change an outcome of the game by an action in a space-like
separated region?’’ A one-sentence summary of my arguments below is: for
counterfactual propositions in the EPR setup the word `̀ change’’ is
meaningless unless the existence of hidden variables is assumed.
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Stapp’s paper (7) generated a very intensive polemic including critical
analysis by Unruh, Mermin, Finkelstein, Griffiths, Shimony, and
myself (19 ± 23, 9) and answers by Stapp.( 24, 25) The ultimate goal of the project,
as I understand it, is to show that quantum theory invariably leads to the
failure of locality principle L . Two relevant results are well known.

( i) According to quantum theory, action at a space-like separated
region does not change the probability of an outcome of a local
measurement.

( ii) If the outcomes of quantum measurements are governed by hidden
variables, then there is an action at a space-like separated region
which does change the outcome of a local measurement.

I argue that there is no meaning for L beyond ( i) and ( ii) .
If we assume the nonexistence of hidden variables, then the outcome

which does not have probability 1 is uncertain prior to the measurement.
Therefore, the only things we can compare are probabilities for an outcome,
strictly speaking, L is meaningless. L can be made meaningful only if we
read `̀ the outcome’’ in L as `̀ the probability of the outcome:’’ then the
meaning of L is ( i) and L is true.

Under the opposite assumption of existence of hidden variables the
meaning of L is ( ii ) and L is false. But this is nothing new; the non-
existence of local hidden variables is known, and a nonlocal hidden
variable theory means exactly the negation of L for some measurements.

The definition of hidden variables is that the outcome of any experi-
ment is known prior to the experiment and the definition of local hidden
variable is that the outcome of any local experiment is known prior to the
experiment. (Frequently, the concept of contextuality is introduced in the
discussion of this issue. This should not change the argument provided that
the context of a local experiment is also local, i.e., relates only to the loca-
tion of the experiment.)

A typical situation for which L is applied in the Stapp type proofs is
that a local quantum measurement has several possible outcomes and a
particular one takes place in the actual world. The locality principle says
that in a counterfactual world, which differs from the actual world in some
action performed in a space-like separated region, the outcome should not
be different . Now, a counterfactual world should be as close as possible to
the actual world. Since the question is about the result of a local measure-
ment, the counterfactual world should be as close as possible to the actual
world prior to the measurement. But since a hidden variable is not
assumed, in the actual world prior to the measurement the outcome is not
known. But if the outcome is not known, then the word `̀different’’ in the
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sentence above describing the locality principle becomes meaningless:
different from what? There is nothing to compare with unless a hidden
variable which determines the outcome is assumed. Therefore, it seems that
there is no meaning for nonlocality of quantum theory beyond the non-
existence of local hidden variables.

Let me quote Stapp’s recent paper: (24)

With fixed initial conditions one can, by making a change in the Lagrangian
in a small space-time region, shift from the actual world to a neighboring possible
world, and prove that the effects of this change are confined to times that lie later
than the cause in every Lorentz frame. The change in the Lagrangian in the small
region can be imagined to alter an experimenter’s choice of which experiment he
will soon perform in that region.

. . .The question, more precisely, is this: Is it possible to maintain in quantum
mechanics, as one can in classical mechanics, the theoretical idea that the one real
world that we experience can be embedded in a set of possible worlds, each of
which obeys the known laws of physics, if ( 1), the experimenters can be imagined
to be able to freely choose between the different possible measurements that they
might perform, and (2) , no such free choice can have any effect on anything that
lies earlier in time in some Lorentz frame.

It was proved in Ref. 7 that with a sufficiently broad definition of `̀ anything’’
the answer to this question is no.

In his proof Stapp considers an actual world with local measurements
in two separate locations which have certain outcomes. Then, using (1) and
(2) , he shows that certain worlds with some alternative measurements
should belong to the set of possible worlds. It seems to me that Stapp
arrived at a contradiction (which he argued implies the nonlocality of
quantum theory) by relying on a tacit assumption that in a possible world,
identical to the actual world in everything prior to a measurement, the
result of the same measurement which was performed in the possible world
must be identical to that of the actual world. Thus, he excludes from the
set of possible worlds those which have different results for the same
measurements given fixed initial condition. However, the quantum theory
predicts random outcomes and therefore this exclusion is not justified.
Saying this again in the language of the previous consideration, this exclu-
sion fixes the outcome prior to a measurement, i.e., this strategy assumes
existence of hidden variables. Note that Shimony, ( 23) in analyzing Stapp’s
proof itself, reached a similar conclusion, i.e., that Stapp’s nonlocality proof
does not go through unless hidden variables are assumed.

The assumption of nonexistence of hidden variables, that is, for exam-
ple, that the outcome of a spin component measurement performed on one
particle out of the EPR pair ( singlet state of two separated spin-1/2 par-
ticles) is not fixed prior to the measurement, leads to some `̀nonlocal
influence’’ : measurement on one particle fixes immediately the outcome of
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possible measurement on the other particle. This, however, does not corre-
spond to the failure of L . We cannot claim that the measurement on one
particle changes the outcome of the measurement performed on the other
particle. The latter is random with or without measurement performed on
the first particle. The `̀ randomness’’ is the same irrespectively of where
it was generated, in the local measurement itself, or in the remote mea-
surement.

Thus, it seems that without assuming hidden variables Stapp’s
arguments cannot show the failure of L . According to my understanding,
Stapp views `̀nonlocality’’ as something different from `̀ the failure of L ’’
and he obviously believes that his proof shows something more than the
existence of an instantaneous fixing of an outcome of a remote possible
measurement ± ± a trivial consequence of the assumption of the nonexistence
of hidden variables and the existence of a `̀ free’’ local agent which choses
the measurement to be performed. After completing this section I found a
similar worry about validity of Stapp’s previous versions of the nonlocality
argument in Section 4.2 of the book by Redhead.( 26)

6. ELEMENTS OF REALITY IN THE GHZ SETUP

Several years ago an interesting argument based on the GHZ setup
was advanced by Clifton et al. ( 10) They arrived at a contradiction assuming
the existence of a realistic covariant description of quantum systems.
Inspired by their work, I constructed time-symmetrized `̀ elements of
reality’’ in terms of which there is no contradiction. The price of removing
the contradiction is a peculiar feature of these elements of reality: their
product rule fails.

I have proposed the following definition of elements of reality: ( 11)

If we can infer with certainty the result of measuring a physical quantity at
time t then, at time t, there exists an element of reality corresponding to this physi-
cal quantity which has a value equal to the predicted measurement result.

This is a modification of what is usually considered to be a necessary
property of an element of reality. The time-symmetrization is in the word
`̀ infer’’ which replaced the asymmetric term `̀predict.’’

Consider three particles prepared in the GHZ state at t1 which were
measured later at time t2 and the results ( 6) were found. Now we can
consider elements of reality which are counterfactual statements about
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measurements at time t, t1 < t < t2 . Just from the fact that the particles are
prepared in the GHZ state, it follows that

{ s Ax s Bx s Cx} = 2 1

{ s Ax s By s Cy} = 1
(9)

{ s Ay s Bx s Cy} = 1

{ s Ay s By s Cx} = 1

Note that these equations are different from (3), which relates to the
product of the outcomes of separate spin component measurements at each
location, while ( 9) relates to the measurement of the products of the spin
components of the GHZ particles. The operators of the products commute
when applied to the GHZ state, and therefore ( 9) are not `̀ true’’ counter-
factuals: they could be called `̀ conditionals’’ because, in principle, they can
be measured together without disturbing each other (not that I know how
to do it). In contrast, Eqs. ( 3) are `̀ true’’ counterfactuals because they can-
not be measured together. However, Eqs. ( 3) are not exactly `̀ elements of
reality.’’ [ I named them `̀generalized elements of reality’’ ( 27) because each
equation yields a certain relation between the outcomes of several
measurements, and not just the value of a single measurement as appears
in the definition of the element of reality.]

Taking into account the results of the measurements at t2 given by (6),
we can derive the following list of elements of reality related to the inter-
mediate time t:

{ s Ay s By} = 2 1

{ s Ay s Cy} = 1 (10)

{ s By s Cy} = 1

Note the difference between application of counterfactuals here and in the
previous section, which allows derivation of (10). In the present section, the
counterfactual worlds have fixed both initial and final conditions, i.e., the
outcomes of the measurements at t1 and t2 , in contrast to the situation in
previous section in which only initial conditions were fixed.

Now we can consider the product of Eqs. ( 10):

{ s Ay s By}{ s Ay s Cy}{ s By s Cy} = 2 1 (11)
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What is peculiar here is that the outcome of the measurement of the
product of the operators appearing on the left-hand side of (11) is also
known with certainty, i.e., we have an element of reality:

{ s Ay s By s Ay s Cy s By s Cy} = { s 2
Ay s 2

By s 2
Cy} = 1 (12)

Thus, we have shown the failure of the product rule for time-symmetrized
elements of reality. The product rule (which holds for time-asymmetric
elements of reality with `̀predict’ ’ instead of `̀ infer’’ ) is, `̀ If A = a is an ele-
ment of reality and B = b is an element of reality, then AB = ab is also an
element of reaiity.’’

7. CONCLUSIONS

I want to finish this paper by stressing again the lesson I learned from
the GHZ proof and other works of Daniel Greenberger. As far as I know,
he himself does not draw this conclusion, but I became a strong believer in
the many-worlds interpretation (MWI) (12) of quantum theory. Only in this
framework do the difficulties of the GHZ setup not lead to nonlocal physi-
cal action. There is no nonlocal action on the level of the theory of the
whole physical universe which incorporates our world and many other
worlds, while we can see that inside a particular world we obtain effectively
a nonlocal action.

According to the MWI, the outcomes (6) take place in one world and
there are, in parallel, three other worlds, corresponding to

{ s Ax} = 2 1 , { s Bx} = 1, { s Cx} = 1;

{ s Ax} = 1, { s Bx} = 2 1 , { s Cx} = 1; ( 13)

{ s Ax} = 2 1 , { s Bx} = 2 1 , { s Cx} = 2 1.

In each location the only change due to the measurement interaction is
that each spin, originally correlated with the states of the two remote spins,
becomes correlated also with a state of a measuring device. However, the
complete local description of each spin, its density matrix, remains
unchanged. On the other hand, `̀ inside’’ a particular world when the par-
ticular outcomes of spin measurements of two particles are taken into
account, the third particle is described by a pure state and therefore its
density matrix is changed. Thus, no nonlocal actions take place in Nature,
but, nevertheless, there is an explanation why we observe seemingly nonlocal
phenomena.
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