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Defending Time-Symmetrised Quantum
Counterfactuals

Lev Vaidman*

Recently, several authors have criticised the time-symmetrised quantum theory
originated by the work of Aharonov, Bergmann and Lebowitz (1964). The core of
this criticism was a proof, appearing in various forms, which showed that the
counterfactual interpretation of time-symmetrised quantum theory cannot be
reconciled with standard quantum theory. I (Vaidman, 1996a, 1997) have argued
that the apparent contradiction is due to a logical error and have introduced
consistent time-symmetrised quantum counterfactuals. Here I repeat my argu-
ments defending the time-symmetrised quantum theory and reply to the criticism
of these arguments by Kastner (1999). ( 1999 Published by Elsevier Science Ltd.
All rights reserved.

1. Introduction

Starting from the seminal work of Aharonov, Bergman and Lebowitz (ABL)
(1964), Aharonov, myself and others are developing a time-symmetrised formal-
ism of quantum theory (TSQT). Recently a particular question related to this
formalism, namely the validity of the counterfactual application of the ABL rule,
became a subject of a signi"cant controversy culminating in the paper by
Kastner (1999). According to the critics some of the recent results obtained in the
framework of the TSQT are based on the counterfactual interpretation of the
ABL rule which, in general, is inconsistent. In recent papers (Vaidman, 1996a,
1997) I have defended the TSQT and, moreover, have introduced time-sym-
metrised counterfactuals for quantum theory for which the ABL rule is valid.
Kastner critically analyses my papers and claims that my defense is not sound.
In this paper I refute Kastner's arguments. For completeness I include the
relevant sections of the papers.
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Lewis, who is probably the main authority on counterfactuals, writes:
&Counterfactuals are infected with vagueness, as everybody agrees' (1986, p. 34).
I do not completely agree. I believe that quantum counterfactuals can be de"ned
unambiguously (as I will do in Section 3). However, it seems that the core of the
current controversy is indeed the ambiguity of the concept of counterfactuals.
Kastner distinguishes between two apparently counterfactual readings of the
ABL rule: the "rst one she considers as &non-counterfactual' and the second is
a &bona ,de counterfactual' (1999, p. 239). She claims that the second reading is
what is frequently applied in the TSQT. I will argue below that it is the "rst
reading which is correct and which has been applied in the framework of the
TSQT. The question whether the "rst reading is &counterfactual' remains a se-
mantic issue. Formally, it is. Moreover, I will argue below that Kastner's second
reading is inconsistent and that all other proposed counterfactual readings of
the ABL rule are either inconsistent or not time-symmetric. Thus, I "nd it
appropriate to use the term &counterfactual' for my (Kastner's "rst) reading.
However, if philosophers "nd it important to spell out the di!erences between
these &non-counterfactual' counterfactuals and &bona ,de counterfactuals' ap-
plied in general analyses, I hope that the current discussion will help in this task.

The plan of this paper is as follows. In Section 2 I brie#y de"ne the time-
symmetrised formalism.1 In section 3 I analyse the concept of counterfactuals in
quantum theory and introduce the time-symmetrised counterfactuals. In Sec-
tion 4 I discuss elements of reality which are examples of quantum counterfac-
tuals. Section 5 is devoted to the analysis of the inconsistency proof of Sharp and
Shanks (1993) and its variations. Section 6 presents a more detailed analysis of
possible counterfactual interpretations of the ABL rule. In Section 7 I analyse
Kastner's readings of the ABL rule, in Section 8 her analysis of the Sharp and
Shanks proof, and in Section 9 her criticism of my de"nition of time-sym-
metrised counterfactuals. Section 10 summarises the arguments of the paper.

2. Time-Symmetrised Formalism

In standard quantum theory a complete description of a system at a given
time is given by a quantum state D(T. It yields the probabilities for all results
c
j
of a measurement at that time of any observable C according to the equation

P (c
j
)"DS(DP

C/c
j

D(TD, (1)

where P
C/c

j

is the projection operator on the subspace de"ned by C"c
j
.

Although it is not manifestly apparent, equation (1) is intrinsically asymmetric in
time: the state D(T is determined by some measurements in the past and it
evolves toward the future. The time evolution between the measurements,
however, is considered time-symmetric since it is governed by the SchroK dinger

1 Sections 2}5 are from Vaidman (1997) and Section 6 from Vaidman (1996a). These are the papers
which Kastner criticises. The text is slightly revised: notation is uni"ed and some English corrections
are made. The full original text of the papers is available electronically.
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equation, for which each solution evolving forward in time has its counterpart
(its complex conjugate with some other well understood simple changes) evolv-
ing backward in time. The asymmetry in time of the standard quantum formal-
ism is manifested in the absence of the quantum state evolving backward in time
from future measurements (relative to the time in question).

Time-symmetrised quantum theory completely describes a system at a given
time by a two-statevector S(

2
DD(

1
T. It yields the (conditional) probabilities for

all results c
j
of a measurement of any observable C at that time according to the

generalisation of the ABL formula (Aharonov and Vaidman, 1991):

P (c
j
)"

DS(
2
DP

C/c
j

D(
1
TD2

+
i
DS(

2
DP

C/c
i

D(
1
TD2

. (2)

The time symmetry means that S(
2
D and D(

1
T enter the equations, and thus

govern the observable results, on an equal footing. Moreover, the time sym-
metry means that, in regard to time-symmetric measurements, a system de-
scribed by the two-statevector S(

2
DD(

1
T is identical to a system described by the

two-statevector S(
1
DD(

2
T. I analyse the time symmetry of the process of

measurement in Section 6 of (Vaidman, 1997); here I only point out that ideal
measurements are time-symmetric. Indeed, the symmetry under the interchange
of S(

2
D and D(

1
T is explicit in equation (2) which refers to ideal measurements.

Another basic concept of the time-symmetrised two-statevector formalism is
weak value. An (almost) standard measurement procedure for measuring observ-
able C with weakened coupling (which we (Aharonov and Vaidman, 1990) call
weak measurement) yields the weak value of C:

C
w
,

S(
2
DCD(

1
T

S(
2
D(

1
T

. (3)

Here again, S(
2
D and D(

1
T enter the equations on an equal footing. However,

when we interchange S(
2
D and D(

1
T, the weak value changes to its complex

conjugate. Thus, in this situation, as for the SchroK dinger equation, time reversal
is accompanied by complex conjugation.

In order to explain how to obtain a quantum system described at a given time
t by a two-statevector S(

2
DD(

1
T, we shall assume for simplicity that the free

Hamiltonian of the system is zero. In this case, it is enough to prepare the system
at time t

1
prior to time t in the state D(

1
T, and to ensure no disturbance between

t
1

and t as well as between t and t
2
, and to "nd the system at t

2
in the state D(

2
T.

It is crucial that t
1
(t(t

2
, but the relation between these times and &now' is not

"xed. The times t
1
, t, t

2
might all be in the past, or we can discuss future

measurements and then they are all in the future; we just have to agree to discard
all cases when the measurements at time t

2
does not yield the result correspond-

ing to the state D(
2
T.

Note the asymmetry between the measurement at t
1

and the measurement at
t
2
. Given an ensemble of quantum systems, it is always possible to prepare all of

them in a particular state D(
1
T, but we cannot ensure "nding the system in
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a particular state D(
2
T. Indeed, if the pre-selection measurement yielded a result

di!erent from projection on D(
1
T we can always change the state to D(

1
T, but if

the measurement at t
2

did not show D(
2
T, our only choice is to discard such

a system from the ensemble. This asymmetry, however, is not relevant to the
problem we consider here. We study the symmetry relative to the measurements
at time t for a given pre- and post-selected system, and we do not investigate the
time symmetry of obtaining such a system. The only important detail is that the
interaction at time t has to be time-symmetric. See Section 6 of Vaidman (1997)
for a more detailed discussion of these issues.

3. Counterfactuals

A general form of a counterfactual statement is

De,nition (i). If it were that A, then it would be that B.

There are many philosophical discussions of the concept of counterfactuals and
especially on time's arrow in counterfactuals. Many of the discussions (e.g.
Lewis, 1986; Bennett, 1984) are related to A: how come A if in the actual world
A is not true? Do we need a miracle (a violation of a fundamental law of nature)
for A? Does A come by itself, or it is accompanied by other changes? However,
these questions are not relevant to the problem of counterfactuals in quantum
theory. The questions about A are not relevant because A depends solely on an
external system, which is not under discussion by the de"nition of the problem.
Indeed, in quantum theory the counterfactuals have a very speci"c form:2

A"a measurement M is performed,

B"the result of M has property P.

The measurement M might consist of measurements of several observables
performed together. The property P might be a certain relation between the
results of measurements of these observables or a probability for a certain
relation or for a certain result.

It is assumed that the experimenter can make any decision about which
measurement to perform and the question how he makes this decision is not
considered. It is assumed that the experimenter and his measuring devices are
not correlated in any way with the state of the system prior to the measurement.
Thus, in the world of the quantum system no miracles are needed and no
changes relative to the actual world have to be made for di!erent A's.3

2 This de"nition of counterfactuals in quantum theory is broad enough for discussing issues
relevant to this paper. However, in some cases the term &counterfactuals' has been used di!erently.
For example, in Penrose (1994, p. 240) &counterfactuals are things that might have happened,
although they did not in fact happen'.
3 The indeterminism of standard quantum theory allows us even to discuss worlds which include
the experimenter without invoking miracles. As an example, consider an experimenter who chooses
between di!erent measurements according to a random result of another quantum experiment.
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Although one can de"ne counterfactuals of this form in the framework of
classical theory, they are of no interest because they are equivalent to some
&factual' statements. In classical physics any observable always has a de"nite
value and a measurement of the observable yields this value. Therefore, there is
a one-to-one correspondence between &the result of a measurement of an
observable C is c

j
' and &the value of C is c

j
'. The latter is independent of whether

the measurement of C has been performed or not and, therefore, statements
which are formally counterfactual about results of possible measurements can
be replaced by &factual' (unconditional) statements about values of correspond-
ing observables. In contrast, in standard quantum theory, observables do not in
general have de"nite values and therefore we cannot always reduce the above
counterfactual statements to &factual' statements.

Most of the discussions of counterfactuals in quantum theory are in the
context of EPR}Bell-type experiments. Some examples are Skyrms (1982), Peres
(1993), Mermin (1989) (which, however, does not use the word &counterfactual'),
Ghirardi and Grassi (1994) and Bedford and Stapp (1995): the last of these
presents an analysis of a Bell-type argument in the formal language of Lewis'
(1973) theory of counterfactuals. In these discussions, the common scenario is
that a composite system is described at a certain time by some entangled state
and then an array of incompatible measurements on this system at a later time is
considered. Various conclusions are derived from statements about the results of
these measurements. Since these measurements are incompatible they cannot all
be performed together, so that necessarily at least some of them were not
actually performed. This is why they are called counterfactual statements.

These counterfactuals are explicitly asymmetric in time. The asymmetry is neither
in A nor in B; both are about a single time t. The asymmetry is in the description
of the actual world. The past and not the future (relative to t) of a system is given.

This, however, is not the only asymmetry of the counterfactuals in quantum
theory as they are usually considered. A di!erent asymmetry (although it looks
very similar) is in what we assume to be &"xed', i.e. which properties of the actual
world we assume to be true in possible counterfactual worlds. The past and not
the future of the system is "xed.

It seems that while the "rst asymmetry can be easily removed, the second
asymmetry is unavoidable. According to standard quantum theory a system is
described by its quantum state. In the actual world, in which a certain measure-
ment has been performed at time t (or no measurement has been performed at t)
the system is described by a certain state before t, and by some state after time t.
In the counterfactual world in which a di!erent measurement was performed at
time t, the state before t is, of course, the same, but the state after time t is
invariably di!erent (if the observables measured in actual and counterfactual
worlds have di!erent eigenstates). Therefore, we cannot hold "xed the quantum
state of the system in the future.4

4 Note that none of these asymmetries exists in the classical case because when a complete
description of a classical system is given at one time, it "xes the complete description at all times and
(ideal) measurements at time t do not change the state of a classical system.
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The argument above shows that for constructing time-symmetric counterfac-
tuals we have to give up the description of a quantum system by its quantum
state. Fortunately we can do that without loosing anything except the change
due to the measurement at time t which caused the di$culty. A quantum state at
a given time is completely de"ned by the results of a complete set of measure-
ments performed prior to this time. Therefore, we can take the set of all results
performed on a quantum system as a description of the world of the system
instead of describing the system by its quantum state. (This proposal will also
help to avoid ambiguity and some controversies related to the description of
a single quantum system by its quantum state.) Thus, I propose the following
de"nition of counterfactuals in the framework of quantum theory:

De,nition (ii). If a measurement M were performed at time t, then it would
have property P, provided that the results of all measurements performed on
the system at all times except the time t are "xed.

For time-asymmetric situations in which only the results of measurements
performed before t are given (and thus only these results are "xed), this de"nition
of counterfactuals is equivalent to the counterfactuals as they have usually been
used. However, when the results of measurements performed on the system both
before and after the time t are given, De"nition (ii) yields novel time-sym-
metrised counterfactuals. In particular, for the ABL case, in which complete
measurements are performed on the system at t

1
and t

2
, t

1
(t(t

2
, we obtain:

De,nition (iii). If a measurement of an observable C were performed at time t,
then the probability for C"c

j
would equal P (c

j
), provided that the results of

measurements performed on the system at times t
1

and t
2

are "xed.

The ABL formula (2) yields correct probabilities for counterfactuals de"ned as
in De"nition (iii). That is: in the experiment in which C is measured at time t on
the systems from a pre- and post-selected ensemble de"ned by "xed results of the
measurements at t

1
and t

2
(all such systems and only such systems are con-

sidered), the frequency of result c
j
is P (c

j
), where P (c

j
) is as given by (2).

For the ABL situation one can also de"ne a time-asymmetric counterfactual:

De,nition (iv). Given the results of measurements at t
1

and t
2
, t

1
(t(t

2
(in

the actual world), if a measurement of an observable C were performed at time
t, then the probability for C"c

j
would equal P (c

j
), provided that the results

of all measurements performed on the system at all times before time t are "xed.

In the framework of standard quantum theory the information about the result
of measurement at t

2
is irrelevant: the probability for C"c

j
does not depend on

this result. Thus, it is obvious that the ABL formula (2), which includes the result
of the measurement at time t

2
explicitly, does not yield counterfactual probabil-

ities according to De"nition (iv).
One might modify De"nition (iv) in the framework of some &hidden variable'

theory with a natural additional requirement of "xing the hidden variables of
the system in the past. The properties of such counterfactuals will depend
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crucially on the details of the hidden variable theory (see the discussion by
Aharonov and Albert (1987) in the framework of Bohm's theory), but the ABL
formula (2) is not valid for any such modi"cation. In order to show this consider
a spin-1

2
particle which was found at t

1
and at t

2
in the same state DC

z
T (and no

measurement has been performed at t). We ask what is the (counterfactual)
probability for "nding spin &up' in the direction m) which makes an angle h with
the direction z' , at the intermediate time t. In this case, hidden variables, even if
they exist, cannot change that probability because any particle found at t

1
in the

state DC
z
T, irrespectively of its hidden variable, yields the result &up' in the

measurement at t
2
. Therefore, the statistical predictions about the intermediate

measurement at time t must be the same as for the pre-selected-only ensemble
(these are identical ensembles in this case), i.e.

P (Cm)"DSCmDCz
TD2"cos2(h/2). (4)

The ABL formula, however, yields:

P(Cm)"
DSC

z
DP
tm
DC

z
TD2

DSC
z
DP
tm
DC

z
TD2#DSC

z
DP
sm
DC

z
TD2

"

cos4(h/2)

cos4(h/2)#sin4(h/2)
. (5)

The fact that the ABL formula (2) does not hold for the counterfactuals de"ned
in (iv) or its modi"cations is not surprising. De"nition (iv) is explicitly asymmet-
ric in time. The ABL formula, however, is time-symmetric and therefore it can
hold only for time-symmetrised counterfactuals.

A recent study of time's arrow and counterfactuals in the framework of
quantum theory by Price (1996) seems to support my De"nition (ii). Let me
quote from his section &Counterfactuals: What Should We Fix?':

Hold "xed the past, and the same di$culties arise all over again. Hold "xed merely
what is accessible, on the other hand, and it will be di$cult to see why this course
was not chosen from the beginning (1996, p. 179).

This quotation looks very much like my proposal. Indeed, I "nd many arguments
in his book pointing in the same direction. However, in fact, this quotation
represents a time asymmetry: according to Price &merely what is accessible' is &an
accessible past'. But this is not the time asymmetry of the physical theory; Price
writes that &no physical asymmetry is required to explain it'. Although the book
includes an extensive analysis of a photon passing through two polarisers* the
classic set-up for the ABL formula* I found no explicit discussion of a possible
measurement in between the polarisers, i.e. of the problem we discuss here.5

5 Price brie#y and critically mentions the ABL paper. He writes (1996, p. 208): &What they [ABL]
fail to note, however, is that their argument does nothing to address the problem for those who
disagree with Einstein* those who think that the state function is a complete description, so that
the change that takes place on measurements is a real change in the world, rather than merely
a change in our knowledge of the world'. This seems to me an unfair criticism: ABL clearly state that
in the situations they consider &the complete description' is given by two wave functions (see
Aharonov and Vaidman (1991) for a more detailed discussion). Moreover, it seems to me that the
development of this time-symmetrised quantum formalism is not too far from the spirit of &advanced
action' * Price's vision of the solution of the problem of time's arrow.
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4. Elements of Reality

Among the important counterfactuals in quantum theory are &elements of
reality'. For comparison, I will start with a de"nition of a time-asymmetric
element of reality:

De,nition (v). If we can predict with certainty that the result of measuring at
time t an observable C is c, then, at time t, there exists an element of reality
C"c.

This is, essentially, a quotation from Redhead (1987, p. 72). However, there is
a signi"cant di!erence: I consider this counterfactual sentence as the de,nition of
the concept of elements of reality, while Redhead considers it as a su$cient
condition for the existence of an element of reality. Redhead was inspired by the
criterion for elements of reality by Einstein, Podolsky and Rosen (EPR). In spite
of the similarity in its form, the EPR criterion is very di!erent: &If, without in any
way disturbing the system, we can predict with certainty the value of a physical
quantity [...] '. The crucial di!erence is that &predict' in the EPR criterion means
to "nd out using certain (non-disturbing) measurements, while in my de"nition
&predict' means to deduce using existing information. Thus, for two spin-1

2
particles in a singlet state, the value of a spin component of a single particle in
any direction is an element of reality in the EPR sense (it can be found out by
measuring another particle), while there is no element of reality for a spin
component value in any direction according to my de"nition (in the EPR state,
the probability to "nd spin &up' in any direction is 1

2
).

De"nition (v) of elements of reality is asymmetric in time because of the word
&predict'. I have proposed a modi"cation of this de"nition applicable for time-
symmetric elements of reality (Vaidman, 1993):

De,nition (vi). If we can infer with certainty that the result of measuring at
time t an observable C is c, then, at time t, there exists an element of reality
C"c.

The word &infer' is neutral relative to past and future. The inference about results
at time t is based on the results of measurements on the system performed both
before and after time t. Note that in some situations we can &infer' more facts
than can be obtained by &prediction' based on the results in the past and
&retrodiction' based on the results in the future (relative to t) together.6

The di!erence between de"nitions of &elements of reality', (v) and (vi), and
de"nitions of counterfactuals in quantum theory, (iii) and (iv), is that the

6 For example, for a spin-1
2

particle, results of measurements in the past can lead to prediction of
a certain result of a spin-component measurement at most for a single direction. The same is true for
retrodiction based on the results of measurements in the future and, therefore, prediction and
retrodiction can lead to certain results of spin-component measurements at the intermediate time
for, at most, two directions. Nevertheless, in the example given by Vaidman et al. (1987, p. 15),
inference from particular results of measurements in the past and in the future taken together lead to
certain results of spin component measurements for a continuum of directions.
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property P in (v) and (vi) is constrained to be &the result of measuring at time t of
an observable C is c'. In fact, time-asymmetric &elements of reality' (v), de"ned as
&predictions', do not represent &interesting' counterfactuals. There is no non-
trivial set of such counterfactual statements, i.e. any set of such statements can
be tested on a single system. Indeed, all observables the measurement of which
yield some results with certainty for a pre-selected system can be tested together.
One way to extend the de"nition of time-asymmetric elements of reality in order
to get non-trivial counterfactuals is to consider &multiple-time measurements'
(instead of measurements at time t only). Another extension, which corresponds
to numerous analyses in the literature (e.g. references on quantum counterfac-
tuals mentioned above), is to go beyond statements about observables which
have de"nite values:

De,nition (vii). If we can predict with certainty a relation between the results
ca of measuring at time t a set of observables Ca, then, at time t, there exists
a &generalised element of reality' which is this relation between the ca's.

A simple example of this kind is a system of two spin-1
2

particles prepared, at
t
1
, in a singlet state

D(
1
T"

1

J2
(DCT

1
DBT

2
!DBT

1
DCT

2
). (6)

We can predict with certainty that the results of measurements of spin compo-
nents of the two particles ful"ll the following two relations:

Mp
1x

N#Mp
2x

N"0, (7)

Mp
1y

N#Mp
2y

N"0, (8)

where Mp
1x

N signi"es the result of a measurement of the x-component of the spin
of the "rst particle, etc. The relations (7) and (8) represent a set of generalised
elements of reality of type (vii). This is a non-trivial set of counterfactuals
because (7) and (8) cannot be tested together: the measurement of p

1x
disturbs

the measurement of p
1y

just as the measurement of p
2x

disturbs the measure-
ment of p

2y
.

In contrast, the set of elements of reality of type (v) given by

Mp
1x
#p

2x
N"0, (9)

Mp
1y
#p

2y
N"0 (10)

can be tested on a single system; see Aharonov et al. (1986) for a description of
such measurements. Yet another set of counterfactuals, which consists of de"nite
statements about measurements, but which does not belong to the type (v)
because they concern two-time measurements performed at two di!erent times
t
1

and t
2
, cannot be tested on a single system:

Mp
1x

(t
1
)#p

2x
(t
2
)N"0, (11)

Mp
1y

(t
2
)#p

2y
(t
1
)N"0. (12)
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Note also a situation which involves only a single free spin-1
2

particle. The
particle is prepared, before t

1
, t

1
(t

2
(t

3
, in the state DC

y
T. Then, a nontrivial

set of counterfactuals is:

Mp
x
(t
1
)!p

x
(t
3
)N"0, (13)

Mp
y
(t
2
)N"1. (14)

In this example, however, statement (13) has a somewhat di!erent character
because it depends not on the results of measurements performed on the particle
before or after the period of time (t

1
, t

2
), but on the fact that the system was not

disturbed during this period of time.

5. Inconsistency Proofs

The key point of the criticism of the time-symmetrised quantum theory (Sharp
and Shanks, 1993; Cohen, 1995; Miller, 1996) is the con#ict between counterfac-
tual interpretations of the ABL rule and predictions of quantum theory. I shall
argue here that the inconsistency proofs are unfounded and therefore the
criticism essentially falls apart.

The structure of all these inconsistency proofs is as follows. Three consecutive
measurements are considered. The "rst is the preparation of the state D(

1
T at

time t
1
. The probabilities for the results c

j
of the second measurement at time

t are considered. The "nal measurement at time t
2

is introduced in order to
allow the analysis using the ABL formula. Sharp and Shanks consider three
consecutive spin-component measurements of a spin-1

2
particle in di!erent

directions. Cohen analyses a particular single-particle interference experiment.
It is a variation of the Mach}Zehnder interferometer with two detectors for the
"nal measurement and the possibility of placing a third detector for the inter-
mediate measurement. Finally, Miller repeated the argument for a system of
tandem Mach}Zehnder interferometers. In all these cases the &pre-selection only'
situation is considered. It is unnatural to apply the time-symmetrised formalism
to such cases. However, it must be possible. Thus, I need not show that the
time-symmetrised formalism has an advantage over the standard formalism for
describing these situations, but only that it is consistent with the predictions of
the standard quantum theory.

In the standard approach to quantum theory the probability for the result of
a measurement of C at time t is given by equation (1). The claim of all the proofs
is that the counterfactual interpretation of the ABL rule yields a di!erent result.
In all cases the "nal measurement at time t

2
has two possible results which we

signify as &1
f
' and &2

f
'. The suggested application of the ABL rule is as follows.

The probability for the result c
j
is:

P (C"c
j
) " P (1

f
))P(C"c

j
D1

f
)#P (2

f
))P(C"c

j
D2

f
), (15)
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where P (C"c
j
D1

f
) and P (C"c

j
D2

f
) are the conditional probabilities given by

the ABL formula, equation (2), and P (1
f
) and P (2

f
) are the probabilities for the

results of the "nal measurement. In the proofs, the authors show that equation
(15) is not valid and conclude that the ABL formula is not applicable to their
example and therefore that it is not applicable in general.

I will argue that the error in calculating equality (15) is not in the conditional
probabilities given by the ABL formula, but in the calculation of the probabil-
ities P (1

f
) and P (2

f
) of the "nal measurement. In all three cases it was calculated

on the assumption that no measurement took place at time t. This is the error:
one cannot make this assumption here since then the discussion about the
probability of the result of the measurement at time t is meaningless. Unper-
formed measurements have no results (Peres, 1978). Thus, there is no surprise
that the value for the probability P (C"c

j
) obtained in this way comes out

di!erent from the value predicted by the quantum theory.
Straightforward calculations show that if one uses the formula (15) with the

probabilities P(1
f
) and P (2

f
) calculated on the condition that the intermediate

measurement has been performed, then the result is the same as predicted by the
standard formalism of quantum theory. Consider, for example, the experiment
suggested by Sharp and Shanks: consecutive spin measurements with the three
directions in the same plane and with relative angles h

ab
and h

bc
. The probability

for the "nal result &up' is

P (1
f
)"cos2(h

ab
/2)cos2(h

bc
/2)#sin2(h

ab
/2)sin2(h

bc
/2), (16)

and the probability for the "nal result &down' is

P (2
f
) "cos2(h

ab
/2)sin2(h

bc
/2)#sin2(h

ab
/2)cos2(h

bc
/2). (17)

The ABL formula yields

P(upD1
f
)"

cos2(h
ab
/2)cos2(h

bc
/2)

cos2(h
ab
/2)cos2(h

bc
/2)#sin2(h

ab
/2)sin2(h

bc
/2)

(18)

and

P (upD2
f
)"

cos2(h
ab

/2)sin2(h
bc
/2)

cos2(h
ab

/2)sin2(h
bc
/2)#sin2(h

ab
/2)cos2(h

bc
/2)

. (19)

Substituting all these equations into equation (15) we obtain

P (up)"cos2(h
ab
/2). (20)

This result coincides with the prediction of standard quantum theory. It is
a straightforward exercise to show in the same way that no inconsistency arises
in the examples of Cohen7 and Miller either.

7 In Cohen's example the measurement at time t
2

is not a complete measurement and therefore the
ABL formula (2) is not applicable to this case. The analysis requires a generalisation of the ABL
formula given in Vaidman (1998a).
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I have shown that one can apply the time-symmetrised formalism, including
the ABL formula, to analyse the examples which allegedly lead to contradictions
in the inconsistency proofs. In my analysis there was nothing &counterfactual'.
The proofs, however, claimed to show that a &counterfactual interpretation' of
the ABL rule leads to contradiction. What I have shown is that the examples
presented in the proofs do not correspond to counterfactual situations and this
is why they cannot be analysed in a counterfactual way. The contradictions in
the proofs arise from a logical error in taking together the statement &no
measurement has been performed at t' and a statement about the probability of
a result of this measurement which requires that &the measurement has been
performed at t'.

Let me demonstrate how similar erroneous &counterfactual' reasoning can lead
to a contradiction in quantum theory even in cases when the ABL rule is not
involved. Consider two consecutive measurements of p

x
performed on a spin-1

2
particle prepared in a state DC

z
T. Let us ask (using the language of Sharp and

Shanks): what is the probability that these measurements would have had the
results p

x
(t
1
)"p

x
(t
2
)"1, given that no such measurements in fact took place?

Each spin measurement, if performed separately, has probability 1
2

for the result
p
x
"1. According to standard quantum theory the fact that in the actual world

the measurement at t
1

has been performed and p
x
(t
1
)"1 has been obtained does

not ensure that in a counterfactual world in which p
x
was not measured at t

1
, but

at a later time t
2
, the result has to be p

x
(t
2
)"1. Rather, we still have probability 1

2
for this result. Thus, Sharp and Shanks' counterfactual reasoning leads us to the
erroneous result that the probability for the results p

x
(t
1
)"p

x
(t
2
)"1 is 1

2
]1

2
"1

4
.

6. Counterfactual Interpretations of the ABL Probability Rule8

In this section I shall consider three ways to interpret the &counterfactual
interpretation'. The "rst interpretation I cannot comprehend, but I have to
discuss it since it has been proposed and used in the criticism of the time-
symmetrised quantum theory. I believe that I understand the meaning of the
second interpretation, but I shall argue that it is not appropriate for the problem
which is discussed here. The last interpretation is the one I want to adopt and
I shall present several arguments in its favour.

Interpretation (a). Counterfactual probability as the probability of the result of
a measurement which has not been performed.

Let me quote Sharp and Shanks:

[...] for, conditionalizing upon speci"ed results of measurements of M
I

and M
F
,

there is no reason to assign the same values to the following probabilities: the

8 This section, taken from Vaidman (1996a), is, in fact, a preliminary version of Section 3, taken from
Vaidman (1997). I bring it here because it discusses several points in more detail and mostly because
Kastner refers explicitly to the text of this section.
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probability that an intervening measurement of M had the result mj given that
such a measurement in fact took place, and the probability that intervening
measurement would have had the result mj given that no such intervening measure-
ment of M in fact took place. In other words there is no reason to identify
Prob(M"mjDE

M
[ti

I
, tk

F
]) and Prob(M"mjDE[ti

I
, tk

F
]) (1993, p. 491).

I cannot comprehend the meaning of the probability for the result M"mj

given that the measurement M has not taken place. As far as I can see
Prob(M"mjDE[ti

I
, tk

F
]) has no physical meaning. Sharp and Shanks continue:

(For a classical illustration, consider a drug which, if injected to facilitate a medical
test at t, has an e!ect, starting shortly after the test and persisting past t

F
, on the

value of the tested variable. Suppose that it is unknown whether a test was
conducted at t, but that a value for the tested variable is obtained at t

F
. Using the

value at t
F
, we would estimate di!erently the value prior to t depending on whether

we assume that a test did or did not take place at t.)

This might explain what they have in mind, but the argument does not hold
good since in many situations there is no quantum mechanical counterpart to
the classical case of &the value [of a tested variable] prior to t' . In standard
quantum theory unperformed experiments have no results (again, see Peres, 1978).

Cohen and Hiley partially acknowledge the problem, admitting that at least
in the framework of the orthodox interpretation this is a meaningless concept:

In other words we cannot necessarily assume that the ABL rule will yield the
correct probabilities for what the results of the intermediate measurements would
have been, if they had been carried out, in cases where these measurements have
not actually been carried out. In fact, this sort of counterfactual retrodiction has no
meaning in the orthodox (i.e., Bohrian) interpretation of quantum mechanics,
although it can legitimately be discussed within the standard interpretation and
within some other interpretations of quantum mechanics (see, for example, Bohm
and Hiley [1993]) (1996, p. 3).

I fail to understand Interpretation (a) in any framework. Maybe, if we restrict
ourselves to the cases in which the system at the intermediate time is in an
eigenstate of the variable which we intended to measure (but which we did not
measure), we can associate the probability 1 with such unperformed measure-
ments. This is close to the idea of Cohen (1995) to consider counterfactuals in the
restricted cases corresponding to consistent histories introduced by Gri$th
(1984). But, as far as I can see, interesting situations do not correspond to
consistent histories, and therefore no novel (relative to classical theory) features
of quantum theory can be seen in this way. It is possible that what Cohen and
Hiley (1996) have in mind is the interpretation (b) which I shall discuss next.

Interpretation (b). Counterfactual probability as the probability of the result of
a measurement were it to be performed, based on the information about the world
in which the measurement has not been performed.9

9 This interpretation is equivalent to De"nition (iv) of Section 3. Note the discussion following
De"nition (iv) which is relevant for Interpretation (b) but is not repeated here.
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At time t
1
we preselect the state D(

1
T. We do not perform any measurement at

time t. We perform a measurement at time t
2

and "nd the state D(
2
T. We ask,

what would be the probability for the results of a measurement performed at
time t in a world which is identical to the actual world at time t

1
.

This is a meaningful concept, but I believe that it is not adequate for
discussing pre- and post-selected quantum systems because it is explicitly
asymmetric in time. The counterfactual world is identical to the actual world at
time t

1
and might not be identical to it at time t

2
.

Interpretation (c). Counterfactual probability as the probability for the results of
a measurement if it had been performed in the world &closest' to the actual world.10

This is identical in form and spirit to the theory of counterfactuals of Bennett
(1984), although the context of the pre- and post-selected quantum measure-
ments is somewhat beyond what he considered. This interpretation is explicitly
time-symmetric. The formulation of Interpretation (c) given above, however,
does not specify it completely and I shall now explain what I mean (in particular,
what I mean by the word &closest').

I have to specify the concept of &world'. There are many parts of the world
which do not interact with the quantum system in question, so their states are
irrelevant to the result of the measurement. In our discussion we might include
all these irrelevant parts, or might not, without changing any of the conclusions.
There are other aspects of the world which are certainly relevant to the
measurement at time t, but we postulate that they should be disregarded.
Everything which is connected to our decision to perform the measurement at
time t and all the records of the result of that measurement are not considered.
Clearly, the counterfactual world in which a certain measurement has been
performed is di!erent from an actual world in which, let us assume, no measure-
ment has been performed at time t. The profound di!erences are both in the
future where certain records exist or do not exist, and in the past which must be
di!erent since one history leads to performing the measurement at time t and
another history leads to no measurement.11 However, our decision to make the
measurement is not connected to the quantum theory, which makes predictions
about the result of that measurement. We want to limit ourselves to the
discussion of the time symmetry of the quantum system. We do not consider
here the question of the time symmetry of the entire world. Therefore, we
exclude the external parts from our consideration.

What constitutes a description of a quantum system itself is also a very
controversial subject. The reality of the SchroK dinger wave, the existence or
non-existence of hidden variables etc. are subjects of heated debates. However,
everybody agrees that the collection of all results of measurements is a consis-
tent (although maybe not complete) description of the quantum system. Thus,

10 This interpretation corresponds to De"nition (ii) and De"nition (iii) of Section 3.
11 If a random process chooses between the two possibilities, then the past before this process might
be the same.
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I propose the following de"nition:

De,nition. A world &closest' to the actual world is a world in which all
measurements (except the measurement at the time t if performed) have the
same results as in the actual world.

This de"nition overcomes the common objection according to which one should
not consider together statements about pre- and post-selected systems regarding
di!erent measurements at time t because these systems belong to di!erent
ensembles. The di!erence is in their quantum state at the time period between
t and t

2
.12 Formally, the problem is solved by considering only results of

measurements and not the quantum state. The justi"cation of this step follows
from the rules of the game: it is postulated that the quantum system is not
disturbed during the periods of time (t

1
, t) and (t, t

2
). Therefore, it is postulated

that no measurement on the system is performed during these periods of time.
Since unperformed measurements have no results, the di!erence between the
ensembles has no physical meaning in the discussed problem.

From the alternatives I have presented here, only Interpretation (c) is time-
symmetric. This is the reason why I believe that it is the only reasonable
candidate for analysing the (time-symmetric) problem of measurements per-
formed between two other measurements.

7. Kastner:s Readings of the ABL Rule

Kastner (1999) puts in quotation marks two possible readings of the ABL
rule, &non-counterfactual' and &bona-,de counterfactual' (1999, p. 239). As far as
I can see the two readings are not di!erent: the "rst is a clari"cation of the
second. In the papers about TSQT the statements frequently appear in the
compact form of the second reading and the "rst reading is the correct explana-
tion of its meaning.

Kastner, however, distinguishes between the two readings. She claims that
there is a &quanti"er ambiguity' in the ABL formula (2) (or her equation (1)). She
proposes to add a parameter, C, indicating the variable which was actually
measured at time t. Her equation (1@@) corresponds to the following modi"cation
of (2) for pre-selection of A"a and post-selection of B"b:13

P (o
j
Da, b;C)"

DSbDP
O/o

j

DaTD2
+

i
DSbDP

O/o
i

DaTD2
. (21)

12 If one adopts our backward evolving quantum state, one can add that the systems are also
di!erent due to the backward evolving state between t and t

1
.

13 There are two di!erences between Kastner's (1@@) and my (21). First, the former is applicable only
to measurements of non-degenerate observables, while the latter is more general and is applicable
also to observables with degenerate eigenvalues such as the observables associated with &the particle
being in a particular box' of the 3-boxes example discussed by Kastner. Second, Kastner does not
always follow the semantic convention used in this and other papers on TSQT according to which
the eigenvalue of an operator denoted by a capital letter is signi"ed by the same lower-case letter;
here, my notation o

j
corresponds to Kastner's x

j
.

Defending Time-symmetrised Quantum Counterfactuals 387



According to Kastner, for a counterfactual reading of the ABL rule this formula
should yield the probability for O"o

j
given that C was actually measured for

all O, including OOC. It is crucial to understand the exact meaning of Kastner's
words &C was actually measured' (see especially her footnote 3).

The "rst possible reading of Kastner is that C is related to the counterfactual
world, for which the formula should yield probabilities for o

j
. This reading is

equivalent to Interpretation (a) of Section 6, which is meaningless. Indeed, in the
framework of quantum theory observables usually do not possess values. There
is no meaning for &probability of a value', only for &probability of a result of
a measurement'. If it is postulated that O is not measured (since another
variable, C, is measured instead), then it is meaningless to ask what is the
probability for o

j
. In other words, the question is what parameters are kept "xed

when the counterfactual world is considered. Kastner's notation, P (o
j
Da, b;C),

suggests that a, b, and C are kept "xed in the counterfactual world, but then
there is no meaning for probability of o

j
.

The second possible reading of Kastner is that C relates to the actual world
and the formula is related to a counterfactual world, in which another variable,
O, is measured. In this case it is not clear what is kept "xed in the counter-
factual world. If a and b are kept "xed, then how can C be relevant? The
question is about the counterfactual world which is speci"ed completely by a and
b, so the information about what has happened in another (the actual) world is
irrelevant.

Finally, it might be that Kastner assumes some hidden variables which are
kept "xed, i.e. identical for actual and counterfactual worlds. Then C is relevant
because it characterises the hidden variables: they are such that, given the
intermediate measurement C, the result b is obtained. This is a modi"cation of
Interpretation (iv) of Section 3 (Interpretation (b) of Section 6); in the latter no
measurement is performed at time t in the actual world, i.e. the operator C is the
identity I. While it is not immediately obvious that the ABL formula fails for
Interpretation (iv) (it does fail as proved in Section 3), it is obvious that Kastner's
modi"cation of the ABL formula (21) is not appropriate: the right-hand side is
a well-de"ned expression in the framework of quantum theory which does not
depend on C, while it is assumed that the left-hand side depends on C.

As explained in Section 3, the failure of the ABL rule for hidden variables
readings is not surprising since the whole concept of hidden variables, as we
know it now, is time-asymmetric. Hidden variables supposedly allow us to
predict the result of a measurement before the measurement is performed. In any
way, there are no hidden variables in TSQT and, therefore, this failure does not
represent a problem.

It might be that Kastner and others have been misled by the term &element of
reality'. The words suggest something &ontological', but in TSQT &element of
reality' is a technical term which describes a situation in which a certain
counterfactual statement is true: the result of a measurement (if performed!) is
known with certainty (see Section 4 and Vaidman, 1996b). The only meaning of
an element of reality &the particle is in box A' quoted by Kastner is that &if
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searched in A it has to be there with probability 1', nothing more. After quoting
this, Kastner writes (1999, p. 241): &This usage clearly implies that the properties
of being in box A or being in box B are considered as possessed by the same pre-
and post-selected particle'. But I emphasise that the &same' only means that the
two-statevector at time t is "xed (i.e. the results of the pre- and the post-selection
measurements are "xed). The counterfactual worlds corresponding to &being in
A' and &being in B' for the &same' particles are di!erent: in one world the particle
is searched for in A and in another it is searched for in B.

8. Kastner:s Analysis of the Sharp and Shanks Proof

Kastner makes a distinction between two counterarguments to the Sharp and
Shanks proof which I presented in the two preprints (Vaidman, 1996a, 1997).
From my point of view there is just one argument presented in di!erent forms in
the two papers. The most relevant parts of the two papers appear here: Sections
2}5 (Vaidman, 1997) and Section 6 (Vaidman, 1996a). Let me state the relations
between the statements presented in these sections. Interpretation (a) of Section
6, which I consider to be meaningless, is not introduced formally in the other
preprint; I present there (fourth paragraph of Section 5) only a brief discussion
why it should be rejected. The counterpart of Interpretation (b) of Section 6 is
De"nition (iv) of Section 3 and the counterpart of Interpretation (c) is De"nition
(ii). De"nition (iii) of Section 3 is the formulation of De"nition (ii) (or Interpreta-
tion (c)) when applied to the particular situation corresponding to the ABL
scenario. The di!erence between the preprints, as Kastner correctly noticed, is
that in Vaidman (1997) (which is the revision of Vaidman (1996a)) I do not focus
on the possibility of a counterfactual with true antecedent. I still think that this
possibility is a genuine property of quantum counterfactuals. However,
I realised that many readers were confused by this point and, since it is not
central, I decided that I can persuade people better without emphasising this
property.

Kastner writes that my counterarguments lead to what she calls the &non-
counterfactual' interpretation of the ABL rule &which is not under dispute'. She
then proceeds with the analysis of the Sharp and Shanks argument focusing on
&a failure of cotenability between the background conditions, S, and the antece-
dent P'. It seems to me that this failure of cotenability is similar to my argument
against the proof of Sharp and Shanks. They claimed that the counterfactual
interpretation of the ABL rule leads to predictions di!erent from that of
quantum theory. I claimed that their counterfactual interpretation has a logical
error and therefore their proof is incorrect.14 Kastner shows that a part of the
proof of Sharp and Shanks, expressed in the left-hand side of the logical relation
(6) of her paper, is false. From a false logical statement one cannot claim to

14 Note, in particular, the last paragraph of Section 5 in which I show how the Sharp and Shanks
argument leads to a contradiction in a situation where the ABL rule is not involved.
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calculate correctly the probability for a result of a measurement. So the problem
is not with the ABL formula, as Sharp and Shanks claimed, but with the proof,
as I claimed.

Thus, it seems that Kastner contradicts herself when she shows that the Sharp
and Shanks calculation of the probability of a particular result in their example
cannot be applied due to the failure of the cotenability condition ! (her equation
(4a)), but nevertheless continues with a &detailed description of the steps em-
ployed in the Sharp and Shanks proof ', the &proof that the counterfactual
interpretation of the ABL rule leads to predictions incompatible with quantum
mechanics'. In what follows I shall analyse this &detailed description' relating to
the equations and the notation of Kastner's paper.

With her equation (6) she de"nes the framework of the Sharp and Shanks
argument, and in her equations (7) and (8) she reproduces the Sharp and Shanks
calculation of the probability for the result C"c

1
. In particular, the calculation

assumes S, i.e. that the systems in question belong to a pre- and post-selected
ensemble M, the ensemble which can be obtained with high probability in an
experiment, given the assumption 2P, that no intermediate measurement of
C has been performed.

Then, in a short paragraph, she presents her argument: she notes that in
general it is not possible for both S (which was derived on the assumption 2P)
and P to be true. This is what she names as the failure of cotenability. And this is
why equation (7) &may well be false'. (Compare this with my argument according
to which it is wrong to use S when the question of probability of C"c

1
is

considered, because this question requires accepting P.)
Next, Kastner presents the Sharps and Shanks strategy in which they com-

pare their calculation (7) with calculation (9)}(10), which does not assume S. She
poses the question: is it really correct to make the comparison that Sharp and
Shanks made? What follows is the de"nition of the problem (6@) in which S is not
assumed, and the corresponding calculation (12)}(18). This calculation is a re-
production (in a more general form) of my calculation from Vaidman (1997) (see
(15)}(20) of this paper).

At that point Kastner makes claims which I cannot understand. She says that
this calculation &establishes' that Sharp and Shanks made the correct compari-
son. She &pinpoints my error': my claim that the assumption of Sharp and
Shanks that no intervening measurement has occurred in the &counterfactual
world' is #awed. However, immediately following this assertion, she herself says
that &it might be objected that S@ [which follows from this assumption] &is not the
appropriate statement of background conditions'. She proceeds with an indirect
argument against this objection which includes the odd claim that an alterna-
tive, S@, which she has de,ned as &the correct background conditions obtained
when P is true' (the paragraph following her equation (10)) is also not cotenable
with P.

The last paragraph of Kastner's Section 2 leaves me with several options for
understanding Kastner's interpretation of the Sharp and Shanks example. The
sentence &In view of the existence of actual results at t

2
, such results are an
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indelible part of the history of world i and cannot be disregarded'might suggest
that the question is about a counterfactual world in which the measurement at
time t is performed, but the results of the measurements at t

2
are nevertheless as

in the actual world. (This seems to contradict Kastner's concept of non-
cotenability of P and S, but in fact the probability for such situation in a real
experiment is usually small but not zero.) For this question, equation (7), the
counterfactual calculation of Sharp and Shanks using the ABL formula is
correct; and the fact that it does not yield the value given in equation (10) is not
a contradiction, because the latter corresponds to a di!erent situation in which
there is only pre-selection.

Another possible reading of Kastner's paragraph is that in the counter-
factual world with the intermediate measurement the results of the measure-
ment at time t

2
are di!erent, but still the results at t

2
in the actual world are

relevant for calculating probabilities for the results of measurement at time t,
(t(t

2
). One can imagine such a situation if there are hidden variables which

control the results of measurements beyond the standard quantum formalism.
I have discussed this possibility in connection with De"nition (iv) of Section 3.
Indeed, in this case, the ABL formula yields incorrect results, but this is
not surprising since this situation is intrinsically time-asymmetric: the actual
and the counterfactual worlds coincide in the past, but not in the future, relative
to time t.

From private communications with Sharp and Shanks I understood that the
main goal of their paper was to show exactly this, i.e. that &the ABL rule did not
have the implications for hidden variables interpretations of quantum mechan-
ics that Albert et al. (1985) had claimed'.15 Careful reading of Sharp and Shanks
shows that they indeed focus on this limited issue. However, the title and their
conclusions suggests criticism of TSQT in a much wider sense, and led their
followers to attack all possible counterfactual interpretations in the framework
of TSQT.

9. Kastner:s Criticism of the Time-Symmetrised Counterfactuals

Kastner again distinguishes between two, equivalent from my point of view,
de"nitions of time-symmetrised counterfactuals given in the two papers
(Vaidman, 1996a, 1997). Kastner's De"nition 1 is my Interpretation (c) of

15 This is a correct criticism which, however, &pushes at an open door'. The letter of Albert et al.
(1985) indeed gives the impression that the authors undertake their discussion in the framework of
the hidden variables theory. However, in their reply (Albert et al., 1986) to the criticism of Bub and
Brown (1986) they clearly stated that they do not (or, at least, they do not now) think that the results
of their letter are applicable to hidden variable theories. Moreover, although this conclusion of
Sharp and Shanks is correct, I still think that the alleged proof in their paper is #awed; I believe that
I presented the correct proof of this point in Section 3, see the paragraph which includes equations
(4) and (5).
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Section 6 and her De"nition 2 is my De"nition (iii) of Section 3. I see a dif-
ference between the de"nitions only in phrasing and the generality of their
applications.

An integral part of De"nition 1 is the criterion that determines the &closest'
worlds: worlds with the same results of all measurements as in the actual world,
except the measurements at time t. According to De"nition 2 only the results of
measurements at times t

1
and t

2
are the same. However, for the ABL-type

situation discussed in Kastner's paper, in which at times t
1

and t
2

complete
measurements are performed, the results of measurements performed outside
the interval [t

1
, t

2
] are irrelevant. Since it is also postulated that no other

measurements are performed at the time intervals (t
1
, t) and (t, t

2
), the two

de"nitions must lead to the same probabilities.
Let me start with an analysis of Kastner's criticism of De"nition 1. She writes

that in this de"nition I ignore the di!erence between the ensembles M and M@
corresponding to the actual and the counterfactual worlds. The ensembles
describe the results of measurements at t

1
and t

2
. But according to my de"nition

&all measurements in a counterfactual world, excluding measurements at t, have
the same results as in the actual world'. Therefore, it is postulated by the
de"nition that there is no di!erence between the ensembles. There is nothing to
ignore.

In her next paragraph, Kastner misunderstood the quote from my work
about the di!erence which &has no physical meaning'. The di!erence I have
discussed is irrelevant here because it is related to the di!erence in the measure-
ments (and results) performed at time t. The results of these measurements
depend on, but do not (by "at) in#uence, the results at t

1
and t

2
.

Kastner proceeds with some calculations (equations (19)}(23)) which are
related to &an experiment along the lines of the Sharp and Shanks example'.
She concludes her calculations by the claim that &the probability of the
existence of a closest possible world j as required by De"nition 1 is extremely
small'. But the &closest possible world' is some hypothetical world which has to
ful"ll some requirements: it either exists or does not exist. There is no meaning
for &the probability of the existence' here in the same way as there is no meaning
for the probability of the existence of a solution of a given mathematical
problem. In a particular example that Kastner considers, the possible world
which ful"lls the requirements does exist and therefore, De"nition 1 is legit-
imate.16

If we perform the experiment according to Kastner's set-up with large number
of particles N twice, once with and another time without the intermediate
measurements, then, indeed, there is a very small probability that the results at
time t

2
will be identical in the two experiments. However, even if we perform

16 In Kastner (1998) she claimed, based on the same derivation (equations (19)}(23)), that the
probability of the existence of a possible world is not just small, but zero. Such a claim is meaningful
and, if correct, makes my De"nition 1 empty. However, her proof, as I showed in Vaidman (1998b,
p. 18) was in error.
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such an experiment twice without the intermediate measurements, the probabil-
ity to obtain identical results is extremely small. Accidently, for Kastner's
particular choice, h

ab
"n/2, the probability is the same (it equals 2~N) in both

cases. What Kastner considers instead is the probability for obtaining identical
weights of results &up' in the post-selection measurement with and without the
intermediate measurement. It is true that in two experiments without an inter-
mediate measurement, the probability for obtaining identical weights is higher,
but Kastner herself mentions in footnote 7 that the results themselves, and not
just their statistical weights, are relevant. Note however, that as I stressed before,
the analysis of any one of these probabilities is irrelevant because we apply our
formalism only in the situations when the results of the measurement at t

2
are

"xed.
Other misunderstandings appear in Kastner's criticism of De"nition 2. First,

she augments the two-statevector notation with a speci"cation which observ-
able has been measured at time t. This is against the whole idea of TSQT. The
two-statevector is a complete description at time t in the sense that it yields
probabilities for all possible measurements (and the weak values for weak
measurements) at time t. The two-statevector is speci"ed by the results of
measurement at times di+erent than t: the measurement at t does not have
a direct in#uence on the two-statevector at t. See Vaidman (1998c) for careful
review of this concept.

Kastner, instead, proposes her own de"nition of &time-symmetrically "xed'.
Although she writes that it is &in the sense of De"nition 2', her de"nition has
nothing in common with my proposal. In my proposal there is no question: &will
the system have the same two-statevector?'. The two-statevector is given by "at
and this is the &time-symmetric "xing'. The example which Kastner considers
demonstrates how she distorts De"nition 2. The meaning of &the results of
measurements performed on the system at times t

1
and t

2
are "xed' is that the

results of the measurements at t
1

and at t
2

in actual and counterfactual worlds
are the same. In Kastner's Fig. 4 this is not true. Only the results of the
measurement at t

1
are the same.

It seems that behind Kastner's de"nition there is an idea of some kind of
hidden variable: she discusses systems which &would still have the same two-
statevector' even if some di!erent measurement were performed at t. To have the
same two-statevector is, in the current context, to have the same result of a
measurement at t

2
in a situation in which a priori it is not certain on the basis of

quantum mechanical laws. Standard quantum theory does not ensure the same
result at t

2
even if the same measurement is performed at t and the situation is

di!erent only because of a change in some unrelated variable. The same result at
t
2

is not ensured also in the situation which Kastner analyses in Section 4. Her
quote: &De"nition 2 will also be tenable for this case, since all appropriately
pre-selected systems which are post-selected via no intervening measurement
would also, with probability 1, be post-selected via an intervening measurement
of either the pre- or post-selection observable' shows us again that she relies on
hidden variables.
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10. Conclusions

The de"nition of counterfactuals in quantum theory which I propose, De"ni-
tion (ii) of Section 3, is very simple-minded. It seems to me that if one reads my
de"nition as it is, without trying to "nd something beyond it,17 then it is
complete and unambiguous. I believe that the de"nition is helpful in resolving
some controversies about quantum counterfactuals (see my attempts in this
direction in Vaidman (1998d, 1999)).

In principle, a counterfactual statement such as De"nition (iii) of Section 3
(Kastner's De"nition 2) is testable in a laboratory by creating a large ensemble
of systems with measurements at t

1
, t, and t

2
; choosing the subensemble (the pre-

and post-selected ensemble) with "xed results at t
1

and t
2
; choosing (out of this

subensemble) the subensemble with a particular measurement at t; and "nally by
making a statistical analysis of the results of the measurement at t on this "nal
subensemble. Because it is testable, philosophers might be reluctant to consider
the construct which I de"ne as counterfactual, in spite of the fact that formally it
corresponds to the general form of counterfactual statements, De"nition (i) of
Section 3. This is a semantic issue. I distinguish in Section 4 between situations
in which only a single statement of the form of De"nition (iii) is considered and
situations in which several such statements for di!erent variables, all related to
a single system, are considered. Since quantum theory does not allow simulta-
neous measurements of certain variables, in the latter situation the set of
statements is, in fact, not testable.

Probably the simplest example of this kind is the set-up discussed by Kastner
in which a free spin-1

2
particle is pre-selected at t

1
in a state with spin &up' in one

direction and post-selected at t
2

with the spin &up' in another direction. At the
intermediate time t there are two counterfactual statements (elements of reality
according to my De"nition (v)): indeed, the results of two, in general incompat-
ible, measurements of spin components (in the pre- and post-selected directions)
are certain. Consider now a rare quantum event in which a large number N of
such identically pre- and post-selected particles undergo a weak measurement of
a total spin in some other co-planar direction at an intermediate time t.
A theorem from Aharonov and Vaidman (1991, p. 2325): a weak measurement in
a situation in which the result of a usual measurement is known with certainty
yields the same result, together with a general property of weak values,
(X#>)

w
"X

w
#>

w
, lead to a useful application of the counterfactuals.

Counterfactual statements about unperformed experiments help us to "nd out
the expected result of an actually performed experiment: the weak value of the
total spin. In this time-symmetric example the statements about certain results
of the spin measurements in the two directions are clearly counterfactual.
I know that these measurements have not been performed because in the actual
world the only interaction at time t is a weak coupling to a measuring device

17 Apart from &rede"nition' of De"nition 2, Kastner uses the word &ontological' in her paper. TSQT
does not make ontological claims. It is more a novel formalism than an interpretation.
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which measures another observable. Moreover, the two measurements are
incompatible, therefore the measurements could not have been performed
together. I analyse more examples of such situations in Sections 8 and 9 of
Vaidman (1997).

Kastner concludes that a &counterfactual interpretation of the ABL rule is not
valid in general'. I have shown that this conclusion follows from Kastner's
particular reading of the word &counterfactual'. I "nd that by and large
Kastner supports my claim that counterfactuals, in a sense which di!ers from
mine, are inconsistent in the framework of TSQT. She rejects my approach
saying that this is a &non-counterfactual' reading. I disagree about this se-
mantic issue. More importantly, I disagree with Kastner's claim that in several
articles in the framework of TSQT the &bona "de' counterfactual reading of the
ABL rule has been used (from which it would follow that, since this read-
ing is inconsistent, the results of these articles, various &curious' quantum e!ects,
are wrong). This claim, however, was not proved, but only stated in Kastner's
paper. Indeed, essentially only time-asymmetric examples were analysed in her
paper.

I have shown that Kastner's criticism of my de"nitions of time-symmetrised
counterfactuals is unfounded. In her discussion of De"nition 1 she is misled by
small probability of post-selection results corresponding to &curious' quantum
e!ects, while what is required for legitimacy of De"nition 1 is only the possibility
of such a result. De"nition 2 (De"nition (iii) of Section 3) she interprets in
a particular sense. I agree that in this sense it &has no clear physical meaning'.
I suspect that she rejects the literal interpretation of De"nition 2, the one which
I adopt, because she views it as non-counterfactual.

Kastner "nds &an interesting special case in which the ABL rule may be
correctly used in a counterfactual sense', the one which corresponds to consistent
histories (Gri$ths, 1984). First, if one adopts Kastner's interpretation of &time-
symmetrically "xed', this claim is problematic. As I explained at the end of the
previous section, without introducing hidden variables it is simply false, and she
has not de"ned hidden variables which will make it true. Second, I do not "nd
the consistent histories approach fruitful in this context. In particular, it pre-
scribes not to consider together incompatible families of histories (Gri$ths,
1998). The two counterfactuals from the above example of the pre- and post-
selected spin-1

2
particle about de"nite results of spin measurements in two

directions (which can be derived also in the consistent histories framework)
belong to two incompatible families and therefore they should not be considered
together. Thus, in the consistent histories framework we cannot derive the result
obtained above in the framework of TSQT regarding the intermediate weak
measurement.

Many quantum mechanical e!ects are dramatically di!erent from phe-
nomena which can be explained classically. Language and philosophy which
were developed during the time that no one suspected quantum phenomena
have signi"cant di$culties in de"ning and explaining quantum reality.
This seems to be the reason for numerous controversies in this "eld. I believe
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that discussing and resolving these controversies is of crucial importance for
understanding our world.
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