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ABSTRACT

A method for the instantaneous measurements of nonlocal quantum
states of composite physical system is presented. The general form of
those states whose measurement (at a well defined time) 1is consistent
with relativistic causality is derived. Some new varieties of quantum
measurement are discussed.

In this work we shall try to clarify the question: Can we make
sense out of the quantum state in relativistic quantum mechanics? To
make sense in our approach, is to be able to measure: To be physically
meaningful, for us here, shall be to be measurable.

. 1
As early as 1931, Landau and Pelerls( ) found that the theory of
relativity produces new restrictions on the measurement process. After
their work it was thought that in relativistic quantum theory only

local variables are measurable; but lately it has emerged(2’3) that
this is not so: Certain nonlocal states can be verified by experiment.
On the other hand, not all of them are measurable, and indeed there are
states whose measurement would contradict the principle of casuality.
In this work we start with the assumption that we can measure any
local operator, and we investigate which nonlocal operators and states
are measurable. We are interested in the following question: Does it
have physical meaning to speak about nonlocal variables at a particular
time? The measuring procedures we seek, in response to this question,
will consequently be instantaneous. First we need to explain what we
signify by "measurement." It 1s different from the usual definition of
measurement in quantum mechanics. We define a measurement here as the
nondemolishing verification that a certain variable A has a given value
a. If before the measurement the observed variable has the value a,
then the experiment will produce the result "yes," and the state of the
system will not change. If our initial state is a linear combination
of eigenstates of the observed operator with different eigenvalues of
A, then the experiment will produce the vresult "yes" or "no" with
appropriate probability. 1In case the answer is "yes," the final state
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will be the projection of the initial state on the degenerate space of
eigenstates of A with eigenvalue a. If the answer is "no," then the
final state will be orthogonal to that space. The difference between
this and the wusual definition of measurement in quantum mechanics is
that we not require that the other eigenstates of the observed variable
(with other eigenvalues than a) be unaltered during the measuring
process. The only requirement is that, if we start with a state
wherein the A # a, then A # a at the end of the measurement as well.
Our first nonlocal variable will be the sum of the local variables

A1 and A2 that are related to spatially separate parts of the

system. We are interested in nonlocal measurement; that is, after the
measurement’'we should like to know the value of the sum A, + A, without

1 2
knowing the values of A1 and A2 separately.
We have to verify that A1 + A2 = a. By redefining A2 - A2 - a, we
see that our problem is the verification that
AL +A, =0, (1)

Our measuring device consists of two separate parts which have
canonical coordinates 9 and q,- We prepare this composite device in

the nonlocal state
ql - q2 = 0:
Ty + Ty 0, (2)

where . is the momentum conjugate to q; - We can do this by local

interaction when the two parts of the measuring device are initially
brought together. Then vwe separate those parts and position them at
the appropriate parts of the observed system.

The mnext stage of our measurement procedure is the local
interaction between appropriate components of the measuring device and
those of the observed system. The 1interactions are short and
simultaneous. The time of the measurement is defined by the time of
this interaction. The Hamiltonian of the interaction is

Hy o = B(E) (98] + q,A,), 3

where g(t) is nonzero only during a short interval of time [to,to +e ]

and it fulfills the normalization condition

to+e
[ g(r) dt = 1. (4)
t

(o]



Then, in the Heisenberg picture,

7'1 = -g(t)Al,

5.
|

2 = 'g(t)Azy (5)

A1 and A2 are not changed by the interaction (3), and we can take ¢

small enough so that A1 and A2 will not be changed (as a result of

their own dynamics) during the time of the interaction. Then, using
the initial condition (2) and the normalization (4) of g(t), we find
from (5) that

(ﬂ1+w = -(A1+A

2>t +e 2t - (6)
[e] o

The last step of our measuring procedure consists of local measurements

of T and Ty We will perform those measurements immediately after the

local interactions at time t = to + €. This completes the measurement
of A, + A, .
1 2

Indeed, we see from (6) that knowing my and Ty after the

interaction gives us the value of A1 + A2. At time t = t, toe there is

no local observer who knows the value of A1 + A2. Such knowledge would

require bringing the results of the local measurements of T and ,

together, and that would require some additional finite period of time.

But, since the values ™ and T, have been indelibly recorded at time

t = t0 + ¢ (by means of those final 1local measurements), the
measurement of A1 + A2 (given that the "measurement" of A1 + A2 is
taken to mean the indelible recording, in some macroscopic form, of the
value A1 + A2 at time to + €) is ambiguously completed at that time.

We can generalize this method to the measurement of the sum of N

n .
local operators Zi_ Ai related to N separate parts of the composite

1
system.

A more general class of nonlocal variables that we can measure are
the modular sum of local variables:

N
(ziwl Ai) mod a.

Now we are going to describe the method for measuring nonlocal
states using sets of measurements of the type considered above. What we
mean by measurement of the state |¢> is the nondemolishing verification
that the state of the system is |¢>. If we start with the state
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|v> = a|¢> + ﬂ|¢l>,

where I¢L> is orthogonal to |¢>, then the measurement will produce the

result "yes" with probability "a"z, and the final state will in those

cases be |¢>; it will produce the result "no" with probability ”ﬂ”z,
and the final state in those cases will be orthogonal to |¢> (but will
not necessarily be |¢L>)' To begin with, we study a system that

consists of two separate parts with K orthogonal states in each. We

shall designate local bases in each part as |i>1 and |j>2,
i, §=1,2,...,K. The general state of the system can be written as
ly> = =5 .6, 11> 15> 7
i,3=1"1j 1 2°

We can always find new bases in the separate local parts such that
the state |¢> will have the following form (we will call it canonical):

K . .
[v> =2 ai|1>1 |1>2. (8)

Therefore, any state |¢> can be brought into the canonical form
(8). Now we give the measuring procedure that verifies the state |¢>
(the canonical form of which is)

K

1 . .
|¢> = % Zic1 |1>l |1>2. (9)

The measurement of the state will include measurements of two

nonlocal operators. The first is verification that A1 + A2 = 0, where

A1 |1>l = -1|1>1,
A2 |1>2 = 1|1>2. (10)
This measurement is a nondemolishing verification that our state

has a canonical form in given 1local bases without defining the
coefficients o, . The next measurement has to specify oL in our case,

it has to verify that all @, are equal.

We define unitary local operators that will act in every local part
of the system:

|i+1>

U1|i>1 17 U1|1<>1 - |1>1,

|i+1>2, U2|K>2 = |1>2. (11)

u, 1>,
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It is easy to see that among the states that have canonical form in
our basis, only the state |¢> (9) will not change under the
transformation U.U,:

172°
u,u, [¢> = |4>. (12)
Now we define B1 and B2:
iB iB
1 2
e = Ul’ e = U2. (13)
Then, taking into account that B1 and B2 commute, we have
i(Bl+B2)
U1U2 =e and therefore Eq.(12) is equivalent to
(B1 + B2) mod 27 = 0. (14)

Thus the second measurement that will complete the verification of

our state 1is the measurement of the modular sum of B1 and B2. B1 and

B2 are Hermitian local operators; therefore one can relate them to

physical wvariables. We can generalize this method to the composite
system that has M>2 separated parts. One can measure the state

1 K . R .
|¢> = TR DA ll>1 |1>2 . ll>M' (15)

The last example of what one can measure will be a nonlocal
operator with nondegenerate eigenstates: We define the operator by its
eigenstates:

1

|¢f>=]§Q1ﬁ_h>2+|2ﬁ_p>ﬂ,
1

|¢2> - ]§(|1>1 |1>2 - 2> |2>2),

|4,> = :}5(|1>1 |25, + |25 |1>,), (16)

1
l¢,> = ]§(|1>1 |2>, |2> 11>,),

the eigenvalues may be arbitrary but no two of them are equal. The
measurement procedure will be the following:
We take the local operators A1 of Eq.(10); then |¢>1 and |¢>2, as

well as |¢>3 and |¢>4, will be degenerate eigenstates of the operator
(A1 + A2) mod 2 which we know how to measure. Next we perform the

appropriate local unitary transformations
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1,11
=Tt 1)
and measure the operator (A1 + A2) mod 2 as it is defined in the new
bases. Now, the degenerate eigenstates will be |¢>l and |¢>3 as well
as |¢>2 and |¢>4. For the measurement that consists of these two

measurements, the states |¢>i are eigenstates and they  are

nondegenerate.

Let wus give an example of a nonlocal operator the measurability of
which would violate causality. The operator will have the following
set of nondegenerate eigenstates:

1
l%?f]fdbllbz+lbllbﬁ'

1
lv,> = I§(|1>1 11>, - 2>, [2>),
l¥y> = [1>) [2>,, (17)
|¢4> |2>l |1>2.

il

We may contradict the principle of causality in the following way:

(1) preparing state |2>2 in part 2 at time t << t.

(ii) preparing state |1>l or |2>1 at time t = t, - €

(iii)measurement of the operator at time t = to’

(iv)local verification of the state |2>2 at time t = t0 + €.
The probability of the result of the local measurement (iv) in part

2 at time t0 + € will depend on our choice at time to - € in part 1,

albeit part 1 is separated from part 2 by an arbitrary distance.

This contradiction of the causality principle concludes the proof.
Based on the same 1idea, we can derive relativistic restrictions on
measurable variables and thereby prove that every measurable nonlocal
state must take the canonical form (8) with all "ai" equal.

We can generalize the statement to composite systems with many
parts. One can divide any system into two subsystems, and then the
measurable states have to be of the form

1 K i i
[¢> = TR % v > ¥ >, (18)
where |¢l>a i = 1,2,...,k are orthonormal states in part o = 1,2,

Also, for any measurable state of a composite system, the density
matrices in each separate part of the system must be similar to the
diagonal matrix in which all nonvanishing wvalues must be equal.
Therefore, the state
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[6> = @ [1> [1>, + a, (2>, [2>,, ”a1”¢"a2”# 0, (19)

is wunmeasurable. We can prove that the measurability of |¢>
contradicts the principle of causality. But there are other kinds of
measurement for which |¢> is measurable (and it is this fact which
gives us the possibility of speaking about the state |¢>).

First, one can prepare state |¢>. We prepare locally the states
1
a|1>) + a,|2>, and Tz (11>, + [2>). (20)

Then the initial state of the system will be

1
I§(a1|1>1 + a,|2>)) (|1>2 + |2>,)

1 1
= Iz(a1|1>1|1>2 + a,|2>2>)) + T2 (a1|1>1|2>2 + a2|2>1ll>2). (21)

Now we <can verify by our measurement procedure that the state has a
canonical form. This will give the answer "yes" with probability 1/2,
and in these cases the final state will be |¢>. The experiment, of
course, may or may not be successful; indeed we do mnot know of any
measurement that will prepare the state with probability 1.

Another  variety of measurement is a particular kind of

nondemolishing verification that the state is |¢>. We know how to
accomplish this for every nonlocal state |¢>. This verification
measurement does not satisfy all the requirements of our definition of
state measurement. It is non-demolishing for the state |¢>, but this

time the final state will be |¢> in any case, without dependence on the
initial state.

In this measurement we use a measuring device that has a Hilbert
space isomorphic to our system and we prepare it in a state l¢> that
corresponds under the isomorphism to |¢>. Then we switch on some local
simultaneous interactions that will produce an "exchange" between the
state of the system and the state of the measuring device. The
interactions that will do that are interactions between every separate
part t of the system and the corresponding part of the measuring
device. These are described by the transformation

RSN NESUE G kN | (22)

where |i>t is a set of orthogonal states in one separate component t of

the measuring device.

We see, indeed, that this transformation leads to exchanging of the
states

[v>]8> -+ [o>]w>. (23)
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In some sense it is difficult to claim that the measuring process is
complete after the exchange. It is not only that there is no local
observer who can immediately know the result of the measurement (that
we have encountered before), but also that we cannot perform local
measurements on the measurement device and thereby obtain a set of
results (in separated places) that, after being brought together, will
give us the answer. We need to bring the parts of the measuring device
itself together in one place. Then the state of the measuring device
will be local, and we have assumed that we can measure any local state.

This "exchange" measurement has another limitation as well. It may
be used only as a state measurement. We cannot produce an "exchange"
measurement of an operator. This 1is true mnot only for the wusual
definition of an operator measurement but also for verification of the
given value of the operator in the case that there are degenerate
eigenstates with this wvalue. We can perform this verification using
the methods described in the beginning for a quantum system that is
correlated with another system. We can do this without destroying the
correlation. However, this 1is something that clearly cannot be
accomplished by an "exchange" measurement without touching the "other"
system.

In this work we have presented a method for the measurement of
nonlocal states in composite systems that have N separate parts with K
orthogonal states in every part. The general form of the measurable
states is

1 K N .
|¢> = 3 DN nj=1 |1>J.‘ (24)

Some of those states are familiar ones. If K =N = 2, Eq.(24) is
the EPR-Bohm state that was used later by Bell in his original paper
about the Bell inequality. If N=2 and K » «, then the state is
similar to the original EPR state. We proved that, at least for N = 2,
these are the only measurable nonlocal states, all of which have the
following local property: Any local measurement in any separate part
has the same probability to produce any given result. In other words,
the density matrix in all separate parts is proportional to the unit
matrix. This explains why these measurements do not contradict
causality. Finally we saw new kinds of measurements that are suitable
for any nonlocal state.
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