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Abstract

A brief review of the time-symmetrized quantum formalism originated by Aharonov, Bergmann and
Lebowitz is presented. Symmetry of various measurements under the time reversal is analyzed. Time-
symmetrized counterfactuals are introduced. It is argued that the time-symmetrized formalism demon-
strates novel profound features of quantum theory and that recent criticism of the formalism is un-
founded.

1. Introduction

The time-symmetrized quantum theory (TSQT) originated in a seminal work of Aharonov,
Bergmann, and Lebowitz (ABL) [1]. Since then Aharonov and co-workers have developed
a rich formalism [2] which has led to the discovery of numerous bizarre effects in quantum
theory [3, 4, 5, 6, 7]. Alternative time-symmetrized approaches have been suggested by
other authors [8, 9, 10]. Recently, however, the validity of some of the results of the TSQT,
especially in the context of counterfactual interpretation of the ABL rule, have been ques-
tioned [11]. The purpose of this paper is to explain the meaning of the TSQT developed by
Aharonov's group, to review time-symmetry properties in the framework of this formalism,
to give a brief answer to the critics of the TSQT and to define time-symmetrized counter-
factuals in quantum theory.

The novelty of the TSQT follows from the observation that in quantum theory, contrary
to the classical physics, the future measurements might add information about the present
of a system. In the standard approach, a quantum system at a given time t is described
completely by a quantum state defined by the results of measurements performed on the
system in the past (relative to the time t). In the TSQT a quantum system at a given time
t is described by a two-state vector defined by the results of measurements performed on
the system in the past and in the future (relative to the time t). Thus, while standard
quantum theory deals with pre-selected systems, the TSQT analyzes pre- and post-selected
systems.

The purpose of the description of a quantum system by quantum state or by two-state
vector is to connect the class of preparations which lead to the same set of effects on other
systems. In Section 2 I shall explain how to prepare a quantum system described by var-
ious descriptions. In section 3 I analyze the outcomes of ideal measurements performed on
systems prepared in different ways. Section 4 is devoted to generalized ideal measurements
recently introduced by Shimony [12]. Section 5 analyzes the counterfactual interpretation
of the ABL rule. In section 6 I describe weak measurements [13]. Section 7 concludes the
paper with a brief discussion of the connection between the TSQT and the many-worlds
interpretation [14] of quantum theory.
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2. Preparation of a Quantum System

(a) Pre-selected quantum systems.
In standard quantum theory a complete description of a system at a given time t is given

by a forward evolving quantum state, see Fig. 1a:

jYi : �1�
In order to prepare the quantum state (1) we have to perform a complete measurement in
the past time t1, t1 < t, and obtain a specific outcome A � a such that after the unitary
evolution from t1 to t the system will be in the desired state:

jYi � U�t1; t� jA � ai : �2�

(b) Pre- and post-selected quantum systems.
The basic description of a quantum system in the TSQT is given by a two-state vector, see
Fig. 1b:

hFj jYi : �3�
In order to prepare the two-state vector (3), in addition to the measurement A � a at time
t1, we have also to perform a complete measurement at t2, t2 > t, and obtain a specific
outcome B � b such that the backward time evolution from t2 to t will yield the desire state

hFj � hB � bj U�t2; t� : �4�
In this presentation there is complete symmetry between preparation of the states hFj and
jYi which constitute the two-state vector: measurement of A at t1 leads to jYi and the
measurement of B leads to hFj. Both measurements might not yield the desired outcomes,
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Fig. 1. Description of quantum systems: (a) pre-selected, (b) pre- and post-selected, (c) post-
selected, and (d) generalized pre- and post-selected.



so we need several systems out of which we pre- and post-select the one which is de-
scribed by the two-state vector (3). However, this is only an apparent symmetry. There is an
intrinsic difference in preparation of jYi and hFj. For preparation of jYi a single system is
enough. If the measurement of A yields a different outcome a0 we can perform a fast uni-
tary operation which will change jA � a0i to jA � ai and then the time evolution to time t
will bring the system to the state jYi. This procedure is impossible for preparation of the
backward evolving state hFj. Indeed, if the outcome of the measurement of B does not
yield b, we cannot read it and then make an appropriate unitary operation before t2 in order
to get the state hFj at time t. We need several systems to post-select the desired result
(unless by chance the first system has the desired outcome).

In this paper I shall analyze symmetry under the interchange hFj jYi $ hY j jFi. This
will be considered as a symmetry under reversal of the direction of the arrow of time. It is
important to note that in general this interchange is not equivalent to the interchange of the
measurements A � a and B � b. (An example showing the non-equivalence can be found
in the Appendix of Shimony's paper [12].) However, in order to simplify the discussion, I
will assume that the free Hamiltonian is zero, and therefore jYi � jA � ai and
hFj � hB � bj. In this case, of course, the reversal of time arrow is identical to the inter-
change of the measurements at t1 and t2.

(c) Post-selected quantum systems.
I have presented above a description of quantum system by a single forward-evolving

quantum state (1) and by a two-state vector (3). It is natural to ask: Are there systems
described by a single backward-evolving quantum state? The notation for such a state is

hFj : �5�

A measurement of B at time t2, even in the case it yields the desired outcome B � b, is not
enough. The difference between preparation of (1) and (5) is that at present, t, the future of
a quantum system does not exist (the future measurements have not been performed yet),
but the past of a quantum system exists: even if we do not know it, there is a quantum state
of the system evolving towards the future defined by the results of measurements in the
past. Therefore, in order to prepare a quantum system described by a backward evolving
quantum state (5), in addition to the post-selection measurement performed after time t, we
have to erase the past. (We do not have to perform a special erasure procedure for prepara-
tion of the pre- and post-selected system described by a two-state vector (3) because the
complete measurement of A at t1 erases all prior information.)

In order to erase the past of a quantum system we can use another quantum system, an
ancilla. The idea is to correlate an unknown future of the ancilla with the past of our
system. For instance, such a correlation can be achieved using a Bell-type measurement,
see Fig. 1c. For a spin-1/2 particle it can be realized by a sequence of two two-particle
measurements [15]:

�sx � s�an�
x �mod4 ; �sz � s�an�

z �mod4 : �6�

Each measurement has two possible outcomes, 0 or 2. The four possible combinations
correspond to four possible Bell state. Each Bell state yields complete correlation between
the states of the two systems. A generalization to a system with continuous degrees of free-
dom can be done similarly to the generalization of teleportation to such systems [16]. The
erasure procedure has to be supplemented by `̀ guarding the ancillaº against any possible
measurements after the Bell-type measurement. This will ensure that the past of the system
will be correlated to the unknown future of the ancilla.
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(d) Generalized pre- and post-selected quantum systems.
The technique of `̀ guarded ancillaº is also used to create a quantum system described by

a generalized two-state vectorP
i

aihFij jY ii : �7�

In order to prepare the generalized two-state vector (7) we have to prepare at t1 the system
and the ancilla in a correlated state

P
i

ai jY ii jii, where fjiig is a set of orthonormal states

of the ancilla. Then we have to `̀ guardº the ancilla such that there will be no measurements
or any other interactions performed on the ancilla until the post-selection measurement of a
projection on the correlated state 1=

����
N
p P

i
jFii jii, see Fig. 1d. If we obtain the desired

outcome then the system is described at time t by the generalized two-state vector (7).
In the standard quantum theory the most general description of a quantum system is

given by a mixed state or density matrix. For example, a quantum system after the `̀ erasing
the pastº procedure proposed above is described by a density matrix and cannot be de-
scribed by a pure state. It is believed, however, that there is always a larger system (which
includes the quantum system) in a pure quantum state. (In particular, the composite system
including the system with `̀ erased pastº and the ancilla which was used in the erasure
procedure is in a pure state.) There is certain similarity between this situation and a system
described by a generalized two-state vector: the composite system which includes the ancil-
la is described by a two-state vector (3). However, the analogy is not exact. A generalized
two-state vector is not the most general description of a quantum system in the TSQT
formalism ± it is the most general complete description. It is possible to define the general-
ization of a two-state vector to a mixed case when various two-state vectors are correlated
to another ancilla (wich is not post-selected). Although the generalization is straightforward,
it is not obvious what is its most convenient form. For a powerful, but somewhat cumber-
some formalism see Ref. [17].

3. Ideal Quantum Measurements

In this section I shall discuss how a quantum system characterized by a certain description
interacts with other systems. Some particular types of interactions are named measurements
and the effect of these interactions characterized as the results of these measurements. The
basic concept is an ideal quantum measurement of an observable C. This operation is
defined for pre-selected quantum systems in the following way:

(i) If the state of a quantum system before the measurement was an eigenstate of C with an
eigenvalue cn then the outcome of the measurement is cn and the quantum state of the
system is not changed.

The standard implementation of the ideal quantum measurement is modeled by the von
Neumann Hamiltonian [18]:

H � g�t� pC ; �8�
where p is the momentum conjugate to the pointer variable q, and the normalized coupling
function g�t� specifies the time of the measurement interaction. The outcome of the mea-
surement is the shift of the pointer variable during the interaction. In the ideal measurement
the function g�t� is nonzero only during a very short period of time, and the free Hamilto-
nian during this period of time can be neglected.
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For a quantum system described by the two-state vector (3) the probability for an out-
come cn of an ideal measurement of an observable C is given by [1, 2]

Prob �cn� � jhFj PC�cn jYij2P
j
jhFj PC�cj jYij2

: �9�

This formula is explicitly time-symmetric: First, both hFj and jYi enter the equation on
equal footing. Second, the probability (9) is unchanged under the interchange
hFj jYi $ hY j jFi.

For a quantum system described by a generalized two-state vector (7) the probability for
an outcome cn is given by [2]

Prob �cn� �
jP

i
aihFij PC�cn jY iij2P

j

P
i

aihFij PC�cj jY ii
��� ���2 : �10�

This formula is also time-symmetric. Indeed, hFij and jY ii enter the equation on equal
footing. The manifestation of the symmetry of this formula under the reversal of the arrow
of time includes complex conjugation of the coefficients. The probability (10) is unchanged
under the interchange

P
i

aihFij jY ii $
P

i
a�i hY ij jFii.

Another important generalization of the formula (9) is for the case in which the post-
selection measurement is not complete and therefore it does not specify a single post-selec-
tion state hFj. Such an example was recently considered by Cohen [19] in (an unsuccessful
[20]) attempt to find constraints to the applicability of the ABL formula. In this case, the
post-section measurement is a projection on a degenerate eigenvalue of an observable
B � b. The modified ABL formula is [20]:

Prob �cn� � kPB�bPC�cn jYik2P
j
kPB�bPC�cj jYik2 : �11�

This form of the ABL formula allows to connect it to the standard formalism of quantum
theory in which there is no post-selection. In the limiting case when the projection operator
PB�b is just unity operator I, we obtain the usual expression:

Prob �cn� � jjPC�cn jYijj2 : �12�

4. Generalized Ideal Quantum Measurements

Recently, Shimony [12] proposed the following generalization of the concept of ideal mea-
surements by weakening the requirement given in definition (i):

(ii) If the state of a quantum system before the measurement is an eigenstate of C with an
eigenvalue cn then the outcome of the measurement is cn and the quantum state of the
system after the measurement remains in the subspace of the eigenstates corresponding
to this eigenvalue.
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The difference between definitions (i) and (ii) is that while in the ideal measurements the
change of the state during the measurement happens only if the initial state was a super-
position of states with different eigenvalues, the generalized ideal measurement procedure
changes also the eigenstates themselves. (This might happen only for degenerate eigenva-
lues.) Shimony has constructed a generalized ideal measurement for which the ABL formu-
la (9) does not hold. I shall derive Shimony's result using another example.

Consider a composite system of two spin-1
2 particles. The variable to be measured is the

value of the total spin of the system which can be 0 or 1. The total spin 0 corresponds to a
nondegenerate state (singlet), while total spin 1 corresponds to three orthogonal eigenstates
(triplet). The generalized ideal measurement do not change measured value (the total spin),
but it might change a commuting variable. In this example the measurement changes cy-
clicly the total ẑ component of the spin (for triplet). This measurement is described by the
following unitary transformation:

j0; 0i jRiMD ! j0; 0i j0iMD

j1;ÿ1i jRiMD ! j1; 0i j1iMD

j1; 0i jRiMD ! j1; 1i j1iMD �13�
j1; 1i jRiMD ! j1;ÿ1i j1iMD

where j0; 0i, j1;ÿ1i etc. denote the states of the composite system in S2, Sz representation,
while jRiMD, j0iMD and j1iMD denote the `̀ readyº and `̀ 0º and `̀ 1º final states of the
measuring device.

Now consider the measurement of the total spin performed on a system pre- and post-
selected in a two-state vector

hFj jYi � 1

2
�h0; 0j � h1; 1j� �j0; 0i � j1; 0i� : �14�

Given the pre-selection, jYi � 1=
���
2
p �j0; 0i � j1; 0i�, only, the probabilities for the two

possible outcomes are equal:

Prob �0; jYi� � Prob �1; jYi� � 1

2
: �15�

If the outcome is `̀ 0º then, after the measurement, the state of the system is j0; 0i; if, the
outcome is `̀ 1º then the final state is j1; 1i. It turns out that in both cases the probabilities
for the post-selection of the state, hFj � 1=

���
2
p �h0; 0j � h1; 1j�, are:

Prob �hFj; 0� � Prob �hFj; 1� � 1

2
: �16�

Then, Bayes theorem yields the probability of obtaining the outcome ª1º in the generalized
measurement performed on the pre- and post-selected system:

Prob �1; hFj jYi� � Prob �1; jYi� Prob �hFj; 1�
Prob �0; jYi� Prob �hFj; 0� � Prob �1; jYi� Prob �hFj; 1� �

1

2
: �17�

Let us repeat the calculation for the time reversed two-state vector:

hY jjFi � 1

2
�h0; 0j � h1; 0j� �j0; 0i � j1; 1i� : �18�
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Now, after the generalized measurement with outcome `̀ 1º, the state of the system must be
j1;ÿ1i. This state, however, is orthogonal to the post-selected state and therefore this out-
come is impossible. Thus, Prob �hY j; 1� � 0 and consequently, Prob �1; hY j jFi� � 0.

I have shown that in this example there is an asymmetry: Prob �1; hFj jYi�
6� Prob �1; hY j jFi�. Therefore, the ABL formula, which is symmetric under such inter-
change, cannot hold. (It yields Prob �1; hFj jYi� � Prob �1; hY j jFi� � 0:) I find this result
not too disturbing since these measurements have an unusual property even in a situation in
which the ABL formula is not involved: generalized ideal measurements of commuting
observables might disturb each other.

5. Counterfactual Interpretation of the ABL Rule

Several authors criticized the TSQT because of the alleged conflict between counterfactual
interpretations of the ABL rule and predictions of quantum theory [11, 19, 21]. The form
of all these inconsistency proofs is as follows: The probability of an outcome C � cn of a
quantum measurement performed on a pre-selected system, given correctly by (12), is con-
sidered. In order to allow the analysis using the ABL formula, a measurement at a later
time, t2, with two possible outcomes, which we denote by `̀ 1f º and `̀ 2f º, is introduced.
The suggested application of the ABL rule is expressed in the formula for the probability
of the result C � cn:

Prob �C � cn� � Prob �1f � Prob�C � cn; 1f � � Prob �2f � Prob �C � cn; 2f � ; �19�

where Prob �C � cn; 1f � and Prob �C � cn; 2f � are the conditional probabilities given by the
ABL formula, (9), and Prob �1f � and Prob �2f � are the probabilities of the results of the
final measurement. In the proofs, the authors show that Eq. (19) is not valid and conclude
that the ABL formula is not applicable to this example and therefore it is not applicable in
general.

I have argued [22, 23, 20] that the error in calculating equality (19) does not arise from
the conditional probabilities given by the ABL formula, but from the calculation of the
probabilities Prob �1f � and Prob �2f � of the final measurement. In all the three alleged
proofs the probabilities Prob �1f � and Prob �2f � were calculated on the assumption that no
measurement took place at time t. Clearly, one cannot make this assumption here since then
the discussion about the probability of the result of the measurement at time t is meaning-
less. Thus, it is not surprising that the value of the probability Prob �C � cn� obtained in
this way comes out different from the value predicted by the quantum theory. Straightfor-
ward calculations show that the formula (19) with the probabilities Prob �1f � and Prob �2f �
calculated on the condition that the intermediate measurement has been performed leads to
the result predicted by the standard formalism of quantum theory.

The analysis of counterfactual statements considers both actual and counterfactual
worlds. The statement is considered to be true if it is true in counterfactual worlds `̀ closestº
to the actual world. In the context of the ABL formula, in the actual world the pre-selection
and the post-selection has been successfully performed, but the measurement of C has not
(necessarily) been performed. On the other hand, in counterfactual worlds the measurement
of C has been performed. The problem is to find counterfactual worlds `̀ closestº to the
actual world in which the measurement of C has been performed. The fallacy in all the
inconsistency proofs is that their authors have considered counterfactual worlds in which C
has not been measured.

Even if we disregard this fallacy there is still a difficulty in defining the `̀ closestº worlds
in the framework of the TSQT. In standard quantum theory it is possible to use the most
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natural definition of the `̀ closestº world. Since the future is considered to be irrelevant for
measurements at present, t, only the period of time before t is considered. Then the defini-
tion is:

(iii) Closest counterfactual worlds are the worlds in which the system is described by the
same quantum state as in the actual world.

In the framework of the TSQT, however, this definition is not acceptable. In the time-sym-
metric approach the period of time before and after t is considered. The measurement of C
constrains the possible states immediately after t to the eigenstates of C. Therefore, if in the
actual world the state immediately after t is not an eigenstate of C, no counterfactual world
with the same state exists. Moreover, there is the same problem with the backward evolving
quantum state (the concept which does not exist in the standard approach) in the period of
time before t. I proposed [23] to solve this difficulty by adopting the following definition of
the closest world:

(iv) Closest counterfactual worlds are the worlds in which the results of all measurements
performed on the system (except the measurement at time t) are the same as in the
actual world.

For the pre-selected only situation, this definition is equivalent to (iii), but it is also applic-
able to the symmetric pre- and post-selected situation.

An important example of counterfactuals in quantum theory are `̀ elements of realityº. I
have proposed a modification of the definition of elements of reality applicable to the fra-
mework of the TSQT [24]:

(vi) If we can infer with certainty that the result of measuring at time t of an observable C
is c, then, at time t, there exists an element of reality C � c.

The word `̀ inferº is neutral relative to past and future. The inference about results at time t
is based on the results of measurements on the system performed both before and after time
t. Note, that there are situations (see example with a particle in three boxes below) in which
we can `̀ inferº some facts that cannot be obtained by neither `̀ predictionº based on the
past results nor `̀ retrodictionº based on the future results separately.

6. Weak Measurements

The most interesting phenomena which can be seen in the framework of the TSQT are
related to weak measurements [13]. A weak measurement is a standard measuring proce-
dure (described by the Hamiltonian (8) with weakened coupling. In ideal measurement the
initial position of the pointer q is well localized around zero and therefore the conjugate
momentum p has a very large uncertainty which leads to a very large uncertain Hamilto-
nian of the measurement (8). In weak measurement, the initial state of the measuring de-
vice is such that p is localized around zero with small uncertainty. This leads, of course, to
a large uncertainty in q and therefore the measurement becomes imprecise. However, by
performing the weak measurement on an ensemble of N identical systems we improve the
precision by the factor of

����
N
p

and in some special cases we can obtain good precision even
in a measurement performed on a single system [3]. The outcome of a weak measurement
of a variable C is the weak value. The weak value of a variable C of a system described by
the two-state vector hFj jYi is:

Cw � hFj C jYihF jYi : �20�
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Strictly speaking, the readings of the pointer of the measuring device will cluster around
Re�Cw�. In order to find Im �Cw� one should measure the shift in p [13].

The weak value is symmetric under the interchange hFj jYi $ hY j jFi provided we
perform complex conjugation of the weak value together with the interchange. This is simi-
lar to complex conjugation of the SchroÈdinger wave function under the time reversal. Thus,
also for weak measurement there is time reversal symmetry: both hFj and jYi enter the
formula of the weak value on the same footing and there is symmetry under the inter-
change of the pre- and post-selected states.

The weak value for a system described by a generalized two-state vector (7) is [2]:

Cw �
P

i
aihFij C jY iiP

i
aihFi jY ii : �21�

This expression is also symmetric under the time reversal, i.e., the interchangeP
i

aihFij jY ii $
P

i
a�i hY ij jFii leads to Cw $ C�w.

Next, let us look at the expression for the weak value when the post-selection measure-
ment is not complete. Consider a system pre-selected in the state jYi and post-selected by
the the measurement of degenerate eigenvalue b of a variable B. (The ABL formula for the
probability of C � cn for such situation is given by (11).

Cw � hY j PB�bC jYi
hYPB�b jYi : �22�

This formula allows us to find the outcome of a weak measurement performed on a pre-
selected (only) system. Replacing PB�b by the unity operator yields the result that the weak
value of a pre-selected system in the state jYi is the expectation value:

Cw � hY j C jYi : �23�
Weak values have many interesting properties, in particular, �A� B�w � Aw � Bw, even

for non-commuting observables A and B. I have considered weak values as weak-measure-
ment elements of reality [25], but the weak value is not just a theoretical concept related to
a gedanken experiment. Recently, weak values have been measured in a real laboratory
[26].

An interesting connection between weak and strong (ideal) measurements is a theorem
[2] which says that if the probability for a certain value to be the result of a strong measure-
ment is 1, then the corresponding weak measurement must also yield the same value, i.e.,
element of reality C � c, implies weak-measurement element of reality Cw � c. Consider a
single particle located in three separated boxes A;B, and C pre- and post-selected in the
two-state vector

hFj jYi � 1

3
�hAj � hBj ÿ hCj� �jAi � jBi � jCi� : �24�

A set of counterfactual statements for this particle is:

PA � 1 ; PB � 1 ; PA � PB � PC � 1 : �25�
Or, in words: if we open box A, we find the particle there for sure; if we open box B
(instead), we also find the particle there for sure; if we open simultaneously all boxes, we
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find the particle in one of them for sure. These counterfactual statements lead us to state-
ments about weak-measurement elements of reality:

�PA�w � 1 ; �PB�w � 1 ; �PA � PB � PC�w � 1 : �26�
From these results we can also deduce that �PC�w � ÿ1. Therefore, for every sufficiently
weak interaction the effective coupling to this single particle is equivalent to the weak cou-
pling to a single particle in box A, a single particle in box B and minus one particle in box C.
The meaning of the latter is that for a pre- and post-selected ensemble of many such particles
there is an effective negative pressure in box C. However, an experiment which will test this is
very difficult because the probability to obtain such an ensemble is very low.

7. Conclusions

In this paper I presented basic concepts of the TSQT. In order to get a complete picture
one should read also other works which were cited here, but some topics were analyzed in
this paper more completely than in other publications. Among them the issue of preparation
of a quantum system described in a time-symmetrized way. Here `̀ preº of the word pre-
paration is somewhat misleading, but I could not find more appropriate word. The absence
of a word in English which describes exactly the situation follows from the fact that until
very recently we had no reason to believe that the result of future measurements are rele-
vant to the discussion of a measurement at present. In this context I want to mention that
the time-symmetrized quantum theory fits well into the many-worlds interpretation (MWI)
[14], my preferred interpretation of quantum theory [27]. The counterfactual worlds corre-
sponding to different outcomes of quantum measurements have in the MWI an especially
clear meaning: these are subjectively actual different worlds. In each world the observers of
the quantum measurement call their world the actual one, but, if they believe in the MWI
they have no paradoxes about ontology of the other worlds. The apparent paradox that a
weak value at a given time might change from an expectation value to a weak value corre-
sponding to a particular post-selection is solved in a natural way: in a world with pre-selec-
tion only (before the post-selection) the weak value is the expectation value; then this world
splits into several worlds according to results of the post-selection measurement and in each
of these worlds the weak value will be that corresponding to the particular post-selection.

Another issue which was elaborated here in detail is the time-symmetry of the general-
ized ideal measurements recently proposed by Shimony. I showed explicitly why these
measurements are not symmetric under the time reversal.

An important novel issue which was briefly considered here is time-symmetrized counter-
factuals in quantum theory. These results have not been published yet in other journals, but
one can read more on this subject in the preprints [22, 23].

The most important issue in the framework of the TSQT, the issue of weak measure-
ments, was also discussed here only briefly and I recommend reading the review lecture
[28]. The connection to protective measurements [29] was not covered at all. The only
novel point related to weak measurements in this work is Eq. (22) which yields the weak
value in the case of partial post-selection.
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