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An inequality, recently proposed by Frandéthys. Rev. A64, 3808(1996)], is analyzed and improved. The
inequality connects the change of the expectation value of an observable with the uncertainty of this observ-
able. A strict bound on the ratio between these two quantities is obtdi@&650-294{8)04503-X]

PACS numbd(s): 03.65.Bz

In a recent paper Fransddi] developed a quantitative h
expression that characterizes the fact that a quantum observ- t= AAE’ )
able cannot change its expectation value without having

some quantum uncertainty. The simplest explanation of thiilthough it has a similar form, it is conceptually different

property is that in order for a quantum system to go from ong, 4o Heisenberg uncertainty relations for position and

eigenvalue of an observable to another it must GVOIVemomentuml.There are many derivations of this result. As far

Fhrough a superposition .of the eigenstates that is characteé—s we know the first derivation was given by Mandelstam
ized by nonzero uncertainty of the observable. Franson pr

0O- . . . .
. X and Tamn{ 3], and a very simple derivation can be found in
posed to consider the change of an observabiter it has Vaidman[4]. We will apply this result for deriving a strict

been measured such that the initial state of the system at ti”l?ound on the Franson inequality. A more general form of the
t=0 is an eigenstate of the observable. Then, at any mome'mne-energy inequality that we Will need here is

of timet in the periodry,

AEt
- h 0 |<‘1’(t)|‘1’(0)>|2005<7>, (6)
Y 2AE

which is valid fort e[0,7A/2AE], whereAE is the energy

whe_reA_E IS th_e energy un.certamty of the system, the fOI'uncertainty of the system. This inequality is quoted by Yu
lowing inequality is fulfilled: [2] [his Eqg.(1)] and it can be obtained, e.g., from E§) of
|5(Q)|=<AQ. (g Ref.l4l
Let us turn to finding the optimal bound on the period of
HereAQ is the uncertainty at timé, time for which the Franson inequalit®) is fulfilled. This

problem is equivalent to finding the minimal time for which
AQ= W (1)|QFW(1))—(W(1)|Q|W¥(1))?, (3)  |Q)|=AQ+0. Without loss of generality we can assume
that the eigenvalue of) at the initial time is zero, i.e.,
and &(Q) is the change in the expectation value, |W(0))=|Q=0)=|0). At time t the state of the system can

b d
8(Q)=(W¥(1)|Q|W¥(t))—(W¥(0)|Q|W¥(0)). @ e expressed as

If an inequality expresses a basic physical law, there must

be cases where it is saturated; if not, it must be replaced byv?/here|1) is orthogonal td0). For convenience, we define

stricter inequality that does saturate. The Franson inequalitP/1> in such a way thag is real and positive. Then, applyin
as it is presented in his paper cannot reach the equality definitions(3) ané/(4) we obtain P ) » applying

cept att=0). The purpose of this paper is to expand Fran-
son’s bound such that the revised inequality cannot be re-

[W(1))=al0)+B1), (7)

— 2 2 __ 4 2
placed by any stricter inequality. AQ=VBX1]Q%1)- pX1/Q[1)%, (8
There are two elements by which we expand the Franson )
inequality. First, we replace his approximate calculations by 8(Q)=B%1|Ql1). ©

exact calculations and obtain, instead of Ef), a larger
period of time 7, for which the inequality(2) is fulfilled. ~ From[&(Q)[=AQ follows:
Then, for timet= 7, the inequality can be saturated. How- )
ever, for any intermediate timeg (0,7,), the inequality can- 221 (1]Q*1) (10)
not be saturated. In order to correct this we introduce time 2 (1]QJ1)*"
explicitly into the inequality.
The Franson inequality is closely connected with a certain™
type of time-energy inequality that constrains the time of the 'Recently, YU 2] described an analog of this time-energy inequal-
evolution of a system to an orthogonal state: ity for position and momentum.
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Since(1|Q|1)? is always smaller than or equal ¢@|Q?/1),  In this casd & o,)|=max@o,)=1 and the maximum uncer-
the minimal value forB is 1/\/2. For this value of3 we tainty is obtained at the middle point of the evolution.
obtain However, an example in which only two states are in-

volved is not the optimal one. A system Nifspin- particles
L 5 m precessing in a magnetic field yields a smaller time for reach-
[P ()W (0))[=[a|=V1-p"=cos. (1D ing the equality|8(S;(c,))|=A[Z(c,);]. The minimal
time for this is
From the time-energy relatio) it follows that the minimal

time [which corrects Franson’s bourtd)] is \/_ 1\
T4= Narcsi m E (19)
_mh 12
T2TQAE" (12)

At the limit of N—c we reach the minimal time

Since 14/2<w/4, the time limit we found is indeed larger
than that of FransofEg. (1)]. Note that this is half the mini- Te=———. (20)
mal time of an evolution to an orthogonal state.

Consider an example of a spinparticle precessing in a
magnetic field. Let us assume that the initial statgljs the  The same minimal time is obtained in the most natural ex-
“up” state in thez direction, and that the magnetic field is in ample of comparison betweeQ) andAQ. Consider a free
they direction. Then, the time evolution can be expressed irparticle of massn in one dimension in a minimal uncertainty
the following form: Gaussian wave packet that moves with high velogitguch

that the expectation value of the particle’s momentum is

AEt _[AEt much larger than its uncertaintyp)>Ap. Then, sinceE
|\If(t))—cos(7 |7)+ sin| T)H). (13 — p2/2m, we obtain
Therefore, A
AE~<p>—p. (21
2AEt m
o) =cog ——| -1, (14
Taking into account the Heisenberg relation for minimal un-
certainty, AxAp=#/2, we find the time for whichs({x)
[ 2AEt Z Ax:
Ao,=sin = (15  —AX

Ax_Axm_AxAp_ f
v (p) AE 2AE’

Thus we see thatd(o,)|<Ao, for t<,. The equality is
reached foit= r,.

The same bound is obtained for any other two-level sys-
tem or even for any system with higher-dimensional Hilbert(We have disregarded the change of the uncertainty in posi-
space in case the quantum state of the system moves orfin during this time because it is negligible in our case for
inside a two-dimensional subspace during its evolution. Inwhich (p)>Ap.)
troducing any additional state will invariably increase the The periodrs is a strict bound for the minimal period of
minimal time for reaching the equality(Q)|=AQ. time during which the change in the expectation value

It is interesting to consider the connection betweéQ) reaches the value of the maximal uncertainty. This result can
and AQ when we do not impose the initial conditiahQ  be obtained immediately from the Heisenberg relation:
=0. We ask what is the minimal period of time during which
the change in the expectation value reaches the value of the 1 fi|d(Q)
maximal uncertainty during this period of time. AEAQ= §|<[H'Q]>| - E‘T : (23

Consider our example of a spinparticle. A simple
analysis shows that the minimal time to reach the equalit)ff
|8(Q)|=AQ is obtained for the evolution between the states,

(22

AQ is essentially constant during the process, we find that
he equality] (Q)|=AQ is reached during the times.
The strict boundrs; and the bounds; and 7, are bounds
[1), (16)  for a different problem from the one Franson proposed. The
novelty of his inequality is in considering an evolution start-
ing from an eigenstate of an observable. For such a problem
Z) 1) 17) only the Franson bound; and the improved bound, are
3 ' relevant. The bound, is absolute in the sense that there is
no larger bound for which the inequalit) holds for the
This time is whole periodt [ 0,7]. However, even with this exact bound
the inequality cannot be considered as a fundamental one
o mh (18) because it cannot be saturated for any time exteft and
37 BAE’ t=,. In order to find a basic inequality let us return to Egs.

v

6

|\I’in>=cos<g |T)+sin

|7+ sinl

a
|‘I’f>2005<§
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(8) and(9), but now we will not limit ourselves to the equal-

ity |8(Q)|=AQ. By dividing the equations we obtain

|5(Q)] _ 1
AQ  K1]Q71)/pX1[Q[1)*~1

From the time-energy relatiof®) we obtain

B=V1-[(¥(0)|W(t))]< \/W:Si”($) '

(29

(29)

Now, taking into account again thét|Q|1)?<(1|Q?1) we
obtain a new inequality:

1585

|5(Q)] AE

This inequality is valid fort e (0,7%A/2AE]. The inequality
(26) is a basic law since it cannot be replaced by a stricter
inequality. Indeed, the example of a sgirparticle precess-

ing in a magnetic field saturates the inequality: it becomes an
equality for the whole period (@#4/2AE].
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