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A classical model of a neutron as a current loop is examined. The importance of the mechanical
structure (which was overlooked by Boyer) for the dynamical equations is elaborated. It is shown
that the current loop has the same behavior in an external static electric field as was obtained for
the neutron by Aharonov and Casher from the Dirac equation.

Aharonov and Casher' have shown by a number of ar-
guments that a neutron moving past a long uniformly
charged wire (with magnetic dipole moment parallel to
the wire) will experience no force, and yet neutron wave
packets traveling on opposite sides of the wire will experi-
ence a relative phase shift. This effect is “dual” to the
Aharonov-Bohm? effect, where an electron moving past a
uniformly magnetized filament experiences no force, and
yet there is a phase shift. In the Aharonov-Bohm effect,
it is obvious that the electron is not subject to any elec-
tromagnetic force, because the magnetic field lies wholly
within the filament and so is zero at the electron’s loca-
tion. In the Aharonov-Casher effect, it is not so obvious
that the neutron experiences no force because the electric
field of the wire certainly extends to the neutron’s loca-
tion.

One of the arguments given by Aharonov and Casher
was a straightforward derivation of the equation of
motion of the neutron from the Dirac equation with an
added Pauli term.> This has long been regarded as an ap-
propriate equation to describe the interaction of the neu-
tron with electromagnetic fields.* It is a separate, but in-
teresting, question as to whether a classical model of a
neutron obeys the same equation of motion that is ob-
tained from the Dirac equation. In particular, will a clas-
sical neutron model also experience no force in the physi-
cal situation presented by Aharonov and Casher?

Indeed, Boyer® argues that a classical neutron does ex-
perience a force, causing a velocity change which de-
pends upon the side of the wire that the neutron passes.
Then it is the resultant relative positional lag of neutron
wave packets passing on opposite sides of the wire that is
responsible for the Aharonov-Casher phase shift.

Boyer’s argument is based upon the classical model of
a neutron as a current loop, a model which has been very
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successful in explaining the behavior of neutrons en-
countering magnetized material.® He correctly points out
that there is an electric force on such a current loop as it
passes a charged wire: in the rest frame of the wire the
moving current loop appears to have an electric dipole
moment p=v Xu/c (v is the loop’s velocity, p is its mag-
netic dipole moment) which the wire’s electric field acts
upon (in the rest frame of the loop its magnetic moment
experiences a force due to the magnetic field of the mov-
ing wire).

Boyer’s mistake is to suppose that this electromagnetic
force is equal to the (mass) X (acceleration). Actually, this
force is equal to the rate of change of momentum. As we
shall show, in this case the momentum is not just
(mass) X (velocity). There is another contribution to the
momentum, arising from the classical neutron’s mechani-
cal structure. The electromagnetic force goes into in-
creasing this internal mechanical momentum, while the
velocity of the neutron remains constant.

This may be phrased another way if one wishes to
define force as (mass) X (acceleration). Then, what Boyer
has omitted from his calculation is a mechanical force
(the negative of the rate of change of the internal
mechanical momentum) exerted by the mechanical struc-
ture. This force precisely cancels the electromagnetic
force and therefore the neutron moves with constant ve-
locity past the wire.

The importance of mechanical structure is well known
in making classical models of particles. For example, in
the case of a classical electron model such as a spherical
charged shell, it is essential to include the Poincaré stress,
or its equivalent, which keeps the charged shell from ex-
panding.” Otherwise, the model will not be relativistical-
ly invariant.

Similarly, in making a relativistically invariant classical

4052 ©1988 The American Physical Society



37 COMMENTS

neutron model, such as two uniformly and oppositely
charged disks rotating in opposite directions about a cen-
tral axle, or two uniformly and oppositely charged gas
clouds rotating in opposite directions in toroidal tubes (a
third, neutral rotating disk or gas cloud may be added to
provide spin angular momentum), it is essential to consid-
er the mechanical (disk or gas-tube) contribution to the
four-momentum.

We shall demonstrate that such a “neutron” necessari-
ly has mechanical momentum even when its center is at
rest in the reference frame of the wire. We shall show
this by proving the following.

(a) There is zero total momentum (electromagnetic plus
mechanical) in the rest frame of any finite static
configuration.®

(b) There is electromagnetic momentum.

It follows that there must be a mechanical momentum,
equal in magnitude and opposite in direction to the elec-
tromagnetic momentum. This mechanical momentum
was called “hidden momentum” by Shockley and James,’
and was used to resolve a paradox in a physical
configuration which is quite similar to the one considered
here.

Coming back to the original situation, where the neu-
tron moves relative to the wire, we shall see that the force
calculated by Boyer solely accounts for the change of this
intrinsic mechanical momentum, leaving no room for the
‘““acceleration” of the neutron.

We will begin by proving part (a) of our assertion.
Consider a neutron at rest, together with a source of stat-
ic external electric field (e.g., a charged wire®). The
energy-momentum stress density tensor 7+ satisfies

3,TH=8,Tt" +3,Ti'=0, (1

where T is the mechanical part of the tensor, and T/ is
the electromagnetic part satisfying

8, TH= —i—F‘* i @
(F¥* is the electromagnetic tensor, j, is the current densi-
ty). The total momentum is P'=(1/c) [ T"aV.

In this situation, the total tensor T#" is independent of
time (our neutron’s internal charge and mass are rotating,
but the charge, mass, internal velocity, and stress distri-
butions are static). Therefore it follows from Eq. (1) that
3,9, T°=0. But if V-W=0(W'=T"/c) and the vector
W vanishes at infinity faster than 1/7* (certainly the case
here, where TH' > T/~ 1/ r* or faster at infinity), then

Pi=[ wiav= [ V-(Wx)dV — [ xV-WaV
= ¢$(Wx)-dS=0. (3)

Next we prove part (b) of our assertion that the elec-
tromagnetic momentum for this static configuration does
not vanish. The electromagnetic momentum density is
E X B/4mc. The magnetic field B of the neutron may be
written as B=47M — V¢, where the magnetization densi-
ty M is localized (nonvanishing only within the neutron
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volume), and the potential ¢ of the magnetic intensity
H= —V¢ falls off at infinity as 1/r2. The static charge
are the sole source of electric field E (i.e., the “neutron”
is not electrically polarizable), and its value E; over the
volume of the neutron is assumed to be essentially con-
stant. Then

1 1
P,=7— [ ExBdV=_— [ Ex(4nM—V$)dV
1 1
_ConfMdV+ 4ﬂ_cf¢V><EdV
:%on,u. )

It follows from (3) and (4) that there is mechanical
momentum in this configuration, whose value is

Pm=P—Pe=%p><E0. (5)

This mechanical momentum cannot lie in the mechanical
structure of the charge source. Nothing is moving there,
so the momentum density 7.0 vanishes over the charge
source. Therefore it is the nonvanishing 7. for the neu-
tron that is responsible for the mechanical momentum
(5). This completes our proof that a neutron at rest has
mechanical momentum. We will later explain in detail
how this dynamical momentum arises.

We now have all the essential elements with which to
write down the equation of motion for the neutron, say,
in the rest frame of the wire (the calculation in the rest
frame of the neutron will appear later).

The force on the neutron’s electric dipole moment
p=(vXpu)/c due to the electric field E of the charged
wire, which Boyer correctly calculated, is (p-V)E. The
neutron’s momentum is mv+p X E/c [m is the neutron’s
mass; the hidden momentum is given by Eq. (5) even
when the neutron moves, omitting terms of order (v /c)?].
Thus the equation of motion is

1 1 d

c(vxy VI E=ma+ - dtyxE (6)
or

%[(vXp-V)E-i»(v-V)(EXp)]=ma , 0

where Eq. (7) follows from Eq. (6) using d/dt=3/0t
+v-V and the fact that E depends upon time only
through its dependence upon the particle’s position. Us-
ing vector identities Eq. (7) may be written as

%[——(v><u)><(V><E)+(vXu)V-E—(y-V)(vXE)]
=ma. (8

Since VX E=0 and V-E=0 for the wire’s electric field at
the location of the neutron, we obtain

—%(;rV)(vXE):ma . ©)
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Now, in the physical situation envisaged by Aharonov
and Casher, E does not depend upon the coordinate z
parallel to the wire. However, -V =pd/9dz, so the force
on the left-hand side of Eq. (9) vanishes. Thus even this
classical neutron moves with constant-velocity motion, as
Aharonov and Casher claimed. In fact, Eq. (9) is identi-
cal to the equation of motion of the neutron obtained
from the Dirac equation, for this situation.!

We have made our point, but we wish to comment fur-
ther on two of its aspects, the dynamical origin of the
hidden momentum and the equation of motion in the
neutron’s rest frame.

Before giving examples of hidden momentum, whose
manifestation is model dependent, we shall prove its ex-
istence in another model-independent way. This time,
consider the local equation obtained by combining Egs.
(1) and (2),

1

vA: v
P =3, Th, (10)

whose v=0 component is

3
Llip=3 810, (11)
¢ i=1
Equation (11) describes the energy exchange between the
external electric field and the neutron: The existence of
the hidden momentum can be obtained directly from it
and from current conservation V-j=0. We integrate the
identity —r(E-j)=(rXj) X E—j(E-r) over the volume of
the neutron, obtaining

—f rZB,T,’de:ZpXE——i—E-f rjav, (2

where we have used the definition p=(1/2c) f rXxjdVv
and the constancy of E over the volume of the neutron.
Integration by parts of the left-hand side of Eq. (12)
yields ¢P,,. As for the last term on the right-hand side of
Eq. (12), we may use the identity f(x,,,j,, +x,j,)dV
=— [ %,x,V-jdV =0 to write it as —(1/2c)E- [ (r]
—jr)dV =E X pu. Thus we obtain Eq. (5) once more.

Now let’s take a look at some models, to understand
where the hidden momentum comes from. Consider first
the neutron model we have cited involving counter-
rotating charged gas clouds. Suppose the neutron is at
rest, the axis of rotation lying perpendicular to this piece
of paper, with the positive (negative) charges rotating in
the clockwise (counterclockwise) direction, and suppose
the external electric field E points to the top of this page.

Let us examine the energy exchange between the exter-
nal electric field and the moving charges in the neutron.
j°E in Eq. (11) is power density put into the left half of
the neutron, and taken out of the right half: the speed
and Kkinetic energy of the positively (negatively) charged
particles are increased by the electric field as they travel
from the bottom (top) of the page to the top (bottom) of
the page and are decreased on the return trip. As a re-
sult, the positively (negatively) charged particles have
greater momenta in the upper (lower) part of their trajec-
tory. The density of the charged particles is decreased in
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the region where the speed is increased, so a nonrelativis-
tic calculation gives no net momentum. However, taking
into account the relativistic mass increase together with
the speed increase, one obtains a net momentum toward
the right. Penfield and Haus,'” in considering charged
particles moving in a rectangular current loop in an
external electric field, show how just this mechanism pro-
duces the mechanical momentum (5) (see also Ref. 9).

In the model of the neutron involving counter-rotating
charged disks, the mechanism behind the hidden momen-
tum is quite different. The rigidity of the disk does not
allow acceleration and deceleration of the charges, and
the external electric field causes only stresses. Both nor-
mal and shearing stresses can occur (their proportions de-
pend on the elastic properties of the disks). A Lorentz
transformation of the stress-energy tensor converts stress
to momentum density. This contribution leads to the net
mechanical momentum (5) in the rest frame of the center
of the neutron.'!

Finally let us consider the equation of motion for the
neutron in its instantaneous rest frame. This equation of
motion is the integral of Eq. (10) over the volume of the
neutron. On the left-hand side of Eq. (10) we write
F**=F + F'%, where FY) contains only the external
electromagnetic fields, and FA contains the fields whose
sources lie within the neutron. The integral of
(1/¢) Fitj, is the external force on the current loop
V(u-B) that Boyer correctly calculated. The integral of
(1/¢)Fij, is the electromagnetic self-force which, as in
the case of the classical electron, is equal to the (negative
of the) electromagnetic mass [(1/87) f B, dV in this
case] multiplied by the acceleration. The integral of the
right-hand side of Eq. (10) consists of the rate of change
with time of two parts, the field-independent mechanical
momentum, and the field-dependent ‘“hidden momen-

tum” (5). Thus we obtain the equation of motion in the
rest frame:
V(B 4+~ LExp=ma (13)
E coar HT ’

where m is the total rest mass (mechanical plus elec-
tromagnetic).

Since dE /3t =cV XB (assuming the neutron is not
passing through a current-carrying region of space) and
(£-V)B=V(u-B)—puX(VXB), we may also write (13) as

(u-V)B=ma . (14)

This shows that the current-loop neutron experiences the
force [defined as (mass)X (acceleration)] that a dipole
composed of a pair of magnetic charges of opposite signs
would experience in this situation.

Specializing Eq. (14) to the Aharonov-Casher situation,
where the moving wire creates a magnetic field
B= —(1/c)vXE, Eq. (9) is once again obtained for which
we showed that the force vanished.

We wish to thank J. Anandan for helpful conversa-
tions. This work was supported in part by the National
Science Foundation under Grant No. PHY-8408265.
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