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L INTRODUCTION

The topic of this paper concerns a simple formula, rarely
mentioned in the literature, which can serve as a helpful tool
in quaritum mechanics. It has been shown! that for any Her-
mitian operator A and any quantum state I(//) the following
formula is valid:

Al =(A)]yl+ 8Aly.), 1

wh%_re, l¢), |) are normalized vectors, (¢ |)=0,

(A)=(ylA|y), and AAE\/(AZ)—(A)z. The proof is as fol-

lows: It is always possible to make a decomposition

Alp=aly)+Aly) with 0. Then (uald)=(4(aly)
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TAlY.)) yields a=(4), and (YATAlY)=(a"(Uf+B" (WD
X(aly)+Blyy)) yields B=AA.

In Ref. 1 the formula has been applied to a composite
system consisting of a large number of parts in a product
state. It has been proven that such a product state is essen-
tially an eigenstate of an operator defined as an ‘‘average’’ of
variables corresponding to these parts. The formula has also
been used in a simple derivation of the minimal time for the
evolution of a quantum system to an orthogonal state.? Our
aim here is to show new applications of this formula. In Sec.
IT an immediate result related to maximal uncertainty states
is obtained. In Sec. III the formula is used to derive, in a
simple way, the Heisenberg uncertainty principle and other
related inequalities.
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II. A MAXIMAL UNCERTAINTY STATE IS NOT

UNIQUE

Let us start by rewriting our basic formula in the form

AlY)=(A) vy +24,ly,). (2)
' Then, the scalar product of |y, ) and A|y) is

(i lAlyy=n4,. (3)
For Aly,) the formula gives

AIL/IJ_>=<A>|//L|'//J_>+AA¢J_Il//_LJ_>’ (4)
where (¢, , |4, )=0. Substituting Eq. (4) in Eq. (3) yields

AA=AA (UL, ()

Since [(Yfy, )=<1, Eq. (5) leads to

AAy =AA, (6)

Thus, we have proved the following theorem:
For any Hermitian operator A and any given state |} there
exists a state |1, ) orthogonal to |i4), such that
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This implies that a state corresponding to a maximal uncer-

tainty of any given observable cannot be unique.

III. THE HEISENBERG UNCERTAINTY PRINCIPLE

We present here a simple method, based on the formula
[Eq. (1)], to obtain the Heisenberg uncertainty principle.
Consider two Hermitian operators, A and B, in arbitrary Hil-
bert space. Then, the following equations hold:

Alt//> <A>|¢>+AAI1//M> (7)

Bll//> (B)|¢)+ABly,p), (8)

where (¢, 4|¥)=0 and (¥, 5]¥)=0. Note that the quantities
{A), (B), AA, and AB are all real numbers. Multiplying the
‘Hermitian conjugate of Eq. (8) by Eq. (7), and using the fact
thatB Bt , we obtain

(BAL )= ((BY (] + AB(Y o)) ((A) ) + AA[ 1))

=(BYA)+ABAA(Y plYhia). ©)
Similarly,
© (UAB|)=(A)B)+ AAAB a1 5). - (10)
Subtracting Eq. (9) from Eq. (10) yields
([A,B1)=2i8A8B Im(uals). (1)
‘Since the vectors are normalized, we can use
*|Im{, 4|, 5)I=<1 to end with ‘
AAAB=[{([A,B])], (12)

" which is standard form of the uncertainty principle.

Another interesting inequality can be obtained by calculat-
ing the anti-commutator of A and B. We add Eq. (9) to Eq.
(10) and get
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({4,B))=2(AXB)+20AAB Re(Yyalung),  (13)

where {A,B}=AB+BA. Rearranging Eq. (13) and taking
the absolute values of both sides, we find

BABBIRe( b sl ) =IH(A BD~ (A)B). (1)
Since [Re(y, 4|y, g)l=<1, it follows that
AAABZK{A,BY) ~(A)(B). s

This inequality is a by-product of a conventional derivation
of the uncertainty pr1nc1ple which is based on the Cauchy-—
Schwarz inequality.® The physical significance of Eq. (15) is
that it provides an estimate for the correlations developed in
time between A and B. For example, it manifests the corre-
lation between x and p for the case of a free particle evolving
in time.*

We can also obtain a more accurate estimate for AAAB.
Adding Eq. (11) to Eq. (13), we find

([4,8])+({A BY)=2iAAAB Im(iy 4] &, 5)
+2AAAB Re(y |4, 5) +2(A)(B),

(16)
and consequently,

AAAB(, 4, 5)=%[A,B]y+H{A,B})—(A)(B). -

Taking the norm of both sides we find

AAAB=(([A,B])+ x({4,B})—(A)(B)]. (18)

Since [A,B}=iC and {A,B}=D, where C and D are Her-
mitian operators, and since the expectation value of an Her-
mitian operator is a real number, it follows that

AAAB=[(5({A,B})— (A)(B)>+ H([A,BDIP12. (19)

This result combines the two previously found bounds,
namely Eqgs. (12) and (15).
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