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We consider circumstances wherein a quantum-mechanical system is subjected to a varied sequence of measurements, some of
which are substantially more precise than others. Such systems are shown to exhibit paradoxical behavior. The resolution of this
paradox turns out to involve bizarre interference effects in the measuring apparatus. The possibilities of observing such behavior

in the laboratory are briefly considered.

Von Neumann’s famous account of the operations
of quantum-mechanical measuring devices runs,
roughly, like this: in order to measure some given
observable 4 of a quantum-mechanical system §S,
what is required is that one produce a hamiltonian
of interaction, between S and a measuring device,
which has the form [1]:

Hinlz—g(t)qA’ (1)

where ¢ is an internal variable of the measuring
device, and g(¢) is a time-dependent coupling func-
tion which is non-zero only during a short interval
toy<t<t;, when the measuring device is “switched
on”. Then the measurement is accomplished as fol-
lows: the Heisenberg equation for z, where 7 is
defined to be the canonical momentum conjugate to
the canonical coordinate g of the measuring device,
reads

drn/dt=g(1)A, (2)

and so, if # is initially set, say, at zero, and if the value
of
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{0

is known, then the value of 4 at 1 ~1,~1¢, can be read
off from the value of n after t; (and =7 is therefore

often referred to as the “pointer variable™) *!,

The fact that any precise measurement of 4 must
necessarily and uncontrollably disturb the values of
observables which fail to commute with A can be
traced, within this account, to the fact that a precise
measurement of A requires that the value of © be
precisely fixed prior to f,, and consequently that the
uncertainty in ¢ during the measurement interaction
described in eq. (1) (and hence, as well, the possible
strength of that interaction) is unbounded.

On the other hand, it emerges quite clearly within
this account that if one is willing to accept uncer-
tainties in the initial value of xn, and the resultant
inaccuracies in the measurement of A, then the
uncertainties in the value of ¢ during the measure-
ment interaction, and hence the possible strength of
that interaction, and the disturbance caused by it to
variables of system S which fail to commute with 4,
can be bounded and controlled. We shall refer here
to such a trading-off, to the sacrificing of the accu-
racy of measurements of 4 in order to gain some
control of the disturbances caused by such measure-
ments to variables which fail to commute with A4, as

*¥! This, for example, is precisely how a Stern~Gerlach spin meas-
uring device works, wherein the position-coordinate of the
particle being measured (which here plays the role of g in (1))
is effectively coupled to its spin (which plays the role of 4) by
means of an externally applied magnetic field (whose gradient
plays the role of g).
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a weakening of the measurement of 4; and our con-
cern in the present note shall be to point out a most
extraordinary statistical property of such weakened
measurements, which we have recently discovered.

Consider a system of N spin-1 particles (the ham-
iltonian of which we shall suppose, for simplicity, to
be zero), and suppose that at time ¢ a precise mea-
surement of the total angular momentum of this N-
particle system in the x-direction (/) is carried out,
and that this measurement produces the (largest
possible) result J.=N (we take #i=2); and suppose,
furthermore, that at time #; (¢;>1,) a precise mea-
surement of J, is carried out on this system, and that
this measurement happens to produce the result
J,=N (such pairs of results, when N is large, will of
course be rare, but they are nonetheless always pos-
sible; and we should like to confine our attention here
to a system wherein such a pair of results happens to
have emerged). If we are later informed that another
precise measurement of J,, say, were carried out at
time ¢;, with £, <t, <t then (as is well known) we
could assert with certainty that the result of that
measurement must have been J,=N (since other-
wise, the result of the measurement at ¢ could not
have been what it was). Similarly, if we are later
informed that a precise measurement of J, were car-
ried out at ¢,, with £, <t, <t we would be in a posi-
tion to assert with certainty that the result of that
measurement must have been J,=X; and indeed it
is even the case that if we were later informed that
a precise measurement of J, were carried out at ¢,
and a precise measurement of J, were carried out at
t,, with 1;<t, <t, <y, then we should be in a position
to say with certainty that the result of the measure-
ment at ¢, was J,=N and the result of the measure-
ment at ¢, was J,= N. But it should be carefully noted
that in this last case the time-order of the two inter-
mediate measurements is vitally important. These
two measurements, after all, being precise, will
uncontrollably disturb one another; and so in the
event that t;<t, <t <t there will, in general, be no
correlation whatever between the results of the mea-
surements at ¢, and ¢,, nor between the results of those
at frand £,.

Suppose, however, that we were to weaken these
two intermediate measurements in such a way as to
gain some considerable control over the distur-
bances they cause to one another. Suppose, more
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particularly, that the initial state of the measuring
devices are arranged in such a way as to bound the
possible value of ¢ as follows:

lgl <N—172-e, (3)

where e may be an arbitrarily small positive number.
In that case, the resulting uncertainty in  will be of
the order of \/Xf, which if N is taken to be large, is
small compared with the maximal possible values of
J. and J,; so that measuring devices prepared in this
way can still serve (albeit imperfectly) as reasonably
informative indicators of the values of those angular
momenta. On the other hand, if we set

[ e ar=1 (4)

for each of these devices, then the bound (3) on ¢
will guarantee that measurements of J,, say, with such
devices as these, will change the value of J, only by
amounts of the order of \/N, which is (as we have
Jjust seen) within the intrinsic error associated with
these measurements. Such weakened measurements
of J. and J,, then, can be expected, as it were, to
“commute™; it can be expected, that is, that two such
measurements will verifiably leave one another’s
results essentially undisturbed.

Reconsider, now, the system of N spins described
above, which was measured precisely, at time f;, to
be in the state J,=N, and at ¢; to be in the state J,=N.
Suppose that we are informed later on, that a weak
measurement of J,, of the kind we have just
described, was carried out at ; (t;<t;<?). Then,
especially if N is large, it can be asserted with a high
degree of confidence that the result of this weakened
measurement was J,.=N (more precisely, it will be
the case that if (#) =0 before the interaction begins,
then it will invariably be the case that (7> =N after
t,, where 7 is the pointer variable of the weakened
J, measuring device; and furthermore, if N is large,
the uncertainties in z, both before and after the
experiment, will be very small compared with this
displacement in its expectation value); and, by vir-
tue of the time-reversal-symmetric character of the
statistical predictions of quantum theory [2], the
same argument can be made concerning a weak mea-
surement of J, which may have been carried out at
t,, within that same interval. Clearly no additional
complications are introduced by supposing that both
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measurements (first the measurement of J, and then
that of J,) are carried out within that interval, as we
did above; but in the present case, because of the
“commutative” behavior of these weak measure-
ments, we also expect that the order in which they are
carried out will make no difference. Indeed, it can be
easily confirmed by straightforward calculation that
whether 1, <, or t,<t,, the expectation values of the
pointer variables of both the J, and the J, measuring
devices, will, in the circumstances described above,
be displaced by precisely (up to corrections of the
order of \/N) NI

This produces something of a paradox, which runs
as follows: suppose that instead (as above) of meas-
uring the value of J, at time ¢, and the value of J, at
time ¢,, we measure, with a single device, the sum of
those two values. Such a measurement can easily be
accomplished by means of an interaction hamilton-
ian of the form

Hi =81 (D)qJ /2 +8:() ], 1\/2, (5)

where g, (t) is non-zero only in the vicinity of ¢,, and
g,(t) is non-zero only in the vicinity of ¢, (the fac-
tors of 1/,/2, as the reader shall presently see, have
been inserted for the sake of convenience). Further-
more, if “weak’ bounds of the form of eq. (3) are
imposed on ¢, and in cases where J, is precisely
measured to be N at ¢ and J, is precisely measured
to be N at ¢, the total displacement of the expecta-
tion value of & after both ¢, and ¢, will, by the above
arguments, always be (up to corrections of order
\/]V) \/5 N, whether ¢, precedes ¢,, or t, precedes ¢,
or, indeed, ¢,=1¢,. But consider this last possibility.
In the event that ¢, =¢, (in the event, that is, that
8:(t) =g,(1)) the interaction hamiltonian of eq. (5)
reduces to

Hiw =8 ()q(J.+J)1/2, (6)

which is the hamiltonian required for a measure-
ment of the projection of the total angular momen-
tum along the d-axis (J,), where « is the ray which
bisects the right angle between £ and y. Now, we have
Jjust argued that this measurement will (within such
intervals as we have just described, and so long as ¢
is bounded in accordance with (3)) almost invari-
ably, produce the result \/5 N; but this seems a most
paradoxical result, since the particular measurement
here in question is (looked at in another way) sim-
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ply a measurement of J,, the largest possible eigen-
value of which is the vastly smaller number N! How
can it be that measurements of J,, under these cir-
cumstances, and with such regularity, produce
impossible results?

The first thing to do, it would seem, is to verify the
result of our argument by more rigorous techniques,
and this, happily, is not a particularly difficult task.
The state of the composite system, consisting of the
N spins together with the J, measuring apparatus
after the J,-interaction is complete and supposing
that J, was found to have the value N at ¢, will be:

exp[ig(J,+J,)/\/2] [Je=N) | n =0, (7)

wherein (7 ~0) represents the initial state of that
device, which (in accordance with (3)) will be char-
acterized by a gaussian distribution of z-values, of
width /N, and peaked, say, about 7 =0. Now, if it
subsequently happens that at £ J, is found to have
the value N, then the final state of the measuring
apparatus (modulo an overali constant of normali-
zation) will be:

(J,=Nlexplig(J, +J)/\/21|J =N |n=~0), (8)

so the time-evolution operator for the measuring
apparatus through such a sequence of events is

(Jy=Nlexplig(J +J,)/ /2] =N, (9)

and it can be rigorously shown (without too much
trouble) that if g is taken to obey the bound (3), then

(Je=Nlexplig(Js+1,)/\/2]1J,=N>

~ (J,=N|J,=N) exp{ig[/2 N+O(/N)]}
(10)

as N becomes large. The effect of such a sequence of
events, then, in this limit, is invariably to translate
the initial |7 ~0) apparatus state by the impossible
for at least, at first sight, unreasonable) distance of
N./2, rather than (what would seem more reason-
able) a distance equivalent to any of the eigenvalues
of J,, precisely as our earlier (and more intuitive)
argument had led us to believe.

What is happening here - albeit the demonstration
is quite straightforward - is something of a miracle.
The measuring apparatus state is translated, in the
course of these events, by a superposition of differ-
ent distances corresponding to the various possible
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eigenvalues of J,,; and the resultant translated states,
in the end, quantum-mechanically interfere with one
another in such a way as to produce an effective
translation which is larger than any of them! In such
sequences of events, everything in the final appara-
tus states save the outermost limits of the tails (which
must necessarily exist, given (3)) of the translated
n~distributions ends up cancelling itself out; the cen-
tral peaks annihilate one another and disappear, and
what remains is a new peak, made up of constructive
interferences among the many tails, way out in the
middle of nowhere, at \/5 N. Moreover, (and this is
what seems genuinely miraculous) the nature of these
anomalous interferences is precisely such as to make
the J, and J, components of the total angular
momentum (both of which have the value N) appear,
as measured by our weak experiments, to add
together in J, as if they were components of a clas-
sical vector. These results, of course, are of the sort
that would normally be construed as “errors™ of the
measuring-device; but that seems an inappropriate
name for them here, since they are results which
(given inital and final conditions on the spins such
as we have postulated here) invariably arise, and
which invariably conspire together to point to an
internally consistent picture of a classical, rather than
a quantum-mechanical, system.

Here, then, is a particularly bizarre prediction of
quantum mechanics; something that looks like magic,
and which demands to be tested. What seems frus-
trating in that respect is that the circumstances
described above (i.e. circumstances like J,=N at ¢;
and J,=N at t;), wherein those bizarre effects have
been shown to occur, are exceedingly, exponentially,
improbable; so the task of actually searching out such
effects in the laboratory seems hopeless. But it turns
out that that improbableness is by no means a nec-
essary attribute of these effects; and indeed it turns
out that a very simple modification of the experi-
mental procedure described above will suffice to
guarantee that such effects are extremely common
things! The trick is to do the weak J,-measurements
separately on each particle in the ensemble, rather
than combining them all into a singie total weak J,
measurement, as above. Here, in more detail, is what
to do: start at ¢, with a large collection of electrons,
all of which are in the state |s,=1) (such a collec-
tion is, of course, not at all hard to come by: some-
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thing like half of any randomly chosen collection of
electrons, whose x-spins are measured at ¢, will form
precisely such a group). Measure s, (that is: (s, +
s.)/ ﬁ ) for each particle, weakly and separately (i.e.
using a separate measuring device and obtaining a
separate specific result, for each separate electron) at
¢,. Finally, at #;, measure the y-spins of all those elec-
trons. Something like half of them will be found to
have s,=1 at . Now focus on that half of the full
collection of weak s, measuring devices which hap-
pen to have interacted at ¢, with that particular
(s,=1) half of the original collection of electrons.
Among them, for precisely the reasons described
above, the same sorts of bizarre conspiracies of
“error” must necessarily arise; their n-values (that
is: the n-values of that particular half of the weak J -
measuring devices), will be found to have been dis-
placed in the course of the interaction of ¢, by an
average distance \/—2_, even though that distance seems
impossibly large. These displacements will, of course,
be far smaller than the original widths of the n-space
wave packets; but if the original ensemble of elec-
trons is sufficiently large, the average displacement
can nonetheless be determined, by statistical means,
with arbitrarily high precision.

The difference between this experimental proce-
dure and the one described above, as we have already
mentioned, is simply that here the s.-devices are all
stipulated to be separate and distinguishable degrees
of freedom, rather than having been combined, as
they were above, into a single total J, device; and it
is precisely this separateness and distinguishability
which here allows us to focus, after t;, on that par-
ticular Aalf of those devices wherein such effects must
necessarily arise, and thereby to make the apparent
“improbableness™ of those effects go away.

The accomplishment, in practice, of this separate-
ness of the measuring devices presents no serious
obstacle. If it could be arranged that, say, certain
spatial degrees of freedom of the particles them-
selves were made to serve as the pointer-variables of
the measuring devices (as in a Stern-Gerlach exper-
iment, for example), that would suffice. Such an
arrangement would have the additional advantage of
making it very easy to ascertain the average m-dis-
placement, since that displacement would, in this
case, amount to a shift of the center of a macro-
scopically large beam of particles!
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The details of experiments wherein these effects
might be observed will be described elsewhere. Let
it suffice, for now, to say that there appears to be no
reason to suppose that such experiments will prove
in any way beyond our present technological
capacities.
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