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The influence of quantum interference on the transmission of a fluxon through an ideal long circular
Josephson junction (a ““Josephson ring”) is studied. In the low-temperature regime the transmission is a
periodic function of a gauge charge applied along the ring with a period 2e. Around points of full period of
both the gauge charge and the optical path, the transmission shows resonances as a function of the gauge
charge and “‘antiresonances” as a function of the optical path. These resonances and antiresonances are
associated with energy levels of the circular junction and with short dwelling time of the fluxon in the ring. In
the high-temperature regime the interaction with plasmons dephases the fluxon wave function completely. The
transmission probability in this regime is calculated in a stationary picture and in a dynamical picture and two
different results are obtained. The discrepancy between the two pictures is explained via the ratio of the
dwelling time to the time the thermal bath needs to change the plasmons’ microscopical state. A general

method that retrieves the two results is presented.

PACS number(s): 03.65.Bz

I. INTRODUCTION

The possibility of observing quantum behavior of large,
composite excitations is very intriguing. In the past decade
this idea was studied both theoretically [1-8] and experi-
mentally [9] for two-dimensional superconducting vortices.
Most of the studies dealt with vortices in Josephson junction
arrays, while Ref. [8] considered the Abrikosov vortex. Re-
cently it was argued that the effectively one-dimensional,
long Josephson junction fluxons can exhibit measurable
quantum effects [10,11]. In Ref. [10] a closed circular Jo-
sephson junction (a closed Josephson ring) was considered
and it was shown that a bias charge applied along the junc-
tion acts as a gauge charge and induces a persistent motion
of the fluxon, manifested in a persistent voltage. In Ref. [11]
the distance over which the fluxon maintains its quantum
coherence (the “dephasing length”) was evaluated.

In the present work we study the transmission of fluxons
through an ideal Josephson junction ring connected to two
Josephson junctions leads, i.e., an open Josephson ring (see
Fig. 1). We will examine two limits. When the temperature is
very low, the fluxon maintains its coherence and we expect
to find oscillations of the transmission as a function of the
gauge charge. These oscillations are analogous to the hc/e
oscillations in the transmission of an electron in a metal ring
[12]. Furthermore, the transmission of an electron is known
to have resonances [13,14]. We will look for resonances in
the transmission of the Josephson ring. In the opposite limit,
when the temperature is high enough to completely destroy
the quantum coherence, the oscillations vanish. It is gener-
ally believed that a destruction of a quantum coherence by a
dephasing process is equivalent to a measurement process
carried out on the system. When measurement devices that
detect the fluxon but otherwise leave it unchanged are
coupled to the arms of the ring, the fluxon’s wave function
collapses. The collapse destroys the interference completely
and hence acts like a dephasing process. We will show that
these two pictures produce different values of the transmis-
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sion probability and explain this result by the dependence of
the value of the transmission probability on the different time
scales in the system.

II. TRANSMISSION THROUGH A JOSEPHSON RING:
A STATIONARY APPROACH

A. Description of the model

The spectrum of excitations of an ideal long Josephson
junction consists of fluxons, which are topological solitons,
and of plasmons, which are small amplitude plasma oscilla-
tions. These excitations are decoupled in the sense that they
do not change any of their properties after interaction and the
only result is a phase shift [15,16]. We will refer to this
coupling as a ‘“‘phase interaction.”” We consider the limit in
which the Josephson ring is strongly connected to the two
leads. This means that an incoming fluxon is certainly trans-
mitted to one of the arms of the ring. If we also assume a
symmetry between the two arms, then the S matrix describ-
ing the identical connections of the leads to the ring is

0 142 142

s=| 12 12 —12| . (1)

N2 =12 12

FIG. 1. Open Josephson ring. Two possible paths of a fluxon are

shown.
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It is the same S matrix that was used in Refs. [13] and [17]
and was generalized in Ref. [14]. Whether such a connection
is feasible for a Josephson junction is yet to be studied. We
will comment about the ring connections later. The phase
interaction of a fluxon propagating along an arm is repre-
sented by a barrier having zero reflection coefficients, r;
from the left and r; from the right (i=u,l, where u and !
denote the upper and lower arms, respectively), and pure
phase transmission coefficients #; and /. Thus a generic
transmission coefficient is

t=e'? . 2)

In a stationary picture one can use the relations between the
amplitudes of the different partial waves in the system ensu-
ing from Egs. (1) and (2) to express the total transmission
amplitude of the ring D as a function of the barriers’ trans-
mission coefficients

tt (1) —(t,+1)

D=2 . (3)

(2, +2)(e,+2])—4

This is a special case (for r;=r; =0) of Eq. (3) of Ref. [13].

B. Low-temperature limit

We will first examine the low-temperature limit of our
system, i.e., the limit where there are no plasmons (about
0.1 K and below, as shown in Ref. [11]) and a fluxon can be
considered free. When a fluxon propagates along the junction
it can accumulate two phase shifts: an optical phase shift
0, which is always present, and a gauge phase shift
Q=2m(q/2e), which exists when a bias charge g is induced
along the inner and outer edges of the junction [10]. Note
that while the optical phase accumulates regardless of the
direction of the fluxon, i.e., it is time reversible, the gauge
phase cancels when the fluxon path is reversed, i.e., it is
anti-time-reversible. These phase shifts can be considered as
modulated  transmission  coefficients  f,=e (% QW)
th=e Q0 1 =¢"0=Q) and ¢t =e"%*"2) If we assume
for the moment that the two arms are equal (,= 6,= 6/2 and
Q,=0,=0/2), then Eq. (3) becomes

3 COS(Q/2)(€3i9/2_ ei0/2)

cos?(QR2)el?—1 @)
Thus we find that the transmission probability
4cos2(Q/2)sin®( 6/2)

r=|p|’- e ®)

cos*(0/2) —2cos*>(Q/2)cos(8) + 1

shows oscillations as functions of the gauge charge with a
period 2e, in analogy to the ® oscillations of the transmis-
sion of an electron in a metal ring [13,14]. There are, of
course, oscillations in the transmission as a function of the
optical phase.

A very interesting behavior of the transmission occurs
around points of a full period of both the optical and the
charge phases. When #=2n (where n is an integer) the
transmission is zero, while when Q=2mm (where m is an
integer) the transmission is one. Therefore, at the points
where both conditions are met there are ambiguities in the
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transmission. These ambiguities occur because the right-
hand side of Eq. (5) is discontinuous at the points
(2nr,2mar). The limit values of Eq. (5) at these points de-
pend on the way the limit is taken. If the optical phase is
being kept at a full-period value and the charge phase is
varied, the measured transmission will be zero everywhere,
even at the points of full periods of the charge phase. Alter-
natively, if one holds the charge phase at a full-period value,
the measured transmission will be one everywhere, even at
the points of full periods of the optical phase. This behavior
is a source for two kinds of resonancelike structures in the
transmission: when the optical phase is near a full-period
value, then there are resonances in the transmission as a
function of Q around the points Q=2mm. On the other
hand, when the charge phase is near a full-period value, there
are ‘“‘antiresonances’ in the transmission as a function of 6
around the points =2n1.

The existence of resonances in the transmission through a
ring is a well-known phenomena, which was studied exten-
sively in Ref. [14]. We emphasize that while the anti-
resonances appear implicitly in Ref. [14], the resonances we
have just described are not the resonances that were studied
in that work. The latter are resonances of the transmission as
a function of the optical phase, which exist when the cou-
pling to the leads is weak or when the coupling is strong and
the elastic scattering in the ring is also strong. The former are
resonances of the transmission as a function of the gauge
phase, which exist when the coupling to the leads is strong
and there is no elastic scattering in the ring.

However, the observation made in Ref. [14] that reso-
nances in the transmission probability are associated with the
energy levels of the closed ring applies also to our case. The
resonance conditions #=2nm and Q=2mm are just the
Bohr-Sommerfeld condition for the existence of an energy
level in the ring. If we relax our assumption that the two
arms are equal, then taking the excess phase of one of the
arms to be A, we have instead of Egs. (4) and (5), respec-
tively,

cos[(Q+ A)/2](e3i( 0T A2 pi(6+A)12)
T oS’ [(Q+A)2]e T

(6)

and

3 4cos?[(Q+ A)/2]sin?[(6+A)/2]
= cos’[(Q+ A)/2]—2cos’[(Q+A)/2]cos(6+A)+1 °
)

The resonance conditions are now met when +A=2n7
and Q+A=2mr. Thus the Bohr-Sommerfeld condition is
the resonance condition for a general ring, i.e., resonances
occur at energy levels of the closed ring. One question is left
open though. In Ref. [14] the resonances are explained by a
long dwelling time of the electron in the ring, which results
in a coherent build up of its wave function. The long dwell-
ing time was due either to a weak coupling to the leads or to
a strong elastic scattering in the ring. In the case described
here, the coupling to the leads is strong and there is no elas-
tic scattering. Thus there is no apparent mechanism that
guarantees a long dwelling time.
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Any practical probing of these resonances will undoubt-
edly involve fluctuations of the optical phase and/or the
gauge charge. When trying to measure the transmission at
the points of double resonances, the two kinds of fluctuations
will compete. The optical phase fluctuations strongly in-
crease the transmission, while the gauge phase fluctuations
strongly decrease it. Thus the measured value will drastically
depend on the fluctuations’ distribution. General phase fluc-
tuations can be decomposed into time-reversible and anti-
time-reversible fluctuations. The time-reversible part will act
like optical phase fluctuations and the anti-time-reversible
part will act like gauge phase fluctuations. Since the phase
shift acquired by a fluxon due to an interaction with plas-
mons is neither time reversible nor anti-time-reversible [16],
the measured value of the transmission in the presence of
plasmons will be between one and zero.

C. High-temperature limit

We turn now to the high-temperature limit. In Ref. [11]
we have shown that at high temperature dephasing occurs
even for a particle having only a phase interaction, e.g., a
fluxon. The thermal distribution of plasmons causes uncer-
tainty in the phase accumulated by the fluxon during the
interaction. When the uncertainty reaches 27, quantum co-
herence is completely lost. The dephasing temperature of the
long Josephson junction fluxon is a function of the ratio be-
tween the length of the junction L and the Josephson pen-
etration depth A ;. For a typical junction with L=10A, the
dephasing temperature is about 5 K. This high-temperature
regime can be represented in our model by a random distri-
bution of the phases of the transmission coefficients of the
barriers. The total transmission amplitude is given now by
the average value of Eq. (3). As discussed in Ref. [11], one
can distinguish between two possible plasmons ensembles.
In the first case there are two different ensembles of plas-
mons in the two arms. This scenario can be achieved if the
leads and the connections are kept at zero temperature.
Hence all the four transmission coefficients are independent.
On the other hand, there can be one ensemble of plasmons
pertaining to the whole ring, i.e., the plasmons are in eigen-
states of the ring. Since now a fluxon encircling the ring
encounters the same plasmons in the two arms, one can see
immediately that ¢t,=¢; and ¢;=t,. Note that we may not
take 7;=¢;, as done in Refs. [13] and [14], since time-
reversal symmetry is not guaranteed, even in the absence of
an external gauge field. A lack of time-reversal symmetry
results whenever the transmission properties are an outcome
of an interaction between a certain particle and the other
degrees of freedom of the system. In such a case, reversing
the particle time alone does not render the system invariant.
This is indeed the situation for the fluxon in a long Josephson
junction.

We calculate the transmission probability in the two
above-mentioned scenarios by a numerical average of Eq.
(3), using equally spaced phases of the transmission coeffi-
cients. The result converges rapidly and we find that the total
transmission probability in the independent arms scenario is

T=~0.7267 , ®

while its value in the whole ring scenario is
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FIG. 2. Schematic quantum mechanical system analogous to the
Josephson junction ring in the high-temperature regime. S denotes
the scattering matrix at the connections to the leads and M denotes
a measuring device that detects the particle, but does not alter its
motion.

T~0.5857 . )

ITII. DYNAMICAL APPROACH

The transmission probability in the high-temperature re-
gime can be calculated in a different way. A phase interaction
that results in a total loss of coherence can be represented by
a measuring device coupled to an arm, which detects with
certainty any fluxon passing through that arm, but does not
alter its motion. In other words, the wave function collapses
in that arm. Thus the Josephson ring, whose connections to
the leads are described by Eq. (1), seems to be equivalent in
the high-temperature regime to the schematic construction
shown in Fig. 2. When a particle enters the system from the
left, it splits into two partial waves, each passing along one
of the arms with equal probability 1/2. One of the waves is
detected and the wave function collapses in that arm. Using
Eq. (1) again, we find that when the collapsed wave reaches
the right-hand side of the system, it is transmitted to the right
lead with probability 1/2, transmitted to the other arm with
probability 1/4, and reflected with probability 1/4. The same
process is carried out back and forth and one can see that the
transmission probability to the right lead is

T_1°° 1\ 2 0
24 \4) T3 (10)

The apparent contradiction between Eq. (8) or (9) and Eq.
(10) is resolved when one notices that in the stationary
method one implicitly assumes that there are autocorrelations
between the transmission coefficients, e.g., each time a
fluxon is moving from left to right in the upper arm it is
affected by the same transmission coefficient. On the other
hand, in the picture involving collapse, there are no correla-
tions at all. This discrepancy is clearly seen when one uses
the following general dynamical method for calculating the
total transition amplitude, which includes the two different
results as special cases.

In this method we prepare the fluxon as a narrow wave
packet (i.e., the relative uncertainty in the position Ax/L is
small). We like the wave packet to remain narrow through
the whole transmission process, so we assume that the rela-
tive uncertainty in the momentum Ap/p is also small. We
denote the wave packet in the left lead as | in), in the upper
arm as |u), in the lower arm as |/), and in the right lead as
|out). A fluxon is sent from the left lead (state |in)). Accord-
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ing to the S matrix Eq. (1) the fluxon penetrates the ring in
the state (1/+2) (Ju)+]|1)), i.e., it splits symmetrically into
two wave packets. When the wave packets pass through the
arms, they accumulate different phases, which are deter-
mined by the states of the plasmons at the instant of passing.
Thus the fluxon reaches the right connection in the state
(1/2) (#P]u)+£§V|1)). The upper index (1) means that it
is the first time the fluxon traverses the ring in the right
direction. After scattering on the connection, there is an out-
going state in the right lead with an amplitude

1
AW ==tV +1}D) (11)

and two wave packets are scattered back into the ring. After
the next scattering on the left connection, there is an outgo-
ing state in the left lead with an amplitude

1
A W=z =) (D=0, . (12)

In a similar way we obtain the amplitude of the second out-
going state in the right lead

1
A=) =)@V D) P =) . (13)

Continuing along this line of argumentation, we can ob-
tain two infinite sequences of amplitudes A, and A,,, corre-
sponding to right and left outgoing states, respectively. In
order to calculate the total transmission 7 and the total re-
flection R, one should note that all the outgoing states are
created at different moments of time. Since the wave packets
are narrow, the outgoing states are spatially separated. Thus
there are no interferences between these states and 7 and R

are given by

T=2 AN (14)
R=21 |AT™)2 (15)
“

If the temperature is high enough, the phases of the transmis-
sion coefficients are homogeneously distributed over the in-
terval [0,27]. Therefore, in order to calculate the transmis-
sion and the reflection one has to average the right-hand side
of (14) and (15) over all possible phases.

Let us assume that all the phases are not correlated. In this
case we obtain that [A™|?=1($)" ! and |[A'™|2=({)".
This yields 7= % and R= { , which is the result of the cal-
culation involving collapse given by Eq. (10). On the other
hand, we can assume a completely correlated situation,
which means that each time the fluxon traverses the ring it
encounters the same plasmons’ state. Thus ™ =¢" and
t'®=¢"M for each n. Here again we have the same two
scenarios of plasmons ensembles discussed above. In the in-
dependent arms scenario these correlations manifest them-
selves for the first time in the average value of |4‘?|?, which

becomes now equal to 3/16 instead of 1/8 in the uncorrelated
case. Summing the series Eq. (14) and averaging the sum

over the phases, we obtain 7~0.7267, thus explaining the
result of the stationary picture calculation given by Eq. (8). A
similar calculation in the one ensemble scenario also pro-
duces the result obtained for this case by the stationary
method Eq. (9).

IV. DISCUSSION AND FUTURE STUDY

The presence or the absence of the autocorrelations de-
scribed above is determined by two characteristic time scales
of the system. One is the dwelling time 7,;, which is the time
the fluxon stays in the ring. Since the coupling between the
ring and the leads is strong, 7, can be estimated as 107,
where 7 is the time the fluxon traverses an arm. The second
characteristic time is the time the thermal bath needs to
change the plasmons’ microscopic state, which we will de-
note as Ty, . When 7,,,<<7,, the state of the plasmons is
different every time the fluxon traverses the arm, thus there
are no autocorrelations. In the opposite limit 7,,4,> 7, the
state of the plasmons practically does not change during the
time the fluxon stays in the ring. Therefore, there are total
autocorrelations. If the system connected to the heat bath is
MAacroscopic, T p, 1S very short. The Josephson ring is, how-
ever, a mesoscopic system, hence the existence or absence of
autocorrelations in our case is not clear. This question can be
answered experimentally.

In order to get a more realistic description of the system,
one should look more closely at the connections of the leads
to the ring. It is known that a connection between three or
more long Josephson junctions serves as a pinning center for
the fluxon. Hence the fluxon can radiate its kinetic energy
and stop at the connection. Depending on the fluxon’s en-
ergy, more complicated phenomena can occur, like back-
scattering or fluxon-antifluxon pair creation. The trapping of
classical fluxons and pair creation at a connection between
three long Josephson junctions were studied numerically in
[18]. In the quantum limit these inelastic phenomena will
reduce the interference. An additional fluxon residing in the
pinning center can be used to “fill”’ the potential well, thus
overcoming the trapping effect. However, as calculated in
[18], a second fluxon that comes to this filled connection
encounters an effective potential barrier of height 4 (in the
usual dimensionless sine-Gordon units). In order to eliminate
this barrier, the pinning center should be deepened by enlarg-
ing the width of the junctions in the connection area. This
enlargement will also help to enhance the quantum splitting
between the arms since such a splitting is possible only if the
fluxon has an additional degree of freedom in the transverse
direction of the junction. In this direction the fluxon behaves
as a particle bound to a potential well, and the wider the
well, the larger the probability of the quantum splitting.

To conclude, we would like to mention that our results are
not restricted to fluxons. The resonances in the low-
temperature limit will appear for other particles interacting
with a gauge field in the ballistic regime. The dephasing and
the importance of autocorrelations in the high-temperature
limit are general features of objects having only phase inter-
action.
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FIG. 1. Open Josephson ring. Two possible paths of a fluxon are
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