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All existing quantum cryptosystems use nonorthogonal states as the carriers of information.
Nonorthogonal states cannot be cloned (duplicated) by an eavesdropper. As a result, any eavesdropping
attempt must introduce errors in the transmission, and, therefore, can be detected by the legal users of
the communication channel. Orthogonal states are not used in quantum cryptography, since they can
be faithfully cloned without altering the transmitted data. We present a cryptographic scheme based on
orthogonal states, which also assures the detection of any eavesdropper.

PACS numbers: 03.65.—w, 89.70.+c

A basic task in cryptography is exchanging a secret
message between two users, traditionally called Alice and
Bob, in a way that no other party can read it. The only
known method to do this in a proven secure way is to
use a “one-time pad,” which uses a previously shared
secret information called a key. The key, a sequence of
random bits, is used for encrypting the message. The
encrypted message is completely confidential, even if
transmitted via a public communication channel. Thus
the security of any key-based cryptographic method
depends ultimately on the secrecy of the key. All existing
classical key-distribution cryptosystems are not proven
to be secure; their secrecy is based on computational
complexity assumptions which sometimes turn out to be
false. In particular, some existing cryptosystems can be
broken (in principle) due to new developments in quantum
computation [1]. On the other hand, the secrecy of
quantum cryptosystems is guaranteed by the fundamental
laws of quantum mechanics. Any intervention of an
eavesdropper, Eve, must leave some trace which can be
detected by the legal users of the communication channel.

In the recent years many quantum cryptosystems have
been suggested. All of these schemes use nonorthog-
onal states to encode the information. The first key-
distribution scheme was presented by Bennett-Brassard
[2] in 1984 (a variation of it has already been tested ex-
perimentally [3]). In this scheme Alice transmits single
photons polarized along one of four possible directions,
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1,, <, ./, or \\. The first two are orthogonal in one basis
and the other two are orthogonal in another basis. The en-
coding is as follows: Alice chooses, at random, one of the
four states and sends it to Bob. It is agreed that the states
«— and ™\ stand for bit value O, and the states { and ./
stand for bit value 1. Bob chooses, also at random, a ba-
sis, ® or ®, and measures the polarization in that basis. If
Alice and Bob choose the same basis, their results should
be identical. If they choose different bases, their results
are not correlated. By discussion over an insecure classi-
cal channel (which cannot be modified by an eavesdrop-
per), Alice and Bob agree to discard all the cases where
different bases were used (about half of the bits). The re-
sult should be two perfectly correlated strings, unless the
transmission was disturbed. Any eavesdropping attempt
must introduce errors in the transmission, since Eve does
not know the polarization of each photon. Whenever Al-
ice and Bob measure in one basis and Eve in the other
basis, the correlation of the strings is destroyed.

The encoding in quantum cryptography was based on
nonorthogonal states, since they cannot be cloned (dupli-
cated) by an eavesdropper. Even an imperfect cloning at-
tempt (intended to gain partial information) induces errors
in the transmission, therefore, it is detectable. In gen-
eral, any two nonorthogonal states can be used for quan-
tum cryptography, as shown by Bennett [4]. On the other
hand, orthogonal states can be faithfully cloned, so that
Eve can copy the data without being noticed. For these
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reasons it is generally believed that the use of nonorthog-
onal states is crucial in quantum cryptography. In this
Letter we present a new quantum cryptosystem, in which
data exchange between Alice and Bob is done using two
orthogonal states, and yet, any eavesdropping attempt is
detectable.

The security of our scheme is based on two novel
ingredients. First, the orthogonal states sent by Alice are
superpositions of two localized wave packets. The wave
packets are not sent simultaneously towards Bob, but one
of them is delayed for a fixed time and sent after the other.
Second, the transmission time of each particle is random
(and therefore unknown to Eve). The tests performed
by the users at the end of the communication allow the
detection of an eavesdropper.

Let |a) and |b) be two localized wave packets, which
are sent from Alice to Bob along two separated channels.
We shall take two orthogonal states |Wy) and |W), linear
combinations of |a) and |b), to represent bit value “0” and
bit value “1,” respectively:

[Wo) = 1/32 (la)y + 1)), (1

W) =1/V2(ay = IbY). @
Alice sends to Bob either | W) or |W). The two localized
wave packets, |a) and |b), are not sent together, but wave
packet |b) is delayed for some time 7. For simplicity,
we choose 7 to be larger than the traveling time of the
particles from Alice to Bob, 6. Thus |b) starts traveling
towards Bob only when |a) already has reached Bob, such
that the two wave packets are never found together in the
transmission channels.

In order to explain the idea behind the protocol, we
shall consider a particular implementation of our scheme
(the discussion assumes a noise-free transmission). The
setup (Fig. 1) consists of a Mach-Zehnder interferometer
with two storage rings, SR; and SR;, of equal time de-
lays. Alice can transmit a bit by sending a single particle
either from the source Sy (sending 0) or from the source
S; (sending 1). The sending time ¢, is random, and it

is registered by Alice for later use. The particle passes
through the first beam splitter BS; and evolves into a
superposition of two localized wave packets: |a), moving
in the upper channel and |b), moving in the bottom
channel. The particle coming from Sq evolves into | W)
and the particle coming from S; evolves into |W;). The
wave packet |b) is delayed in the storage ring SR, while
|a) is moving in the upper channel. When |a) arrives at
the storage ring SR, at Bob’s site, wave packet |b) starts
moving on the bottom channel towards Bob. During the
flight time of |b), wave packet |a) is delayed in SR,.
Finally, the two wave packets arrive simultaneously to the
second beam splitter BS, and interfere. A particle started
in state |Wy) emerges at the detector Dy, and a particle
started in state |W;) emerges at the detector D;. Bob,
detecting the arriving particle, receives the bit sent by
Alice: Dy activated means 0 and D; activated means 1.
In addition, he registers the receiving time of the
particle ¢,.

Alice and Bob perform two tests (using a classical
channel) in order to detect possible eavesdropping. First,
they compare the sending time #; with the receiving time
t, for each particle. Since the traveling time is 6 and
the delay time is 7, we must have ¢, = t, + 7 + 6.
Second, they look for changes in the data by comparing
a portion of the transmitted bits with the same portion of
the received bits (this is the simplest test for detecting
data errors; for more sophisticated techniques see [3]).
If, for any checked bit, the timing is not respected or
anticorrelated bits are found, the users learn about the
intervention of Eve.

We will show that Eve, who has access to the chan-
nels but not to the sites of Alice and Bob, cannot ex-
tract any information without introducing detectable dis-
tortions in the transmission. The data are encoded in the
relative phase between the two wave packets |a) and |b).
Therefore the phase must be the same at ¢, and at ¢,. In
addition, the two wave packets must arrive together at BS,
at the correct time, otherwise a timing problem occurs.

5T =
o
N
S,
FIG. 1. Cryptographic scheme based on a Mach-Zehnder interferometer. The device consists

of two particle sources Sy and S;, a beam splitter BS;, two mirrors, two storage rings SR; and
SR,, a beam splitter BS,, and two detectors Dy and D;. The device is tuned in such a way
that, if no eavesdropper is present, a particle emitted by Sy (S;) is finally detected by Dy (D).
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Any operation performed by Eve must obey these two re-
quirements, or she will be exposed by the legal users.

Let us consider two times, ¢; and #;. At t; the particle
just left BS;, so it is solely at Alice’s site. At f, the
particle is just before passing through BS, at Bob’s site.
If the particle is emitted from Sy, then at #; its state
is |Wo(r)) = 1/V2 [la(t1)) + |b(t1))]. If the particle
is emitted from S;, then at z; its state is |W(z))) =
1/+/2 [la(z))y — |b(t1))]. In the case that nothing disturbs
the transmission (i.e., Eve is not present), the free time
evolution is

[Wo(11)) — 1Wo(12)) = 1/V2 [la(t2)) + 1b(22))]. (3)
[W1(11)) — W1(12)) = 1/V2 [la(t2)) ~ 1b(22))]. (4)

When Eve is present and she is trying to extract some
information without being detected, the time evolution
must be such that |Wo(t1)) evolves to |W¥y(f;)) and
|¥i(21)) evolves to |W¥(z2)) (if not, Bob will have a
nonzero probability to receive inverted bits or to receive
particles at incorrect times). Thus the general form of the
evolution from time #; to time ¢, must be

[Wo (1)) 1P (1)) —|Wo(22)) [ Po(12)), 5)
[ (8)) [P (1)) — P (22)) |D1(22)), (6)

where | (1)) is the state of some auxiliary system used by
Eve for extracting information. If |®y(z,)) = |®(£,)), no
extraction of information is possible.

In protocols which use nonorthogonal quantum states
for encryption, the time evolution under eavesdropping
must have the same form as Egs. (5) and (6). The security
of these protocols, i.e., |®g(22)) = |D(£,)), can be proven
using the unitarity of quantum theory. When Eve is
not present, from the free evolution [Egs. (3) and (4)]
we get (W(7))|Wo(11)) = (¥1(12)|Wo(r2)). When Eve is
present, from Egs. (5) and (6) we get (W(£;))|Wo(21)) =
(W1 (12)|Wo(22)) (D1 (r2)|Po(22)). Combining these two
results we find |Dg(z,)) = |P(z;)). With orthogonal
states, however, this proof fails, since (V(z;)|Wo(z;)) =
0. For this reason one might believe that quantum
cryptography cannot rely on orthogonal states.

We shall prove now that our protocol is secure [5].
Using the linearity of quantum theory, we consider the
evolution of a particular superposition of |Wy(¢;)) and
|W(t;)). Consider at time #; a particle in the state
[b6(t1)) = 1/2 [|Wo(t1)) — |W1(#1))]. The time evolu-
tion of |b(t1))|®(z;)) is obtained from Egs. (5) and (6)
[using also Egs. (3) and (4)]:

[P (1)) — 1/2{la(t2)) [I1Po(£2)) — |P1(22))]
+ [6(02)) [1Po(22)) + [ P1()]}. (D

The last equation shows that, unless |®g(5)) = [P1(22)),
there is a nonzero probability to find the particle in
the final state |a(#;)). This, however, is impossible. A

particle in the state |a(r,)) is a particle which just emerged
from the storage ring SR, (there is no other possibility).
Since the delay time is 7, at an earlier time than ¢ =
t, — 7 the particle had to enter into Bob’s site. At that
time, a particle which started in the state |b(¢;)), as in
Eq. (7), is still captured in SR; at Alice’s site. Such a
particle enters in the bottom channel after time ¢, and
then it is too late for Eve to send a dummy particle on
the upper channel. She cannot send that particle at the
correct time, since she does not know it until the original
wave packet arrives. Thus the state |a(#;)) should not
appear in the right-hand side of Eq. (7), and therefore
|®o(22)) = |D1(22)). This ends the proof.

We want to emphasize that the sending time cannot be
publicly known, otherwise Eve could apply the following
strategy: At the (known) arrival time of |a), she sends
to Bob wave packet |a) of a dummy particle which she
prepared in the state |Wg). She stores wave packet |a)
of Alice’s particle and |b) of the dummy particle. When
wave packet |b) of Alice’s particle arrives she measures
the original state. Then she sends to Bob wave packet
[b) of the dummy particle, correcting its phase if the
measurement yielded |¥). Assuming the time spent by
Eve on measurements can be neglected, this procedure
does not introduce any additional delay or any change in
the state received by Bob, and therefore Eve can extract
the complete information without being exposed.

Since 7 > 6, Eve has no access to |a) and to |b)
together at any time. This seems to be a necessary re-
quirement for a secure protocol, but it is not. If the com-
munication is based on particles moving at the speed of
light, it is enough to demand 7 > At, where At is the ac-
curacy of the time measurements of ¢; and #, (assuming
very narrow wave packets). The security in this case is
proven in the same way: The state |a(z,)) should not ap-
pear in Eq. (7), since Eve gets wave packet |b) too late to
send a dummy particle on the upper channel. Moreover, if
we arrange a large distance between the two transmission
channels (which requires large secure users’ sites), we can
use our procedure even without time delay. Any attempt
by Eve to recombine the wave packets in order to measure
the phase introduces an extra flight time which will be de-
tected by the users. However, now the security requires
that Eve cannot use faster-than-light particles for eaves-
dropping. Thus these versions of the protocol exceed the
limits of nonrelativistic quantum mechanics; they might
be classified as “quantum-relativistic protocols” with or-
thogonal states.

In the previous discussion we have assumed ideal
transmission conditions. In practice, any communication
system is restricted by the limited efficiency of its com-
ponents. The transmission is distorted by the noise of
the channel, the losses and dark counts of the detectors,
etc. Since errors from different sources are not neces-
sarily distinguishable, Eve may obtain some information
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without being detected, as long as the amount of error she
introduces does not exceed the noise. Known methods
of error correction and privacy amplification techniques
can be included in a practical version of our protocol.
The problems caused by losses and dark counts are
automatically solved, due to the comparison between f#;
and ¢,.

We shall raise some ideas related to the realization
of our protocol in the laboratory. The first essential
ingredient, random emission time, can be achieved very
naturally using a down-conversion crystal source of pairs
of photons. In this way, the sending time of the photon
is registered with very high efficiency and precision by
the detector of the “idler” photon. The second ingredient,
the time delay, can be achieved using an optical fiber
loop. Probably, the most difficult part of the proposal
is to have a Mach-Zehnder interferometer with a stable
phase difference between its two (very long) arms. This
problem can be avoided using one arm (an optical
fiber) and two orthogonal polarizations as two quantum
channels [6]. In this setup, wave packet |b) leaves Alice’s
site when it is spatially delayed relative to wave packet
|a), and with a different polarization. In Bob’s site, wave
packet |a) is delayed and its polarization direction is
rotated, such that the two wave packets finally interfere
correctly.

Since there are some difficulties in an experiment with
two polarization channels, a better way is sending the
states with the same polarization, i.e., using a single
channel. A modification of the setup in Fig. 1 allows
the transmission of the wave packets with the same
polarization, but with the price of wasting some of the
photons [7]. A mirror and a beam splitter added to
Alice’s site (after SR;) can partially recombine the two
channels into a single one. A similar beam splitter and
mirror added to Bob’s site (before SR;) can recover
the two channels. As before, the users consider only
photons which respect the timing requirement, but now
some of the sent photons are lost even if Eve is not
present. Half of the photons are lost at Alice’s site,
since they do not enter into the channel, and half of
those which arrive to Bob’s site are lost, since they are
detected at incorrect times. Thus only 25% of the photons
are usable, but this is good enough for key distribution.
The phase can be preserved more efficiently on a single
channel, therefore this method might be practical for long-
range transmission. One may be tempted to improve this
proposal by introducing a setup which allows Bob to
measure correctly all the transmitted photons. This can
be done for the price of introducing uncertainty in the
correlations between the sending and the receiving time
of each photon, but then the method is not appropriate for
our purpose (since Eve has time to get the signal and to
resend it without being detected).

One might see an advantage in our protocol (with two
channels) over some other protocols (for example, [8]) in

1242

the fact that the bits are not random but chosen by Alice,
and in the fact that all the bits sent can be used. Having
these properties, the protocol is not restricted to key
distribution only—it can be used for sending the message
directly [9]. Of course, Eve can read the message, but
in an error-free channel she will be detected in time if
Alice and Bob test the transmission frequently enough.
It seems that the direct message transmission is possible
not only on an error-free channel [7]. In a practical case
(when noise is present), Alice and Bob agree in advance
on the tolerable error rate and on the degrees of accuracy
and secrecy they want to achieve. In order to transmit a
message of some length n, Alice builds a longer string:
some extra bits are used for estimating the error rate
(hence, the maximal information leaked to Eve) and some
for redundancy, which is used—via block coding—to
encode the n-bit message. The reliability of the n-bit
message is assured by Shannon’s channel coding theorem
(see [10]). At the end of the transmission, Alice tells Bob
which bits were used for error estimation, and afterwards,
the function used for block coding. If Bob, estimating the
error rate, detects Eve, he prevents public announcement
of the block-coding function by informing Alice. Thus
the message is transmitted with an exponentially small
probability of errors and exponentially small information
leakage.

Let us conclude with a discussion of the title of our
work. Strictly speaking, the set of all possible states
sent by Alice is not a set of orthogonal states. Two
states corresponding to identical bits, sent at two very
close times, are not orthogonal. However, if the width
of the wave packets |a) and |b) is small enough, then
the measure of mutual nonorthogonality is negligible.
Moreover, we can replace the random sending times by
random discreet sending times, and then, all the possible
sent states will be mutually orthogonal. The previous
proof assures the security of this procedure too. Note also
that in our basic method (with two channels) all the states
corresponding to different bits are mutually orthogonal,
and this is the relevant feature. Indeed, the issue of
mutual orthogonality of just these states is essential for
the security proof of protocols using nonorthogonal states.
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