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The Aharonov-Bohm (AB) cifect! is simple and topological: an clectron encircling a
solenoid containing a magnctic flux ¢ acquires a geometrical phasc cqual to ne®/fic,
where 1 is cqual to the winding number of the clectron around the solenoid.
Iowever, when a solenoid enters a quantum cloud of charge and therce is no way to
associate a well-defined path to the clectron, the consequences of the AB effect
might be complicated. For example, consider an clectron bound in a potential well V,
in an energy cigenstate, A solenoid crosses the well. TTow many times did the electron
encircle the solenoid? There is no definite answer to this question. Of course, we can
dccompose the movement of the eleetron into a superposition of diflerent Feynman
paths, compute the phasc acquired in cach path, and resum, but no simple result will
emerge. In general, the final state of the electron (once the solenoid has feft the well)
is different from the initial one (before the solenoid entered) and it depends on all
the diflerent parameters of the problem: the initial state, the potential ¥, the precise
path ol the solenoid and its velocity, and the value ol the enclosed magnetic flux ¢.
ITowever, we have found a surprising topological clfect for a solenoid containing
exactly half a flux quantum [P = (4)d, = (14)2whe/e] when it adiabatically crosses
the quantum “cloud” of an clectron in a nondegencrate cnergy cigenstate/ (sce
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INot counting the spin degenceracy.
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reference 2). This topological effect is an interplay of the Aharonov-Bohm and
Berry? phases.

Consider an clectron in a nondegenerate encrgy eigenstate of an arbitrary
potential well ¥ and a semifluxon moving adiabatically on a closed path C that
crosses the clectron claud. We take the solenoid to be linclike, that is, infinitely
narrow and long. According to the adiabatic approximation, the solenoid docs not
induce transitions and the final state of the clectron is identical to the initial one, up
to a phase ef®. Now, ¢ contains a dynamical phasc ¢, and a gcometrical phase ¢, such

that
P =@st+ @y (n

We arc interested in the geometrical part of the phase. For simplicity, we first
consider the two-dimensional situation illustrated in FIGURE L. Two limiting cases,

potential well electron cloud

FIGURE 1. For simplicity, we consider an inlinitely deep potential well so that the electron
cloud vanishes oulside it.

where we know how much charge the solenoid encircles, are casily computed.s When
the solenoid moves along the path Cl, it does not encircle any charge at all. The AB
phase is 0. On the other hand, when the solenoid moves along C2, the clectron is
cncircled with certainty and the AB phase is ep/fic, which in the case of a semifluxon
(half a quantum of flux) yiclds w. However, how are we to interpolate the phase for
intermediate paths that cross the clectron cloud? Apparently, as the solenoid moves

5The AB effect is usually illustrated by an clectron thal encircles a solenoid. Here, a solenoid
encireles an electron. However, whether we cansider the movement in the reference frame of
the solenoid or of the clectron, the phase js the same.

z



884 \ ANNALS NEW YORK ACADEMY OF SCIENCES

on paths cncircling larger and larger portions of the cloud, the effective charge it
encircles gradually increases from 0 to e. Thus, the AB phase should gradually
change (rom 0 to w. Closcr inspection, though, leads to a different conclusion. The
rcason is that the physics manifests time-reversal symmetry. The initial wave function
of the clectron is nondegenerate and therefore unchanged under time reversal.
(Assume that, initially, the semifluxon is infinitely far [rom the clectran and no other
vector ficlds act on it.) Under time reversal, the magnetic ficld inside the solenoid
changes sign and thus also the magnetic flux (b — —®); however, in the particular
case of hall a flux quantum, this change is not observable as long as the electron
cannot penetrate into the solenoid because the difference between (Y4)dy and
= (%)dy is exactly a flux quantum. Conscquently, for any path C, the geometric phase
¢ must be the same in whatever direction the solenoid moves. On the other hand, o,
must change sign when the solenoid changes direction (because it can be written as a
line integral along the path C). Thus, we obtain

ol = i, (2)

implying e = + 1. This result, corresponding to ¢, equal to an intcger multiple of 1,
contradicts our naive expectation that the AB phasce graduvally changes from 0 to .

What happened? Let us try to interpolate between the paths C1 and C2. We can
gradually distort the path C1 into C2 by many steps that cnlarge the loop by an
infinitesimal region. In a ccrtain region, the phase factor jumps [rom 1 to —~1. We
probe this particular infinitesimal region until we encounter a point P with the
property that the geometrical phase jumps by w when P is encircled. However, what is
the phase when the solenoid moves on a path crossing I’? Our best gucss is that the
phasc is not well defined. Our assumption that the solenoid moves adiabatically
breaks down on this path. In other words, although initially the wave [unction of the
clectron was a nondegencrate energy eigenstale, it is no longer nondegencerate when
the solenoid goes through the point P at P, the solenoid induces a degeneracy.

Thus, we find a cluc to the puzzle ol abrupt phase changes. Indecd, we can say
that our argument for a gradual change in the Aharonov-Bohm phase was correct.
However, we neglected a sccond contribution Lo the geometric phase. As the
solenoid crosses, it distorts the wave function of the clectron and generates a Berry
phasc that adds ta the AB phase:

‘Pg = @an + ‘Pllcny' (3)

The Berry phase is responsible for maintaining the total gcometric phase factor (1 or
—1) despite gradual changes in the AB phase. The Berry phase is also responsible for
the jump in the total gcometric phase around the point P: as Berry? showed, isolated
cnergy degeneracics can add 1 Lo the gcometric phase.

Returning to our original problem, we can add a few details. First, the cxislence
ol points of degeneracy, lor any arbitrary potential well 1, can be proved by using
time-reversal symmetry in the context of a Born-Oppenhcimer approximation.
Nevertheless, finding such points appears (o be a diflicult problem; the only explicit
examples we know arc [or rotationally symmetric potential wells and for wells with
ceven discrete rotational symmetries [V(r, 8) = V(r, 0 + 2w/2n)], where the center of
the well is such a point. Sccond, it is clear that there might be more than one such
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point. Any odd numbecr of points is consistent with the phascs of the extremal paths
Cl and C2. Third, the adiabatic approximation might break down not only at some
isolated point P, but in a whole region if the initial nondegenerate state becomes
degencrate with states in the continuum. Last, but not least, a similar effect of phase
jumps and energy level crossings ariscs even il the solenoid is not straight and also
when several solenoids, cach carrying half a flux quantum, enter the electron cloud.

We find a simple rule for the geometric phase of an atom with a heavy nuclcus,
initially in a spherically symmetric cigenstate, moving around sentifluxons. (In this
case, gecometrical phases arise for both the electron and the nucleus, but the wave
function of the nucleus is much morc concentrated and semifluxons rarcly penctrate
it. Thus, its gcometrical phasc is simply the usual AB phase, which we neglect in the
foltowing.) The rule allows that we can replace the clectron cloud with a point charge
at the center of the atom and the semilluxons with “shadow” fluxons. A shadow
(luxon is a point at which two clectronic energy levels cross, if the center of the atom
sits there. The winding number of the path of the point charge around the shadow
fluxons gives the geometric phase accumulated by the atom.

To derive this rule, consider two straight and parallel solenoids situated a
distance L apart. Two cxtreme cases are casily solved. When the distance between
the solenoids is much larger than the size of the atom, we can move the atom in the
vicinity of onc of the solenoids without the electron cloud touching the other
solenoid. In this case, the atom collects a phasc of « each time its center encircles the
solenoid, cxactly as if the other solenoid were not present. There are thus two
shadow fluxes, coinciding with the original solenoids. On the other hand, far £ = 0,
the two solenoids arc at the same point, with their magnetic fluxes adding to an
integer flux quantum. However, an integer flux quantum has no cftect on an clectron.
There arc therefore no energy level crossings and thus no shadow fluxons. When the
solenoids are stightly separated, they do affect energy levels, but, by continuity, this
cfleet is small and docs not induce energy level crossing; rather, a minimal distance
L* is required. Thus, we conclude that, in adiabatic motion, the geometric phasc
accumulated by the atom duc to two parallel semifluxons is zero once their

- separation is less than some critical distance L*. We can now interpolate between

these two extreme cases (large and small L) (FIGURE 2). When the distance between
the solenoids is very large, the shadows coincide with the original solenoids. When
the distance is still large, but comparable to the size of the atom, the shadow [luxes no
longer coincide with the original solenoids. Instead, the shadow fluxon associaled to
cach solenoid is shifted towards the other solenoid. When the two solenoids are at a
critical distance L*, their shadows overlap and thercfore have no effect whatsoever
on the atom. For separations smaller than L*, the shadow fluxons disappcar.

It is amusing to consider more general patterns of semifluxons carrying half a
quantum of flux and the resulting shadows. Even in the case of a single solenoid, the
shadow nced not coincide with the original, if the solenoid is not straight. For
example, a solenoid in the form of a ring should have a cireular shadow, but of
smaller radius. Just as in the casc of two paralle! solenoids, there is a critical radius
for the ring (depending on the clectron cioud) below which there will be no shadow
at all. As a consequence, there will be no topological scattering of the atoms from
small toroidal solenoids. For two intersccting straight solenoids, we expect hyper-
bolic shadows situated in the plane of the solenoids, in the acute angles. When the
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solenoids are perpendicular to cach other, the shadows will coincide with the
solenoids.

REFERENCES

1. AnaronNov, Y. & D. Boum. 1959. Phys. Rev. 115: 485.

2. AHARONOV, Y., S. COLEMAN, A. GOLDHABER, S. NUssiNOv, S. PoPEscuU, B. REznIK, D.
Ronruct & L. VAIDMAN. 1994, Phys. Rev. Lett. 73: 918.

3. Bernry, M. V. 1984, Proc. R. Soc. London Ser. A 392: 45.



