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Recent result of Bennett et al. on teleportation of an unknown quantum
state is obtained in the framework of nonlocal measurements proposed by
Aharonov and Albert. The latter method is generalized to the teleportation
of a quantum state of a system with continuous variables.
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1. TELEPORTATION

When I first heard the word “teleportation,” I imagined heroes of “Star
Trek” entering a transmitting cabin in their star ship Enterprise: In a few
seconds they disappear and immediately appear on a distant planet. It
sounds, however, like bad science fiction: Too many laws are broken in
this picture. For example, we tend to believe that the center of mass of
a closed system should not move. Thus, when the heroes move far away,
the spaceship has to move a little in the opposite direction, but this is not
shown in the movies. Also, this story requires huge currents to fulfill the
continuity equation, and it is very hard to understand how these currents
can be created.

However, quantum theory teaches us that the essential feature of an
object is not the matter out which it is made, but its shape. Indeed, all
objects are “made” out of identical elementary particles, and what distin-
guishes one object from another is the state of these particles. Thus, we
can consider a different kind of machine for teleportation. The receiving
teleportation chamber is not empty before the transmission, but it contains
elementary particles in a number equal to the number of particles of the
object to be transmitted. Then, transmission results in building the Star
Trek heroes out of these particles, while the heroes in the cabin on the
Enterprise revert to an unstructured set of elementary particles.

One might be tempted to build the heroes in several locations, i.e., to

347

M. Ferrero and A. van der Merwe (eds.), Fundamental Problems in Quantum Physics, 347-356.
© 1995 Kluwer Academic Publishers. Printed in the Netherlands.

Yl



348

produce several copies. This is certainly not teleportation. But the uni-
tarity of quantum theory prevents this possibility. It is impossible to clone
an unknown quantum state. It is also impossible to identify an unknown
quantum state without significantly changing it. Therefore, the only option
quantum mechanics leaves is destruction of the heroes in one place while
creating them in another.

The procedure for such an operation was discovered recently. Bennett,
Brassard, Crepeau, Jozsa, Peres, and Wootters (BBCJPW) (1] have shown
how to teleport an unknown quantum state. They found a method to trans-
mit an unknown quantum state of a spin-1/2 particle to another distant
spin-1/2 particle without actually moving it from one place to another. We
will show how this can be achieved using another method [2] based on the
nonlocal measurements of Aharonov and Albert [3].

In the next section we will review the method of nonlocal measurements.
Section 3 is devoted to teleportation of the state of a spin-1/2 particle. In
Sec. 4 we generalize the method to systems with continuous variables. Sec-
tion 5 deals with philosophical aspects of teleportation. A brief summary
concludes the paper in Sec. 6.

2. NONLOCAL MEASUREMENTS

We call a measurement nonlocalif it cannot be reduced to a set of local
measurements. An example is a measurement of a sum of variables A; and
Ay related to two separate locations 1 and 2. The method of Aharonov
and Albert for nonlocal measurements uses only local interactions. The
measurement is described by interaction Hamiltonian

H = g(t)PlAl + g(t)P2A2, (1)

where ¢(t) is normalized function with a compact support at the time of
the measurement; Py, P, are conjugate momenta of the pointer variables
of the two parts of measuring device which locally interact at locations 1
and 2. In order to perform a nonlocal measurement (and not two local
measurements), the initial state of the measuring device has to be

Q1+Q2=0, P —P=0. (2)
After the interaction is completed,
A+ A = Q1+ (2, (3)

and local measurements of (J; and o, therefore, yield the value of A; + A,.

A set of measurements of nonlocal variables can serve as a verification of
a nonlocal (entangled) state. The EPR-Bohm state of two spin-1/2 parti-
cles (completely anticorrelated state) can be verified using two consecutive
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measurements: first of 01, + 02, and then of oy, 4 02,; see Fig. 1. Here
and below we will use the units of /2 for the spin components, such that
each component can have values +1. If the outcomes are

o1:(t1) + 02-(t1) =0,  o1y(t2) + 024(t2) = 0, (4)

where t5 > t;, then, after time t5, the system is in the EPR-Bohm state.
Had we started at time t < t; with the EPR-Bohm state, we would be
certain to obtain the outcomes (4).

The method of Aharonov and Albert is applicable also for measurements
which are nonlocal not only in space but also in time. The interaction
Hamiltonian has to be modified such that local interactions in separate
locations will take place at different times. For example, for a measurement
of the sum A;(t;) + A2(t2), the Hamiltonian is

H =g(t—t1)PiA; + g(t — t2) P2 Ay, (5)

where ¢(?) has compact support around zero. The sums and also modular
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Fig. 1. If the system is in the EPR-Bohm state then the outcomes of
the nonlocal measurements have to be as shown in the figure. Conversely,
if these are the outcomes of the nonlocal measurements then, after the
measurements, the system is in the EPR-Bohm state.
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sums of local variables are measurable. For measuring a sum modulo a the
- measuring device has to be set in the following initial state:

2rh
(Ql + Q2)moda = 0, P1 - P2 = 0, leOd"%— = 0. (6)

For more details see Ref. 4.

3. TELEPORTATION OF A STATE OF A SPIN-1/2
PARTICLE

Let us assume that the state of a spin-1/2 particle 1 is «|T) + 8|l) and
we have to teleport it to particle 2. To this end, consider the “crossed”

measurements of o ,(21) — 025(22) and o1,(t2) — 024(%1), see Fig. 2. If the
outcomes are

t/\

X, X,

Fig. 2. Teleportation via “crossed” space-time nonlocal measurements.
The measurements with the outcomes in the figure cause the state of parti-
cle 2 after ¢, to be the state of particle 1 before ¢; (and the state of particle
1 after ¢, to be the state of particle 2 before t;). For reliable teleportation
the nonlocal measurements to be performed are the measurements of the
differences of the spin components modulo 4 accompanied by appropriate
local rotations.
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le(tl) - a2x(t2) = 0, Crly(t2) - C723/(t1) =0, (7)

then, taking into account the measurement interaction (5) with A; = oy,
(A = 01,) and Ay = —03, (A2 = —03,), theinitial state of the measuring
device (23, and the outcomes of the local readings of the measuring device
(which are also described by Eq. (2)), we obtain, after straightforward
calculation, that the final state of particle 2 is «|T) + B]l), i.e., we have
succeeded in teleporting the state of particle 1 to particle 2.

However, this procedure is not good enough, since the nonlocal mea-
surements might not yield the specific outcomes (7). The difference between
the spin components might equal +2 and in that case we destroy the state
without teleporting it. In order to obtain reliable teleportation (such as
the one suggested by BBCJPW), we must measure, instead, the following
nonlocal observables:

(012(11) = 025(t2) ) modd, (o1, (t2) — 02, (t1)) modd. (8)

A null outcome reduces to the previous case. If, however, the outcome of
one of the above is 2, then we can convert it to 0 by appropriate rotation
of the coordinate frame of the second particle (for example, oo, = —09,,
for 2" = — £). Thus, for any set of outcomes of the nonlocal measurements
(8) the spin state is teleported; in some cases the state is rotated, but the
resulting rotation can be inferred from the nonlocal measurements. We can
complete, then, the teleportation by the following transformations. In the
case of two null outcomes no additional transformation is needed; in three
other cases a transformation of rotation by the angle 7 is necessary: the
rotation around the y axis for the outcome (2,0), around the z axis for
(0,2), and around the z axis for the outcome (2,2).

The Aharonov-Albert method for nonlocal measurement contains the
following elements: (i) a preparation of an entangled state of the measuring
device, (ii) local interactions with separate parts of the system, (iii) local
readings of the separate parts of the measuring device resulting in a set
of numbers obtained in the respective space-time locations of the parts of
the system. These numbers represent classical information which must be
transmitted for completing the teleportation. (In our example, the informa-
tion tells us which rotation must be performed). The initial entanglement
of the measuring device, which is the core of the method, may employ pairs
of spin-1/2 particles in the EPR-Bohm state (see Sec.IV of Ref. 4), making
this method very similar to the BBCJPW proposal. In this case we also
need to transmit just two bits of classical information, which is the min-
imal information for teleportation of a spin state, as has been proven in
Ref. 1. The number of “nonlocal channels” in our method is two instead of
just one in the BBCJPW method. This is because we have accomplished
two-way teleportation. (Obviously, for teleporting also the state of particle
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2 to particle 1 we need to send another two bits of classical information
from the site 2 to the site 1.)

The BBCJPW method can be presented in our language as in Fig. 3.
The EPR-Bohm pair which is employed by BBCJPW can be created via
two (successful) measurements (4). The measurement “in the Bell operator
basis” (Eqs. 1 and 2 of Ref. 1) at the location 1, performed on the composite
system consisting of particle 1 and one member of the EPR-Bohm pair, is
equivalent to two consecutive measurements of the modular sums:

(012(t1) + o22(t1))modd,  (o1,(t2) + 02,(t2) ) moda. (9)

The four different combinations of the outcomes of the nonlocal mea-
surements (9) correspond to the four outcomes of local measurement of
BBCJPW. The procedure of teleportation is completed by appropriate ro-
tation according to these results. After the teleportation, particle 1 is in
a mixed state and contains no information. This is in contrast with the
“crossed” measurements method in which (after the appropriate rotation)
the the final state of particle 1 is the initial state of particle 2.

[A
(Uly + O'zy)mOd4
0—0
(0'1;,: + Uzz)m0d4
o—0
O'zy + 0'3y = O
o -0
T2, + st = 0
O —O
1 2 3
xl x2 ]

Fig. 3. Nonlocal measurements of the BBCJPW teleportation scheme.
The state of particle 1 is teleported to particle 3. To this end the particle
3 is prepared in the EPR-Bohm state with particle 2 located near particle
1 using nonlocal measurements. Then the measurements of the composite
system consisting of particles 1 and 2 causes the teleportation (possibly,
with rotation).
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4. TELEPORTATION OF A CONTINUOUS VARIABLE STATE

In the framework of nonlocal measurements there is a natural way of
extending the teleportation scheme to the systems with continues vari-
ables. Consider two similar systems located far away from each other and
described by continuous variables ¢, g2 with corresponding conjugate mo-
menta p; and pp. In order to teleport a quantum state ¥(gq;), we perform
the following “crossed” nonlocal measurements (see Fig. 4a), obtaining the
outcomes a and b:

q1(t1) — q2(t2) = a,  pi(t2) — p2(t1) = b. (10)

Straightforward calculation shows that these nonlocal “crossed” measure-
ments correlate the state of particle 1 before ¢; and the state of particle 2
after t3, thus teleporting the quantum state to the second particle up to
a shift of —a in ¢ and —b in p. These shifts are known (after the results
of local measurements have been transmitted), and can easily be corrected
by appropriate back shifts even if the state is unknown, thus completing a
reliable teleportation of the state ¥(q;) to ¥(gz).

A generalization of the BBCJPW scheme to the case of continuous
variables is also possible, see Fig. 4b. The method contains the following
stages: first, the preparation of the EPR state of particles 2 and 3,

G2+ q =0, p—p3=0, (11)

second, the consecutive measurements performed on particles 1 and 2, yield-
ing the outcomes a and b:

¢1+g¢=a, p—p2=0b. (12)

Each pair of measurements (11), (12) causes an anticorrelation, thus the
anticorrelation between particles 2 and 3 together with the anticorrelation
between particles 1 and 2 lead to a correlation between particles 1 and 3.
The only difference between the states is due to the shifts both in ¢ and in
p:

¢s=q —a, ps=p;i—b (13)

If the initial state of particle 1 is ¥(g;), then the state of particle 3, after
the measurements (11) and (12) have been performed, is e®#¥(g3 + a),
which is exactly the state obtained after the “crossed” measurements (10).
The final stage of teleportation are the appropriate back shifts of the state
in p and ¢q. Note again that while the crossed measurements yield two-way
teleportation, we have obtained now only a one-way teleportation: from
particle 1 to particle 3.
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Fig. 4. Teleportation of an unknown quantum state of a system with con-
tinuous variables: (a) the method of “crossed” space-time nonlocal mea-
surements, (b) the method analogues to the BBCJPW proposal. In both

cases the final state (before the back shifts) is e**?¥(q + a).
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5. IS THERE A PARADOX WITH TELEPORTATION?

Consider teleportation, say in the BBCJPW scheme. We perform some
action in one place and the state is immediately teleported (sometimes also
rotated and/or shifted) to an arbitrary distant location. But relativity
theory teaches us that anything which is physically significant cannot move
faster than light. If we decide that an unknown rotation of the state is
important, then we have to transmit classical information (which cannot
be done with superluminal velocity) about the kind of back rotation to be
performed for obtaining, after teleportation, exactly the same state. The
classical information about the rotation is very small, but it is the only thing
which is not transmitted immediately. Thus, it seems, that this classical
information is the only essential part of the quantum state. Is the essence of
a state of a spin-1/2 particle just 2 bits? I tend to attach a lot of physical
meaning to a quantum state, not only because Aharonov and I found a
method for measuring the state of a single quantum system [5], but also
because I am a proponent of the many-worlds interpretation of quantum
theory [6]. For me everything is a quantum state. But I also believe in
relativistic invariance, so the only entities that cannot move faster than
light have physical reality. Thus, teleportation poses a serious problem to
my attitude.

A similar and even simpler example of this difficulty is a single spin
measurement of one particle of an EPR-Bohm pair. It can also be be con-
sidered as some kind of teleportation. The state of the second particle of
the pair immediately after the measurement is (up to inversion) the state
of the first one. According to standard quantum mechanics there were no
pure states of the particles before the measurement. The local measure-
ment created the spin state of the first particle, and it was immediately
transmitted and reversed (without destroying the state of the first particle)
to a distant particle. This is a kind of superluminal teleportation.

I resolve this paradoxical situation in my interpretation of the many-
worlds interpretation [7]. Anything superluminal is forbidden in a physical
world (or universe as I call it). The universe incorporates all our worlds as
members of a superposition which is the quantum wave (i.e., the universe).
The act of measurement on one particle changes no physical property of
the second particle from the point of view of an observer who can see the
whole Universe, i.e. all worlds together. If, before the measurement, the
second spin was correlated to the states of the first spin, then after the
measurement, it will be also correlated to the measuring device and the
observer of the first particle, but its density matrix remains unchanged.
Thus, there is no change in any measurable property of the second particle.
Why, then, do we believe that the state of the second particle has changed?
Because our measurement locally splits the world of the observer of the
first particle. When he (in one of the new worlds) later will look or ask



