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I. INTRODUCTION

As early as 1931, Landau and Peierls [1] showed that
relativistic causality imposes new restrictions on the pro-
cess of quantum measurement. Although some of their
arguments were not precise, it was commonly accepted
that we cannot instantaneously measure nonlocal proper-
ties without breaking relativistic causality. It was only in
1980 that Aharonov and Albert [2] showed that there are
nonlocal variables which can be instantaneously mea-
sured without contradicting relativistic causality. The
work of Aharonov, Albert, and Vaidman [3] was mainly
devoted to finding explicit methods for performing in-
stantaneous nonlocal measurements. Here we derive gen-
eral properties of all such measurements. Our main re-
sult is that instantaneous nonlocal measurement invari-
ably disturbs the measured system in such a way that all
local information (except for that which is related to de-
grees of freedom not involved in the measurement) is
erased. That is, when nonlocal measurements are per-
formed on an ensemble of systems, there are limits on the
amount of information about the initial state contained in
the final state of the ensemble.

Section II is devoted to defining the framework of our
research. In Sec. III, we discuss the causality principle
and we derive useful equalities which follow solely from
causality. In Sec. IV, we define state verification mea-
surement, and, based on the requirement of reliability of
the measurement, we prove two theorems about the
necessity of erasing local information in verification mea-
surements of entangled states. Section V is devoted to
the application of the derived results to analysis of the
measurability of spin operators of a system of two spin-1
particles. It includes a complete analysis of the measura-
bility of nondegenerate operators of this system. In Sec.
VI, we investigate the consequences of our results on ax-
iomatic quantum theory, showing that certain ideal mea-
surements of the first kind [4] cannot be performed
without contradicting the causality principle. A sum-
mary of our results concludes the paper in Sec. VII.
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II. GENERAL FRAMEWORK

Our present study is restricted to the framework which
is generally used for investigating causality constraints on
quantum measurements. It was first applied by Bohm
and Aharonov [5] and later by Bell [6] for analyzing the
Einstein-Podolsky-Rosen argument; and this was the
framework in which the first measurable nonlocal vari-
ables were found [2]. That is, we consider quantum sys-
tems which consist of two distinguishable parts, each lo-
calized in a different region of space. We take each re-
gion small enough to allow neglecting causality restric-
tions inside it, but much bigger than a Compton wave-
length, so we can neglect relativistic effects such as pair
creation. The causality principle enters at the scale of
distances between the widely separated parts of the sys-
tem, while locally we can use the formalism of nonrela-
tivistic quantum mechanics. For example, we shall con-
sider a system of two spin-1 particles located in remote
space regions. Spin components of each particle can be
measured by using a Stern-Gerlach apparatus, and these
measurements are described by nonrelativistic quantum
mechanics.

In this work we study instantaneous measurements of
nonlocal properties. Following von Neumann, any mea-
surement can be considered as having three stages. The
first stage is a preparation of the measuring device. The
second stage is an interaction between the measured sys-
tem and the measuring device. As the result of this in-
teraction, the final state of the measuring device will con-
tain information about the initial state of the system. In
the third stage this information is read by observers.

By an instantaneous measurement we do not mean that
some observer can instantaneously find out the result.
Only the second stage of the measurement, the interac-
tion between the measuring device and the system, must
be instantaneous (i.e., very short). The measurement as a
whole may take a much longer time; the measuring de-
vice may have had to be prepared a long time before the
interaction and it may take a long time to recover the re-
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sult.

The measurements considered here are designed to
determine nonlocal properties of systems. Nevertheless,
the interaction between the measuring device and the
measured system need not be nonlocal, since it is possible
[2] to measure nonlocal properties via local interactions.
However, in the present work we do not make any partic-
ular assumptions about the interaction between the sys-
tem and the measuring device, apart from unitary of the
time evolution.

III. CAUSALITY PRINCIPLE

The causality principle states that observers situated
near widely separated parts of a system cannot communi-
cate with one another with superluminal velocity: local
interactions performed in one part of the system could
not affect the probabilities of the outcomes of local mea-
surements performed on the other part of the system out-
side the light cone. Consider now the following situation.
Our system, consisting of two separate parts, 1 and 2, is
prepared, initially, in a state |¢). At time t,—e (with ec
small compared to the distance between the two parts of
the system) some local interaction is performed, say, on
part 2 of the system. This interaction is described by a
unitary transformation U'®. At time f, a nonlocal mea-
surement is performed. More exactly, at ¢, the measur-
ing device interacts with the system and this leads to a
unitary transformation U of the state of the composite,
i.e., the system and the measuring device. At time ¢,+¢€,
a measurement of a local observable 4 ‘! is carried out
on part 1. From the causality principle it follows that the
probability for any particular outcome of any local mea-
surement, say 4 ‘!'=a, is independent of the local action
on part 2, U

Let us denote the probability for the result 4'V=a of
the local measurement in part 1 at time ¢, +¢, provided
the state of the system immediately before the nonlocal
measurement performed at t, was |¢/), by p(¥):

p () =prob( A(”:aaz t0+s|l¢>at o€
nonlocal measurement,, , ) . (1)

In this compact notation the causality principle yields
p(UPY)=p(¥) . )

The probability for a given outcome of a measurement
is equal to the expectation value of the projection opera-
tor onto the corresponding subspace. Let 2!’ denote the
projection operator onto the subspace corresponding to
AV =a. Then,

() =(l(HUPDUIY)g) , 3)

where |¢ ) is the initial state of the measuring device, and
where the unitary transformation U describing the nonlo-
cal measurement acts on both states, that of the system
and that of the measuring device. In this more explicit
notation the causality principle (2) becomes

(¢!(¢|U(Z)TU??ZUUU(Z)M)IQS)
=(l<ylU'PVUI)6) . @)

By applying Eq. (4) to the states [¢;)+]|¢,) and
|,)+il¢,), where |4, ) and |1, ) are arbitrary, we easily
obtain the following generalization of (4):

<¢l(¢2|U(2)+UT7)§,”UU(2)|¢1)|¢>
=(d{,|UTPVU|P,)d) . (5

Note that in the absence of a nonlocal measurement
(i.e., in the absence of the operator U), Egs. (4) and (5)
would be trivial due to commutativity of the local opera-
tors P\ and U?. In general, U does not commute with
U or V. Thus, Egs. (4) and (5) represent causality
constraints on the possible nonlocal measurements. We
shall use them below for deriving necessary properties of
nonlocal measurements.

IV. STATE VERIFICATION MEASUREMENTS

More than half a century after the creation of quantum
theory there is no clear consensus about the interpreta-
tion of its basic concept: a quantum state. Does it
represent some kind of reality or is it just a mathematical
tool for calculating probabilities? The possibility of in-
stantaneous verification of a quantum state will manifest
its physical meaning.

We start by investigating the properties of state
verification measurements. By a verification of a given
state |¢,) we understand a measurement which always
yields the answer “yes” if the measured system is in the
state |i,) and the answer “no” if the system is in an or-
thogonal state |1, ). If the initial state is a superposition
of |¢) and [¢,) then the appropriate probabilities for
the answers “‘yes” and “no” will follow from the linearity
of quantum theory.

We note that the state verification measurement
defined above does not imply anything about the final
state of the system, unlike the standard quantum mea-
surements in which the final state is an appropriate eigen-
state of the measured operator. In this sense, state
verification measurement is more basic.

Causality limitations on quantum measurements were
used as an argument against associating physical reality
to a quantum state [1]. Indeed, we will show that causali-
ty forbids performing state verifications using standard
quantum measurements (for example, by measuring the
projection operator on |¢;)). Nevertheless, a method
which permits verification of any quantum (even nonlo-
cal) state was found [3]. The method is called “exchange
measurement” [7]. The idea of exchange measurement is
to make simultaneous short local interactions with parts
of the measuring device so that the states of the system
and the measuring device will be exchanged. The novel
point in this method is that local interactions exchange
nonlocal states. The result of the measurement cannot be
read by two local observers; the two parts of the measur-
ing device have to be brought to one place.

Exchange measurements have another very unconven-
tional property: after the measurement, the system ends
up in a state |94, ) which is completely independent of
the initial state of the system, but depends only on how
the measurement is designed. Thus, the exchange mea-
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surement has the property of erasing from the system all
information about the initial state of the system. We em-
phasize that this erasing of information takes place at the
level of an entire ensemble of systems. That is, when ex-
change measurements are performed on an ensemble of
systems, all the systems in the ensemble will end up in the
same final state |Wg,,;), so that after the measurement
there is no trace of the initial sate in the ensemble. This
is to be contrasted to what happens in the case of stan-
dard quantum measurements. In the latter, after a mea-
surement, each individual system in the ensemble “for-
gets” its initial state and ends up in an eigenstate of the
measured operator. The final ensemble becomes a mix-
ture of eigenstates of the measured operator, but the
probabilities with which these eigenstates mix still reflect
the initial state—they are just the squares of the absolute
values of the projections of the initial state onto the cor-
responding eigenstates of the measured operator.

We will show that the erasing of information from the
system is a generic property of any causal state
verification measurement. However, not all information
is necessarily erased; the causality requires that Jocal in-
formation is erased. The probabilities of the outcomes of
any local measurement performed after the state
verification are independent of the initial state of the sys-
tem (except possibly for measurements related to degrees
of freedom not involved in the state verification).

Let us now enunciate the above property in a more
precise form. Consider a measurement designed to verify
whether or not a system is in a given state |¢,). By
choosing appropriate local orthonormal bases in parts 1
and 2, we can decompose |1,) as (Schmidt decomposi-
tion)

|¢o)=2aili>1|i)2- (6)

Let us denote by H'! and H'® the Hilbert spaces of parts
1 and 2, respectively, and by H{" and H{? the subspaces
of H'V and H®, which are spanned by the basis vectors
li), and [i), corresponding to coefficients a; 0. We
shall prove that for all initial states [¢) belonging to the
Hilbert space H{" ® H'?, the probability p (1) for a result
of a local measurement performed on part 1, after the
state verification of l%), has no dependence at all on the
initial state. In particular, the initial state might be |1,).
Using notation (1) we formulate the following theorem.

Theorem 1. If |Y)EH{®H? , then p(¢)=p(t,).
In general, however, the initial state is not restricted to
H{"® H'?; it may be any state belonging to H''e H®?.
Let us decompose |¢/) as

[¥)=aly’)+Bly"), )

where |¢') and |¢"") are the normalized projections of
) onto H{V®H'® and onto the complement
(HY—H{V)® H?, respectively. Then the probabilities

of local measurements performed on part 1 after the state
J

P ={ol(a* (ol +B* (Y, VUPVU(alyy) +Bly,))l4)
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verification measurement may depend on |¢/) only via its
component S|y’ ). We will express this property in the
following theorem.

Theorem 2. Let

[¥)=aly')+BlY") ,
where

lyYeHPH? , |p")eHV-HIeH? .
Then,

p()=lal’p(4)+IBI’p(¢") . @®)

The erasing of local information about the part of the ini-
tial state in H\'® H'? is the essential property of the
state verification measurement; the sensitivity of local
measurements to |¢"') and to |B| is trivial. Indeed, the
aim of the state verification measurement is to distinguish
between |¢,) and the states orthogonal to it. But in or-
der to distinguish between |¢,) and the states belonging
to (HV—H{V)®H? it is enough to perform a local
measurement in part 1, and, similarly, a local measure-
ment performed on part 2 can distinguish between |v,)
and the states belonging to H'Ve (H'?—H{?). Only for
distinguishing between |y,) and other states in the sub-
space H{'®H({? is a genuine nonlocal measurement
needed. But this measurement can be performed by an
interaction applying only to the H{"® H{? subspace, not
the complementary subspaces (H'"—H{\V)e H? and
H(1)®(H(2)—HE)2) ).

The rest of this section is devoted to the proof of the
above two theorems. We shall start with the proof of a
simple property of state verification measurement. As
follows from its definition, the measurement is reliable,
that is, whenever the system is in |¢,), the answer is al-
ways “yes,” while whenever the system is in an orthogo-
nal state |4, ), the answer is always “no.” Then,

(s ¥, |UP Uy ) =0, )

where again U is the unitary transformation describing
the state verification measurement, 7" is the projection
operator on a certain outcome of the subsequent local
measurement performed in part 1, and |¢) is the initial
state of the measuring device. Indeed, Uly,)|¢) corre-
sponds to “yes” states of the measuring device, while
Uly,)|é) corresponds to “no” states. The operator P!
does not act on the states of the measuring device, there-
fore P\VU|y,)|¢) also belongs to a subspace of states
corresponding to the answer “yes.” Consequently,
P VU |y) |4 ) must be orthogonal to U4, )|é).

We proceed now to the proof of Theorem 1 by dividing
it into a lemma and two propositions.

Lemma. Let |¢)=al¢,)+Bl¥,), B#0, where |1, ) is
orthogonal to |i,). Then, p(¥)=p(4,) if and only if
P (Y )=p(t).

Proof. Using Eq. (3) we obtain

=lal®p (o) + B0 (%) +aB* (|, | UTPLU ) |6 +a*B(S| (| UTPLU|y, ) 4) . (10)
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Now, from the reliability requirement (9) it follows that
the last two terms vanish, and using the normalization
condition |a|?+ |B|*=1, we finally obtain

p(¥)=p(Y)+ B p(¥)—p(¥y)] . (11)

Thus, p(¥)=p(4y) if and only if p (¥, )=p ().

Using the lemma we now prove the following proposi-
tion.

Proposition 1. If the initial state of the system (prior to
the state verification) can be expressed as a linear super-
position,

N
|¢>=2c,~U‘-(2)|d10) ’ (12)

where U?) are unitary transformations in part 2 of the
system, then the probabilities for the results of local mea-
surements, performed in part 1 after the state
verification, are equal to those obtained if the initial state
were |1,)

N
P |3 UPY [=p(¢y) . (13)

Proof. We shall prove Eq. (13) by induction on N, the
number of terms in the linear superposition. When
N =1, Eq. (13) is true because it reduces to the causality
condition (2). Let us now assume that Eq. (13) is true for
N =n and let us prove that it holds for N=n+1. Let
[U2),17! be the inverse of the unitary operator U ,.
Then, from the causality principle (2), we obtain

n+1

(UL 3 U,

i

=p

n+1
p ZCiUr(Z)%

=p

zci[Ur(zzJ)rl 17 U o+, 1190 ) .
(14)

Consider now the state N'37c;[U%),17'U/*y,. Here N

a normalization factor, appearing because
E,C [ 2 17U P+, 419, is normalized. Since the
(v ] lU ‘2) are unitary transformations for all i, it fol-
lows from the induction assumption that

P NI alUH17UP Y | =P - (15)

Let us now decompose
NI alUA 1TUP ) =alde) +Bly,) , (16)

where [¢,) is orthogonal to |¢,). Then, from Egs. (15)

and (16) and the lemma, it follows that p (¢, )=p(y,).
J

p()={(¢|(a

(| +B* (' UTPVUaly ) +Blv" )

Returning now to Eq. (14), we note that the state ap-
pearing in the last term can be decomposed as

EC 2 41 lU(Z)l'%)+Cn+1|’»b0

I¢o>+ !1!’1

+Cn+1

N

Since we have already established that p (¢,)=p(3), us-
ing the lemma again we obtain

n

p zci[Ur(lzll

i

17 U Yo +c, 4 1% | =P (%) - (17

Inserting (17) into (14) ends the proof of Eq. (13) and of
the proposition.

To complete the proof of Theorem 1, we have to prove
the second proposition.

Proposition 2. Any state |) which belongs to the Hil-
bert space H\"’® H'® can be expressed in the form of Eq.

(12), ie., [¥) =3 N, U2 |4,).

Proof. Let {|i),|j),] be the basis of the Schmidt
decomposition (6). To prove the proposition it is enough
to show that by superpositions of the form (12) we can
obtain any vector |p )|g ), of this basis belonging to the
subspace Hi' @ H?.

Consider the unitary transformations V¥’ and V%
defined by

Plp)=lg),,
V‘f lg).=Ip)>, (18a)
Vi¥k),=lk), for k#p,q ,
2'lp)=—la),,

Vi¥lg),=Ip), if ¢#p , (18b)

V2 |k),=lk), for k#p,q
Then,

2ap ' 1%0) = o 5V o) =Ip)ila)y, (19)
where @, is the corresponding coefficient in the Schmidt
decomposition (6). This ends the proof of the proposi-

tion.

The proof of the above two propositions completes the
proof of the theorem. Indeed, Proposition 1 says that for
any state |1) which can be expressed in the form of Eq.
(12) we have p(y¥)=p(y,), and Proposition 2 says that
any state which belongs to the subspace H{'® H® can
be expressed in the form of Eq. (12). Thus, if
[y)EH @ H'®, then p (¢)=p(1,).

Using Theorem 1 we will now prove Theorem 2.

Proof. Using Eq. (3), we obtain

=|al%p () + B2 (") +aB* (S| |UP, U )¢ +a*B{s|{¥'|UPPUIY" ) ¢) . (20)
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Theorem 1 implies that p(y’')=p(4),); therefore, we have
only to show that the last two terms of Eq. (20) vanish.
Since these terms are complex conjugates of one another,
it is enough to prove that, say, the first of the two van-
ishes. Let us calculate this term using Proposition 2, i.e.,
the fact that since |¢')EH{’® H? it has the form of

Eq. (12)
aB*(s|(y"|UP,UIY ) |$)

=aB*gci(¢|<1/1”|UT‘P,,UU}Z’I%)M). @1

Now we shall show that each term in the last sum is
equal to zero. Using the causality principle as in Eq. (5)
and taking the unitary transformation acting on part 2 to
be [U/?]"!, we obtain

(ol<y"|U'P,UUP|¢y) )
=(¢|{y"'|UPUIPDOU|Y,) ) . (22)

Since |¢”)E(H'V—H{")® H'? and since [U?]™! acts
only in part 2, we have also [U?]7!y")
eHV—HUV)®HY, and therefore the state
[UP]7 14" ) is orthogonal to |4,). Now, Eq. (9) implies
that the right-hand side of Eq. (22) vanishes, i.e., each in-
dividual term in Eq. (21) vanishes. This ends the proof of
Theorem 2.

V. OPERATOR MEASUREMENTS

We shall now use the result of the previous section in
the study of standard quantum measurements. The mea-
surement of an operator A can be considered a
verification measurement of each of its nondegenerate
eigenstates. It immediately follows that most operators
having some nondegenerate eigenstates are unmeasur-
able. Indeed, on the one hand, the final state of the sys-
tem must be locally independent of its initial state, as fol-
lows from Theorems 1 and 2. On the other hand, if the
system is initially in an eigenstate, it should be undis-
turbed by the measurement. Only in very special cases
can these two requirements be simultaneously satisfied.

Let us consider the simplest nonlocal system, two
nonidentical spin-1 particles separated in space. Let |t;)
be an arbitrary entangled state of these particles. We
shall prove that the projection operator onto |¢y), Py,

is unmeasurable. Choosing appropriate local bases, we
can write |¢,) (Schmidt decomposition) as

lYg) =alt,)1,)+BIL) L, , 23)

where a, f70, and the arrows represent the spin polar-
ized “up” or “down” along some arbitrary directions z
and z’. Consider now two possible initial states
[¢)=11,21,) and |¢,)=[!,)[1,), and let us suppose
that P}, ) is measurable. Then, as |, and |¢,) are both
eigenstates of 7’,%) (corresponding to the eigenvalue

zero), they must not be disturbed by the measurement, so
the system will end in |¥,) or |¢,), respectively, which
are locally distinguishable. But the measurement of P, %)

is a verification of |¢,), and according to Theorem 1,
which applies in this case, it must erase all local informa-
tion. The projection operator ‘Pl%) is thus unmeasurable.

We shall now analyze the measurability of completely
nondegenerate spin operators. We state our result in the
following theorem.

Theorem 3. Causality constrains measurements of non-
degenerate spin operators of a composite system on two
spin-1 particles such that the only measurable operators
are those with eigenstates of two possible types,

|¢1>=|T2)1|TZ')2 ’
|¢2>=ITZ)1|lz'>2 ’

(24a)
|¢3)=|l2)1”z')2 ’
[ =11, 111,),
or
1
|¢1)=72(|Tz)lsz’)2+|lz>1|lz')2) ’
1
|¢2)=72(|Tz)IITz')Z—llz)lllz')Z) ’
(24b)

|¢3>=%2(|r,>1|¢,,>2+|¢,>1|1,,>2> :

l¢4>=_—1/l-§'(|Tz)1|lz')2“llz >1|Tz')2) .

The actual eigenvalues are irrelevant; they must only be
different from each other, so that the operator is com-
pletely nondegenerate.

Proof. Operators -of type (24a), although referring to
both spins, are effectively local. They can be measured by
simply measuring the z component of the spin of the first
particle and the z’ component of the spin of the second
particle. Operators of the type (24b) are truly nonlocal,
since they have entangled eigenstates. In fact, the eigen-
states (24b) are all maximally entangled. The measurabil-
ity of these operators has been shown [2,3] and an explicit
measuring method, involving only local interactions, has
been given. They provided, in fact, the first example of
nonlocal variables which can be instantaneously mea-
sured in the framework of relativistic quantum mechan-
ics.

What remains to be proven is that if the eigenstates of
a nondegenerate operator cannot be brought to either of
the forms (24a) or (24b), then causality forbids its mea-
surement. Consider first a nondegenerate operator A, for
which all its eigenstates are direct products. Up to an in-
terchange of the roles of particles 1 and 2, the set of
eigenstates of such an operator can always be written as

=11 11122,
) =11 001,02,
[ =1121042),,
) =111,

If z" is parallel or antiparallel to z then the set of eigen-

(25)



4336 SANDU POPESCU AND LEV VAIDMAN 49

states (25) is equivalent to the set (24a). Let us prove
from causality that, indeed, z'' must be parallel or anti-
parallel to z.

Let us write p (¢) for probability to obtain o!'’=—1in
a measurement performed on particle 1 immediately after
a measurement of A when |¢) is the initial state of the
system. Consider two possible initial states of the system,

&) =1 =11 011.),,
£ =11, 111,
From the causality principle it follows that

p(§)=p(&;) . 27

The state |£,) is an eigenstate of 4. Thus, the measure-
ment of A does not disturb this state, and, therefore, the

probability to obtain o= —1 afterwards vanishes,

p(£)=0.
On the other hand,

(26)

p(§2)=2I(§2|¢1)Izp(¢x)=l( Tz|Tz”>|2|< llez")'2

FICH, D P2 (28)

From the right-hand side of (28) we see that, indeed,
p(&,)=0if, and only if, z"’ is parallel or antiparallel to z.
This ends the proof that if the eigenstates of a measurable
nondegenerate operator are direct products, they also
have the form (24a).

Consider now an operator A4, which has at least one
entangled nondegenerate eigenstate, say |,). By choos-
ing appropriate local bases we can write

l¢1>=a’TZ>1ITZ'>2+BIlz>1Hz'>2- (29)

We now regard the measurement of A as a verification of
the state |4,). For an entangled state, both a and S are
nonzero and Theorem 1 implies that the measurement of
A erases from the system all local information about its
initial state. Since the eigenstates of 4 are undisturbed
by the measurement, they must be locally indistinguish-
able. This requirement can be fulfilled only if |al
=|B|=1/V2. Indeed, if |a|]|B| there are no states or-
thogonal to |¢,;) and locally indistinguishable from it.
On the other hand, when |a|=|B8|=1/V"2, the require-
ment of local indistinguishability implies that the eigen-
states have the form

|1/J,-):%2(1Tzi)1!Tz,)2+ei¢i|lzi)ltiz,)2), (30)

up to overall irrelevant phases. Note that the directions z
and z' depend on i, and they must be chosen so that the
states |¢; ) are mutually orthogonal.

It remains to be proven that any four mutually orthog-
onal states (30) can be brought, by choosing appropriate
local bases, to the form (24b). For simplicity, let us first
redefine the base vectors such that |y, ) reads

|¢1>=7‘_;(|rz>1|12.>2—u,>l|r,>2>. 31)

The above form of |¢,) has the property that it is invari-

ant when we change the basis vectors in an identical way
for both particles. Consider now the eigenstate |y,),
which is orthogonal to |4, ) and locally indistinguishable
from it. Expressed in the same local basis as (31), the
most general form of such a state (up to an overall phase)
is

'

I, )= v cosa(e' 21, )1, ),+e ¢ )11,),)
+—‘7%sina(H,)Illz')2+|lz)1|Tz')2). (32)

Consider now the local basis transformations given impli-
citly by

I1,)=e"$2cosB| ;) +isinBlle)) ,
1, )=e"%2isin| ;) +cosBl 1)) ,
[T, )=e "2 cosB| T, ) +isinBlle)) ,
[1,)=e' /2 sinf|lg) +cosB|Te)),

(33a)

(33b)

where tan28=cotana. These transformations preserve
the form of |y, ),

|¢1>=‘}£(|T§)l|l§'>2_|l§>1'T;)z) , (34)
and bring |4, ) to the form

W2y =5 Ul 416Dy (35)

In this new base, the most general form of |¢;) (orthogo-
nal to and locally indistinguishable from |¢;) and |4,))
is

=5t elihligdy) . Go)

By redefining the phases of the base vectors,
[1e)—e"/2]1,)
Ilg)—*e_i(a/z)leg) ’
|T§'>_)ei(a/2)'TE> ,
|l;>_)e—i(a/2)|l;> ,

(37a)

(37b)

we preserve the form of |¢,) and |¢,) and eliminate the
relative phase between the two terms in (36), and thus ob-
tain (up to an overall phase)

[93Y =511 ) 1l (38)

Finally, the eigenstate |14,) is determined by its ortho-
gonality to |¥,), |¥,), and |¢;), and takes the form

1
Wy == (1ehl 1= Hehlieds) (39)
This completes our proof, since the set of eigenstates

|¢),...,|1¥,) is, up to renumbering, equivalent to the
set (24b).
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VI. NONDEMOLITION VERIFICATIONS
AND IDEAL MEASUREMENTS
OF THE FIRST KIND

As a final application of Theorem 1, we will study the
possibility of performing ideal measurements of the first
kind. A basic assumption in axiomatic nonrelativistic
quantum theory [4] is that every property of a quantum
system may be determined via an ideal measurement of
the first kind. We will now show that there are nonlocal
properties which cannot be determined in this way.

Ideal measurements of the first kind are a particular
case of nondemolition measurements. A nondemolition
verification of the state |¢,) is a state verification mea-
surement with an additional requirement that, if the re-
sult of the measurement is “yes,” then the system ends up
in the state |¢,). In particular, if the system is initially in
the state |¢,), it will remain in this state. On the other
hand if the result is “no,” then there are no restrictions
on what will be the final state of the system. Analogous-
ly, we define verifications of higher-dimensional Hilbert
subspaces; a verification of a subspace R is a measurement
which always yields “yes” if the state of the system be-
longs to R and “no” if the state is orthogonal to R. As in
the case of state verification, no restrictions are imposed
on the state of the system after the measurement. A non-
demolition verification of R has the supplementary prop-
erty that if the result of the measurement is “yes,” the
final state is the projection of the initial state on R. In
particular, if the initial state belongs to R, the state
remains unchanged.

It has already been shown that any state can be verified
in a nondemolition way (exchange measurements [3]).
Thus, it is possible to perform ideal measurement of the
first kind to verify an arbitrary state. However, this is
not the case for verification of higher-dimensional Hilbert
spaces. We will now present an example of a three-
dimensional Hilbert space which cannot be verified in a
nondemolition way, and, therefore, no corresponding
ideal measurement of the first kind is possible. Consider
once again two nonidentical spin-] particles. Let R be
the subspace of states which are orthogonal to the state

Yo =alt)t)+BIL)IL), aB#0. (40)

The proof that R cannot be verified in a nondemolition
way is identical to the proof of the unmeasurability of the
projector on |t,). Since |¢,) is the unique state orthogo-
nal to R, a nondemolition verification of R is at the same

time a verification (not necessarily nondemolition) of .

|¢9). Thus we can apply Theorem 1, i.e., all local infor-
mation must be erased. Consider, however, two possible
initial states,

|¢’1>=|T)|l), |¢‘2>=“)|T> 41)

Both |4, ) and |¢,) belong to R and, therefore, should be
unaffected by the measurement. But since they are local-
ly distinguishable, they will lead to locally distinguishable
final states, in contradiction to Theorem 1. This ends our
proof.

VII. CONCLUSIONS

We have proved that even according to the weakest
definition of state verification, requiring only reliability of
the measurement, causality implies that verification of an
entangled state must erase local information. We have
analyzed conditions for which all local information must
be erased by the state verification and have found that
there is a very wide class of such situations (see Theorem
1). An example is a verification measurement of any en-
tangled state of two spin- particles. The causality prin-
ciple states that any disturbance of a particle just prior to
a time ¢, cannot affect the results of local measurements
performed on a second particle immediately after ¢,. We,
however, have proved the surprising result that also any
disturbance of the second particle before #, does not
change probabilities for the results of local measurements
performed on that particle after verification of an entan-
gled state at ¢,.

We have also shown in general what local information
must be erased by verification of an entangled state
(Theorem 2). These theorems helped us analyze the ques-
tion of measurability of operators. We completely ana-
lyzed the measurability of nondegenerate spin operators
on a system of two spin-1 particles (Theorem 3). We
have shown that causality imposes severe constraints.
Even certain local operators, i.e., operators with product
eigenstates [but not of the type (24a)], cannot be mea-
sured without violating causality. However, there are
operators with entangled eigenstates that can be mea-
sured (25b). Measurability of all but two types of opera-
tors contradicts the causality principle. For the opera-
tors of these two types, there are known measurement
procedures that use only local (and, therefore, causal) in-
teractions.

We applied Theorem 1 to show that for certain Hilbert
subspaces, there is no way to perform an ideal measure-
ment of the first kind without violating causality. This
raises new difficulties for the construction of a relativistic
axiomatic quantum theory as an extension of the nonrela-
tivistic one.

We hope that our investigation of the constraints on
measuring nonlocal variables due to relativistic causality
can be extended to more general situations, and that it
will lead to a better understanding of the relativistic
quantum theory of measurement.

Note added. Recently we learned that Bennett et al.
[8] have found a method for teleportation of quantum
states. A similar method can serve as an alternative to
nonlocal exchange measurements. In this method the lo-
cal information is also completely erased in accordance
with our Theorem 1.
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