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It is shown that joint measurements of certain commuting operators, performed on pre- and post-
selected quantum systems, invariably disturb each other. This result is applied to recent assertions that
quantum theory has no realistic Lorentz-invariant interpretation (even without requiring locality).
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Recently, a few authors [1-4], adopting a very plausi-
ble definition of “elements of reality,” claimed to show
that a realistic Lorentz-invariant interpretation of quan-
tum mechanics is not possible. They presented gedanken
experiments for which quantum predictions contradict
Lorentz invariance. In contrast to the Einstein-Podol-
sky-Rosen (EPR) argument, their proof does not include
a locality assumption. In this Letter we will show that
the contradiction disappears when we abandon a ‘‘prod-
uct rule” for elements of reality, even for elements of
reality corresponding to commuting operators. We will
show that the product rule has to be abandoned because
joint measurements of commuting operators in the con-
sidered situations invariably disturb each other.

The organization of this Letter is as follows: We start
with a discussion of measurements performed on a pre-
and postselected quantum system. We will show that
even commuting operators cannot be measured on such
systems without disturbing each other. Then we briefly
review the arguments, due to Pitowsky [1], Clifton and
co-workers [2,4], and Hardy [3], against a realistic Lor-
entz-invariant interpretation of quantum mechanics, and
explain their usage of the “product rule.” We conclude
with a brief discussion of an extension of the concept of
elements of reality which makes them Lorentz invariant.

In every textbook of quantum mechanics we can find a
condition for simultaneous measurability of variables A
and B; the corresponding operators must commute:

[4,B]1=0. (1

Commutativity of the operators 4 and B is a strong
sufficient condition; for a given quantum state |¥), it is
sufficient to have commutativity with respect to that
state:

[4,B]|y)=0. 2)

The commutativity condition (2) is a necessary and
sufficient condition for simultaneous measurability of A4
and B. If the operators A and B do not commute, the
measurement of one disturbs the outcome of the other.
For example, consider a standard measuring procedure
[5] with an interaction Hamiltonian given by

H=g(t)pA. (3)
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Here p is a canonical momentum of the measuring de-
vice; the conjugate position g corresponds to the position
of a pointer on the device. The coupling g(¢) is nonzero
for a short time interval, and during the measurement we
obtain (in the Heisenberg picture)

9B it BY=ig(0pla.B]. )
Thus, commuting operators are measurable without mu-
tual disturbance, while noncommuting operators disturb
one another.

If A and B commute, and if at a given moment we
know that a measurement of 4 must yield 4 =a while a
measurement of B must yield B =5, we can safely claim
that the product AB is also known and equal to ab. We
repeat this well-known fact because, surprisingly, it is not
true when we consider a pre- and postselected quantum
system.

To define a pre- and postselected quantum system, we
consider a quantum system at time ¢. For simplicity we
let the free Hamiltonian be zero. At time ¢; <¢ the sys-
tem is prepared in a quantum state |¥)), and at a time
1>t a measurement is performed and the system is
found in the state |¥,). We ask about possible measure-
ments at time 7. Suppose A is measured at time . If ei-
ther |¥,) or |¥,) is an eigenstate of A, then clearly the
outcome of the measurement is determined [6]; it is the
corresponding eigenvalue of 4. Measuring the commut-
ing operator B before, after, or even during the measure-
ment of A does not, in principle, disturb the measurement
of A. However, for a pre- and postselected quantum sys-
tem it might be that the result of measuring A is certain,
even if neither |¥;) nor |¥,) is an eigenstate of 4. In this
case a measurement at any time between ¢ and ¢, of cer-
tain operators commuting with A invariably disturbs the
A measurement.

A simple example is the setup proposed by Bohm for
analyzing the EPR argument: two separate spin- + parti-
cles prepared, at time 7, in a singlet state

|‘1’1>=—\;?2:(|T112>—|1|T2>)- (5)

At time ¢, measurements of o, and o, are performed
and certain results are obtained. If at time ¢, t| <t <t1,,
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a measurement of oy, is performed (and if this is the only
measurement performed between 1 and ¢5), then the out-
come of the measurement is known with certainty:
o1y (1) = —0,,(z3). If, instead, only a measurement of
o2y is performed at time ¢, the result of the measurement
is also certain: 02,(t) = —o0,,(r2). The operators oy,
and o3, obviously commute, but nevertheless, measuring
02x(t) clearly disturbs the outcome of the measurement
of o1, (1): It is not certain anymore.

Measuring the product o},0,, is, in principle, different
from the measurement of both oy, and o,, separately. In
our example the outcome of the measurement of the
product is certain, but it does not equal the product of the
results which must come out of the measurements of oy,
and oy, when either one of them is performed without the
other [7].

We demonstrate this point by applying the generaliza-
tion of the formula of Aharonov, Bergmann, and Le-
bowitz [8] (ABL) for calculating probabilities for the re-
sults of an intermediate measurement performed on a
pre- and postselected system. If the initial state is R
and the postselected state is |¥,), then the probability for
an intermediate measurement of A4 to yield 4=a, is
given by [9]

|<‘1’2fﬁA=an,‘I’|>|2

- , (6)
; w2l Py=q | W12

prob(4=a,) =

where the sum is over all eigenvalues of 4 and 1;A=ak is
the projection operator onto the subspace with eigenvalue
aix. The formula immediately yields probability 1 when
[¥,) or [¥,) is an eigenstate, but it also can yield 1 when
neither of the states is an eigenstate, as we now show.
The state |¥,) is given by Eq. (5). Suppose the results
of the postselection measurements are o1x =1 and o3,
=1. Then the state |¥;)=|1,,12,). To predict the out-
come of a measurement of oy, we have to use the pro-
jection operators P[o,y=|]=|T|y><T|y| and Plg,=-11=

[}, . Applying formula (6), we indeed obtain
prob(o;,=—1)=1. In the same way we obtain
prob(cy, = —1)=1. For calculation of the probabilities

of the measurement of the product 6,05« we use the pro-
jection operators

13[0|y02x=|]=|leT2x><leT2x|+|11y12x><11y12x| ,

@)
P[a|y02,=—|]=|Ilyleleylel+HIyT2x><llyT2xl .
Then Eq. (6) yields prob(cy,0,¢ =1) =0, contrary to the
product rule, which requires o,02, =1 with probability

1. It follows that the value of the product o,,02 is cer-
tain, but it equals — 1.

We have shown that for a pre- and postselected quan-
tum system it might happen that the operators corre-
sponding to two observables 4 and B commute, [4,B]
=0, but measuring B invariably disturbs the results of
the measurement of 4. Therefore, for a pre- and post-
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selected quantum system one cannot apply a “‘product
rule” that asserts that if measurements of 4 and B yield
A=a and B=b with certainty, then a measurement of
AB yields ab. In fact, the value of 4B might also be cer-
tain, but not equal to ab.

We now review the arguments against the possibility of
a realistic Lorentz-invariant interpretation of quantum
mechanics [1-4]. The starting point of these arguments
was the definition of elements of reality and the principle
of Lorentz invariance. In contrast to the usual EPR-type
argument, no locality principle, forbidding an action at
a distance, was assumed. The adopted definitions are as
follows.

(i) Element of reality (Redhead [10]): *“If we can pre-
dict with certainty, or at any rate with probability one,
the result of measuring a physical quantity at time ¢, then
at the time ¢, there exists an element of reality corre-
sponding to this physical quantity and having a value
equal to the predicted measurement result.”

(ii) The Principle of Lorentz invariance: “If an ele-
ment of reality corresponding to some Lorentz-invariant
physical quantity exists and has a value within space-time
region R with respect to one spacelike hypersurface con-
taining R, then it exists and has the same value in R with
respect to any other hypersurface containing R.”

In the usual EPR argument an element of reality cor-
responding to an outcome of a measurement is fixed by
the mere possibility of inferring the outcome from mea-
surements in a causally disconnected region. In contrast,
since the present approach does not assume locality, ele-
ments of reality are fixed only by actual measurements.

The argument due to Clifton, Pagonis, and Pitowsky
[2]1 is based on the modified Greenberger-Horne-
Zeilinger [11] (GHZ) setup for demonstrating the nonex-
istence of local hidden variables. Three spin-+ particles,
located in the corners of a very large triangle, move fast
in directions pointing out of the center of the triangle. At
time 7, (in the rest frame) the particles are prepared in
the state

|w,>=|GHz>=—J‘~§<|mzznz>—11.2122132». (8)

At time 7, the spin components in the x direction are
measured on all particles and the results o, =Xx; are ob-
tained. Consider now some possible measurements per-
formed on the particles at a time ¢, t; <t <t¢,. For each
of the three observers who perform the o;c measure-
ments, the measurements on the other particles (at time ¢
in the rest frame) are performed after his o;x measure-
ment, and he can predict (each in his Lorentz frame) the
following result with certainty:

02,03y =X, (9a)
O1y03y =X2, (9b)
O1y02y =X3. (90)
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Equations (9a)-(9¢) represent elements of reality in
space-time regions corresponding to the respective Lor-
entz frames. The principle of Lorentz invariance yields
that these are also the elements of reality in the rest
frame. By multiplying Egs. (9b) and (9¢) we obtain

2 —
Oiy03y02y =X2X3.

(10)
2 ],

Taking into account that of, = we conclude that
xy=x2x3. This conclusion, however, contradicts quan-
tum mechanics: in the GHZ state x|x,x3=—1.

Pitowsky and Clifton, Pagonis, and Pitowsky obtain
their elements of reality as predictions of different ob-
servers, but their argument holds only when they consider
the predictions of all observers. However, there is no
Lorentz observer for which all the predictions are infer-
ences from the past toward the future; at least some of
the inferences must be retrodictions. In fact, we have a
quantum system on which two complete measurements
are performed in succession, and claims about elements of
reality apply to times between these two measurements.
Here, the GHZ state is prepared initially and measure-
ment of the x components of spin for all particles deter-
mines the final state. The discussion at the beginning of
this Letter thus applies.

The state |¥;) is given by Eq. (8), while |¥3)
=|x,Xx2,x3), i.e., the state with certain x components of
spin. The operators to be considered between these two
states are ¢1,03,,01,02,, and 03,03,. The formalism, Eq.
(6), yields (as it should) the probability 1 for the out-
comes given by Egs. (9a)-(9¢). But it also shows that
the measurements of commuting operators o©,03, and
o1,037, disturb each other. Equation (6) yields that the
probability to find both results (9b) and (9c) when mea-
sured together is just §. Again, measuring the product
differs from measuring both of the operators separately,
and the probability of finding (o,03,)(01,02,) =x2x3 is
zero since the outcome is given by Eq. (9a).

The example of Hardy [3] involves just two particles,
an electron and a positron in two entangled setups of the
type proposed by Elitzur and Vaidman [12] (EV) for
interaction-free measurements [13]. Each EV setup is a
Mach-Zehnder interferometer tuned to yield zero counts
at a detector D unless a point 7 belonging to one arm of
the interferometer is not free. The “click” of the detector
D), after sending just one particle, yields that the point 7
is not empty, without disturbing the object at 7. In
Hardy’s example the point 7 is common to the two EV
setups. One EV device tests the point 7 with a single
electron, while the other tests the same point 7 with a
single positron. If both the electron and the positron
come to the point 7 together then they annihilate, and it
might happen that both devices yield that the point 7 is
not empty, i.e., detectors D, of both the electron and the
positron interferometers “click.” Let us assume this out-
come. Now, consider a Lorentz frame in which the ob-
server of the electron EV device is the first to obtain a

“click.” She infers [14] that the positron was at . In
another Lorentz frame, however, the observer of the posi-
tron EV device is the first to obtain the result. He
deduces that the electron was at 7. The principle of
Lorentz invariance yields that there are two elements of
reality: the electron at 7 and the positron at 2. The
product rule here is very natural: If the electron is at ?
and the positron is at 7 then the electron and the positron
are at . The latter, however, leads to contradiction:
The particles at 2 must annihilate and cannot be detect-
ed by either observer.

Hardy’s example also involves pre- and postselection.
Here, the preselection is the preparation of the electron-
positron state, while the postselection is the detection of
electron and positron at detectors D;. Thus, we can ap-
ply the ABL formalism. However, in this case the free
Hamiltonian is not zero; it describes the interaction of the
electron and the positron with beam splitters and mirrors
as well as their annihilation at 7. Therefore, the state
|#,) in the formula (6) must be the initial state evolved
forward in time until 7, the time when one of the particles
reaches the point 2, while the state |¥,) must be ob-
tained by evolving the final state backward in time until .
Straightforward calculation shows that Eq. (6) repro-
duces Hardy’s result: If one observer tests, ““Was the elec-
tron at P?” her result must be “yes”; if the other ob-
server looks for the positron at 7, his answer must be
“yes” too (but if both of them make these measurements,
each observer will obtain “yes” with probability ¥, and
they will never obtain “yes” together). Here, too, the
operator considered by Hardy is the product of two pro-
jection operators, and its measurement is not equivalent
to two simultaneous measurements, one testing for an
electron at ? and another testing for a positron at 2.
The measurement of the product can be implemented by
observing photons due to electron-positron annihilation.
Formula (6) yields probability zero to obtain the product
equal to 1, in contrast to probability 1 obtained from the
product rule.

We believe that Redhead’s definition of elements of
reality is a plausible one. It does not lead to contradic-
tion with Lorentz invariance if we do not adopt the prod-
uct rule. But in the light of the discussion above, it is
clear that the product rule is incompatible with Red-
head’s definition. The elements of reality are inferred on
the assumption that there are no measurements disturb-
ing their values. Clifton, Pagonis, and Pitowsky [2] state
explicitly: “For our argument, we shall assume that no
such intervening measurements take place.” But as we
showed, measurements of the operators they consider do
interfere with each other. So, it is inconsistent with the
definition of the elements of reality to apply the product
rule [15]. If it is an element of reality that A =a and it is
an element of reality that B=4, it does not follow that
AB=ab is an element of reality. It might be that the
product AB has a certain value and, therefore, is an ele-
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ment of reality in the Redhead’s sense, but it need not
equal ab.

In fact, this happens in all the examples we considered.
In the first example we have elements of reality oy,
= —1,02, = —1, and the product is also an element of
reality, but oj,02, = —1. In the Pitowsky example the
elements of reality are o,,03, =x3,01,02, =x3, and the
product, (o1,03,)(01,02,) =02,03, =x, but nevertheless
x2x3#x; (x2x3=—x). In Hardy’s example P,-=1,
P,+=1, but P,-P,+=0, where P,-,P,+ are projection
operators on the states “‘an electron at 2 and ““a positron
at P.,” respectively.

Clifton, Pagonis, and Pitowsky felt that the conclusions
about the impossibility of constructing a realistic Lor-
entz-invariant quantum theory are too strong. They pro-
posed a variety of ways to circumvent these arguments, in
particular, by rejecting elements of reality corresponding
to “incompatible measurement context.” It is possible to
deal with the failure of the product rule along these lines,
but we prefer another possibility.

We give up the product rule and extend the concept of
elements of reality. We consider elements of reality
defined by both prediction and retrodiction. The Red-
head definition of elements of reality continues to hold,
with a minor change of “predict” to ““infer.” Thus, in the
case of two spin-+ particles, the observer who measures
o1x(t2) =1 not only infers that ¢,,(¢r) = — 1 but also that
o1x(t) =1. So we add to the list of elements of reality at
time ¢ also o1x =1 and o, =1.

One reason for this proposal is that in the relevant cir-
cumstances retrodictions are involved anyway. In the ex-
amples presented here, predictions were applied to future
events as well as to spacelike separated events, while re-
trodictions were applied only to spacelike separated
events. It is natural to apply retrodiction to the past also,
making the approach time symmetric. Elements of reali-
ty defined by both prediction and retrodiction yield a
Lorentz-invariant history of quantum systems [16].

Further support for this approach comes from recently
introduced weak measurements [17] which allow us to
overcome an obvious objection to defining elements of
reality which cannot be measured. Weak measurements
performed on pre- and postselected ensembles can test
even elements of reality corresponding to otherwise in-
compatible measurement contexts [18].
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