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A Quantum Time Machine 
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A novel description of  quantum systems is employed for constructing a "tinw 
machine" capable o f  shift#~g in time the wave function of  a quantum system. This 
device uses gravitational time dilations and a peculiar quantum interference effect 
due to preseleetion and postselection, h~ most trials this time machine fails to 
operate but when it does succeed it accomplishes tasks which no other machine 
c a n .  

1. I N T R O D U C T I O N  

Recently a novel approach in quantum theory was developed. ~1) In this 
approach a quantum system at a given time is described by two vectors in 
a Hilbert space instead of one, the usual state vector, evolving from the 
time of the latest complete measurement in the past, and another one 
evolving backward in time from the time of the earliest complete measure- 
ment in the future. Using this approach, several surprising features of quan- 
tum systems between two measurements were uncovered. These features 
can be explained in the standard, single state vector approach as well. Such 
explanations involve, however, peculiar mathematical identities, which 
seem to be rather paradoxical. That  explains why these novel features have 
not been discovered before. In this paper we discuss one of these peculiar 
phenomena: a quantum time machine. (2) 

To avoid possible misinterpretations due to the name "time machine," 
let us explain from the outset what our machine can do and how it differs 
from the familiar concept of "time machine." Our device is not for time 
travel. All that it can accomplish is to change the rate of time flow for a 
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closed quantum system. Classically, one can slow down the time flow of a 
system relative to an external observer, for example, by fast travel. Our 
quantum time machine is able to change the rate of time flow of a system 
for a given period by an arbitrary, even negative, factor. Therefore, our 
machine, contrary to any classical device, is capable of moving the system 
to its "past." In that case, at the moment the machine completes its opera- 
tion the system is in a state in which it was some time before the beginning 
of the operation of the time machine. Our machine can also move the 
system to the future, i.e., at the end of the operation of the time machine 
the system is in a state corresponding to some later time of the undisturbed 
evolution. 

A central role in the operation of our time machine is played by a 
peculiar mathematical identity which we discuss in Sec. 2. A specific super- 
position of time evolutions for short periods of time 6tn yields a time evolu- 
tion for a large period of time At: 

N 

Y~ cnU(6tn) l~)  ~- U(~t) I~e) (1) 
n = O  

This approximate equality holds (with the same 6tn and c,) for a large class 
of states I~ u)  of the quantum system, and in some cases even for all states 
of the system. 

In order to obtain different time evolutions of the system we use the 
gravitational time dilation effect which is discussed in Sec. 3. In Sec. 4 
we describe the design and the operation of our time machine, i.e., the 
procedure for the preparation of the state given by the left-hand side of 
Eq. (1). The success of the operation of our time machine depends on 
obtaining a specific outcome in the postselection quantum measurement. 
The probability of the successful postselection measurement is analyzed in 
Sec. 5. Section 6 concludes the paper by discussing the limitations and the 
advantages of our time machine. 

2. A PECULIAR MATHEMATICAL IDENTITY 

The mathematical identity states that a linear combination with coef- 
ficients cn of the values of a function at arguments shifted by an is 
approximately equal to the values of the same function shifted by an 
amount ~ which is very different from all the an's: 

N 

cnf( t-a,)~-  f ( t -c t )  (2) 
n = O  
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What is peculiar about this equality is that the same values of an and c, 
are appropriate not just for one specific function, but for a wide class of 
functions. This approximate equality can be made arbitrarily precise by 
increasing the number of terms in the sum. 

This type of mathematical identity was discovered through the con- 
sideration of the "weak" measurement of a quantum variable A performed 
at a time between two measurements. The approach, which associates two 
vectors in the Hilbert space of states with the quantum system, implies that 
the result of the weak measurement has to be the "weak value" of A. (1) This 
weak value might be very different from the eigenvalues of A. The left-hand 
side of Eq. (2) represents the wave function of the measuring device 
which measures the weak value of A, where a n are eigenvalues of A. The 
right-hand side of Eq. (2) represents the wave function of the measuring 
device corresponding to the outcome ~--the weak value of A. 

In this work we consider a particular example: 

1l 

a n = ~  (3a) 

N~ 
e .  - ~n(1 _ : ¢ ) N - .  ( 3 b )  

(N-n)!  n! 

where n = 0, 1,..., N. Note, that the coefficients c, are terms in the binomial 
expansion of [a + (1 - -  ~)l N and, in particular, Zn=0c  = l . N  

For Eq. (2) to be correct, the Fourier transform of the function f(t) 
has to decrease fast enough for large w (w is the Fourier conjugate to t). 
A sufficient condition for our particular choice is that for large w's: 

j~ (w) l<e  -blwl, where b > l a ( ~ - t ) l  (4) 

To prove this, we notice that Eq. (2), with the choice of a,  and c, 
given by (3a) and (3b) respectively, is the Fourier transform of 

N 

Y, ~,~i~o,liw)= [ I  + ~(~,~./N_ 1)]N?(w) ~ ~,~WT(w) (s) 
n = 0  

For large N we can expand: 

ln[1 + o~(¢ iw /N-  I ) ] N ~  iw~ + - -  ~(~- 1)  w ~ 
+ 

2 N 

Thus, for ] w i < N  j/2 ~ we have [l+o¢(eiw/N--1)]U~--ei~W. Therefore, if 
the contribution to the Fourier transform of the left-hand side from 
rwl > N 1/2-~ can be neglected, we obtain Eq. (2). Requirement (4) ensures 
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Fig. 1. Demonstration of an approximate equality given by Eq. (2). The sum of a function 
shifted by the 14 values a n between 0 and 1 and multiplied by the coefficient c~ (a~, and c a are 
given by Eqs. {3a) and (3b) with N= 13, c~= t0) yields approximately the same function 
shifted by the value 10:52~3=0 (i,~)(_ lO/9)' f(t-n/13)_~f(t-  10). The gray line shows f(t); 
the dashed line shows f ( t -  10), the RHS of Eq. (2); and the solid line shows the sum, the 
LHS of Eq. {2). 

that this contribution can be neglected: To see this, we estimate the 
absolute value of [1 + o~(e iw/N- 1)] N as follows: 

I l l  + O~(e iw/N - -  1 ) ]  N] = [1 -~- 2~(~ - 1 ) sin2(w/2N)l u/a < el~l=- 1~.1 

Thus, ifj~(w) fulfills the requirement (4) then, indeed, the contribution to 
the Fourier transform of the left-hand side of Eq. (5) due to the integration 
over w, [wl > N  1/2-~, can be neglected. Therefore, we have proved that the 
approximate equality (2) with parameters a ,  and c, given by Eq. (3) is 
correct for all functions which fulfill the requirement (4). 

Figure 1 shows an example of identity (2). Even for a relatively small 
number of terms in the sum (14 in our example), the method works 
remarkably welt. The shifts from 0 to 1 yield the shift by t0. The distortion 
of the shifted function is not very large. By increasing the number of terms 
in the sum the distortion of the shifted function can be made arbitrarily 
small. 

3. CLASSICAL T I M E  M A C H I N E S  

A well-known example of a time machine is a rocket which takes a 
system to a fast journey. If the rocket is moving with velocity V and the 
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duration of the journey (in the laboratory frame) is T, then we obtain the 
time shift (relative to the situation without the fast journey): 

fit = T (1 - ~/1 -- V2/c ") (6) 

For typical laboratory velocities this effect is rather small, but it has been 
observed experimentally in precision measurements in satellites. In such a 
"time machine," however, the system necessarily experiences external force, 
and we consider this a conceptual disadvantage. 

In our time machine we use, instead of the time dilation of special 
relativity, the gravitational time dilation. The relation between the proper 
time of the system placed in a gravitational potential ~ and the time of the 

external observer (q~ =0)  is given by dr =dt x/1 + 20/c 2. We produce the 
gravitational potential by surrounding our system with a spherical shell of 
mass M and radius R. The gravitational potential inside the shell is 
0 = -GM/R.  Therefore, the time shift due to the massive shell surrounding 
our system, i.e., the difference between the time period T of the external 
observer at a large distance from the shell and the period of the time 
evolution of the system (the proper time), is 

6 t :  T ( t  - x f l  -2GM/cZR) (7) 

This effect, for any man-made massive shell, is too small to be observed by 
today's instruments. However, the conceptual advantage of this method is 
that we do not "touch" our system. Even the gravitational field due to the 
massive spherical shell vanishes inside the shell. 

The classical time machine can only slow down the time evolution of 
a system. For any reasonable mass and radius of the shell the change of 
rate of the time flow is extremely small. In the next section we shall 
describe our quantum time machine which amplifies the effect of the classi- 
cal gravitational time machine (for a spherical shell of the same mass), and 
makes it possible to speed up the time flow for an evolution of a system, 
as well as to change its direction. 

4. QUANTUM GRAVITATIONAL TIME MACHINE 

In our machine we use the gravitational time dilation and a quantum 
interference phenomenon which, due to the peculiar mathematical property 
discussed in Sec. 2, amplifies the time translation. We produce the super- 
position of states shifted in time by the small values est, (due to spherical 
shells of different radii) given by the left-hand side of Eq. (1). Thus, 

8~5/2t/8-6 
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we obtain a time shift by a possibly large, positive or negative, time 
interval At. 

The wave function of a quantum system ~U(q, t), considered as a 
function of time, usually has a Fourier transform which decreases rapidly 
for large frequencies. Therefore, the sum of the wave function shifted by 
the small periods of time 6tn = 6t a, ,  with a~ given by (3a), and multiplied 
by the coefficients c,, [of Eq. (3b)] is approximately equal to the wave 
function shifted by the large time At = 6t cc Since the equality (2) is correct 
with the same coefficients for all functions with rapidly decreasing Fourier 
transforms, we obtain for each q, and therefore for the whole wave 
function, 

N 

e. gt(q, t - f t . )  ~- re(q, t - A t )  (8) 
n = O  

Thus, a device which changes the state of the system from g~(q, t) to the 
state given by the left-hand side of Eq. (8) generates a time shift of At. Let 
us now present a design for such a device and explain how it operates. 

Our machine consists of the following parts: a massive spherical shell, 
a mechanical device--"the mover ' - -with a quantum operating system, and 
a measuring device which can prepare and verify states of this quantum 
operating system. 

The massive shell of mass M surrounds our system and its radius R 
can have any of the values Ro, R~ ..... RN. Initially, R = Ro. 

The mover changes the radius of the spherical shell at time t = 0, waits 
for an (external) time T, and then moves it back to its original state, i.e., 
to the radius Ro. 

The quantum operating system (QOS) of the mover controls the radius 
to which the shell is moved for the period of time 7". The Hamiltonian of 
the QOS has N +  1 nondegenerate eigenstates In), n = 0, 1 ..... N. If the state 
of the QOS is In), then the mover changes the radius of the shell to the 
value Rn. 

The measuring device preselects and postselects the state of the QOS. 
It prepares the QOS before the time t = 0 in the initial state: 

N 

l ~ i . ) o o s = J V  ~ c,, )2) (9) 
n = O  

with the same c n as given above in Eq. (3b) and with a normalization 
factor 

.4/" = [cn[- (9a) 
n 0 
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After the mover completes its operation, i.e., after the time t = T, we 
perform another measurement on the QOS. One of the nondegenerate 
eigenstates of this measurement is the specific "final state": 

1 N 

I s oos- N,/ n o / ot 
Our machine works only if the postselection measurement yields the 
state (10). Unfortunately, this is a very rare event. We shall discuss the 
probability of obtaining the appropriate outcome in the next section. 

Assume that the postselection measurement is successful, i.e., that we 
do obtain the final state (10). We will next show that in this case, assuming 
an appropriate choice of the radii R,,, our "time machine" shifts the wave 
function of the system by the time interval At. The time shift is defined 
relative to the situation in which the machine has not operated, i.e., the 
radius of the shell was not changed from the initial value Ro. In order to 
obtain the desired time shift At = g~t c~ we chose the radii R~ such that 

n 6t T ( ~ / 1 - 2 G M / c 2 R o - x / i - 2 G M / c 2 R , , )  (11) ~t~ ~ - ~ - =  

The maximal time shift in the different terms of the superposition 
[left-hand side of Eq. (8)] is 6tN----6t. The parameter e is the measure of 
a "quantum amplification" relative to the maximal (classical) time shift fit. 
If the radius Ro of the shell is large enough that the time dilation due to 
the shell in its initial configuration can be neglected, Eq. (11 ) simplifies to 

6t~ = T(1 - x/1 - 2 G M / c 2 R n )  ( l l a )  

Let us assume then that we have arranged the radii according to 
Eq. ( l la) ,  and we have prepared the quantum operating system of the 
mover in the state (9). Then, just prior to the operation of the time 
machine the overall state is the direct product of the corresponding states 
of the system, the shell, and the mover: 

N 

~ l g t ( q ,  0))  lRo) ~ c, Tn) (12) 
n~O 

where I Ro) signifies that the shell, together with the mechanical part of the 
mover, is at the radius Ro. Although these are clearly macroscopic bodies, 
we assume that we can treat them quantum-mechanically. We also make 
an idealized assumption that these bodies do not interact with the environ- 
ment, i.e., no element of the environment becomes correlated to the radius 
of the shell. 
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Once the mover has operated, changing the radius of the spherical 
shell, the overall state becomes 

N 

~4~'l~P(q, 0)} ~ c, IRn}!n} (13) 
n - - 0  

For different radii R~, we have different gravitational potentials inside 
the shell and, therefore, different relations between the flow of the proper 
time of the system and the flow of the external time. Thus, after the 
external time T has elapsed, just before the mover takes the radii R~ back 
to the value R 0, the overall state is 

N 

Y ~ cn I~(q, T - f t n ) }  IR,,} In} (14) 
n = 0  

Note that now the system, the shell, and the QOS are correlated: the 
system is not in a pure quantum state. After the mover completes its 
operation, the overall state becomes 

N 

~+" ~ cn Igt(q, T--btn)} lRo} In} (15) 
n = 0  

There is still a correlation between the system and the QOS. 
The postselection measurement performed on the QOS puts the QOS 

and, consequently, also our quantum system, in a pure state. After the 
successful postsetection measurement, the overall state is 

( ~  c~ [gt(q, Z-c~t~)) [Ro} ~ ~', in} (16) 
\~=0 ,v/N+ 1 ~=0 

We showed that the wave function of the quantum system gt(q, t) is 
changed by the operation of the time machine into u Z,,=0 c, ~P'(q, t-6t, ,) .  
Up to the precision of the approximate equality (8) (which can be 
arbitrarily improved by increasing the number of terms N in the sum), this 
wave function is indeed gt(q, t - At)[ Note that for At > T the state of the 
system at the moment the time machine has completed its operation is the 
state in which the system was before the beginning of the operation of 
the time machine. 

5. THE PROBABILITY OF THE SUCCESS OF THE QUANTUM 
TIME MACHINE 

The main conceptual weakness of our time machine is that usually it 
does not work. Successful postselection measurements corresponding to 



A Quantum Time Machine 955 

large time shifts are extremely rare. Let us estimate the probability of the 
successful postselection measurement in our example. The probability is 
given by the square of the norm of the vector obtained by projecting the 
state (15) on the subspace defined by state (10) of the QOS: 

P r o b =  - -  L c,, I~(q, T-6t , , ) )  IRo) (17) 

To obtain a time shift without significant distortion, the wave functions 
shifted by different times 6tn have to be such that the scalar products 
between them can be approximated by t. Taking then the explicit form of 
c, from (3b), we evaluate the probability (17), obtaining: 

~2  
Prob~_ N (18) 

The normalization factor o/~ r given by Eq. (9a) decreases very rapidly for 
large N. Even if we use a more efficient choice of the initial and the final 
states of the QOS (see Ref. 1) the probability, for the amplification e > 1, 
decreases with N as 1/(2cc- 1) N. 

The small probability of the successful operation of our time machine 
is, in fact, unavoidable. At the time just before the postselection measure- 
ment, the system is in a mixture of states correlated to the orthogonat 
states of the QOS [see Eq. (15)]. The probability of finding the system at 
that time in the state I~(q, T - A t ) ) ,  for At which differs significantly from 
the time periods 6t,, is usually extremely small. This is the probability to 
find the system, by a measurement performed "now," in the state in which 
it was supposed to be at some other time. For any real situation this 
probability is tiny but not equal precisely to zero, since all systems with 
bounded energies have wave functions with nonvanishing tails. The 
successful operation of our time machine is a particular way of "finding" 
the state of the quantum system shifted by the period of time At=~tc~. 
Therefore, the probability for success cannot be larger than the probability 
of finding the shifted wave function by direct measurement. 

One can wonder what has been achieved by all this rather complicated 
procedure if we can obtain the wave function of the system shifted by the 
time period At simply by performing a quantum verification measurement 
at the time T of the state f ~P(T-At)) .  There is a very small chance for the 
success of this verification measurement, but using our procedure the 
chance is even smaller. What our machine can do, and we are not aware 
of any other method which can achieve this, is to shift the wave function 
in time without knowing the wave function. If we obtain the desired result 
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of the postselection measurement (the postselection measurement per- 
formed on the measuring device), we know that the wave function of the 
system, whatever it is, is shifted by the time At. Not only is knowledge of 
the wave function of the system inessential for our method, but even the 
very nature of the physical system whose wave function is shifted by our 
time machine need not be known. The only requirement is that the energy 
distribution of the system decreases rapidly enough. Let us discuss this 
requirement more quantitatively. 

In order to be able to perform the time shift of the state of the system 
without significant distortion, the Fourier transform of ~U(q, t) (as the 
function oft) should decrease rapidly enough for large frequencies. The 
wave function of the system in the energy representation is 

[ ~(t) } = j" exp(- lEt )  f(E) [~Pe} dE (19) 

where I~E) is the energy eigenstate. For a discrete spectrum the integra- 
tion should be replaced by the sum. In the case of degenerate eigenstates 
the integral should include summation (and/or integration) on the 
degeneracy. The state [left-hand side of Eq. (8)] is, in this energy represen- 
tation, 

N 

f ~ c~ exp(iE(~t~) exp(-iEt) f(E) lgte) dE (20) 
n = 0  

Equation (8) becomes, in the energy representation, 

N 

c,, exp(iE ~t,,) f (E)  = exp(iE At)f(E) (2 t ) 
n = 0  

Note that this is a version of the identity given in Eq. (5). 
For every given E we can obtain any desirable precision of the 

approximate equality 

N 

c, exp(iE 6t,,) ~- exp(iE At) (22) 
n = 0  

by increasing the number of terms in the sum N. (This number, however, 
grows very fast with E.) Therefore, the time machine works for systems 
with bounded energies and for systems with rapidly decreasing energy 
distribution. 

The operation of our time machine can be considered as a superposi- 
tion of time evolutions ~2~ for different periods of time fiG. This name is 
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especially appropriate if the Hamittonian of the system is bounded, since 
in this case the approximate equality (1) is correct for all states [g~). 

If the expectation value of the energy (constituting a very partial 
knowledge about the state of the system) can be estimated, then we can 
improve dramatically the probability of the success of our procedure. 
Given the expectation value of the energy (E) ,  we can modify the 
coefficients cn in such a way that the minimal number of terms in the 
superposition required for shiting the state in time can be significantly 
reduced. This, in turn, enormously increases the probability of successful 
postselection measurement. Indeed, let us take in our procedure, instead of 
the coefficients cA given by Eq. (3b), the new coefficients c',: 

c', =_ cA e x p [ i ( E ) ( A t  - 3tn)] (23) 

The requirement for time translation without significant distortion then 
becomes 

N 

cn exp[ i (E-  ( E )  ) fiG] f ( E )  ~- expEi(E- ( E ) )  At] f ( E )  
n=0  

(24) 

The number of terms in the sum, necessary for the approximate equality 
(24) to be true for energies E for which f ( E )  is substantial, depends, there- 
fore, on the energy dispersion AE. Thus, the level of difficulty of the time 
shift without distortion depends on the magnitude of the energy dispersion 
AE and not on the expectation value of energy (E) .  

6. TIME TRANSLATION TO THE PAST AND TO THE FUTURE 

Let us spell out again what our machine does. Assume that the time 
evolution of the state of the system is given by [~u(t)). By this we mean 
that this is the evolution before the operation of the time machine and this 
is also the evolution later, provided we do not operate the time machine. 
The state t~( t ) )  describes the actual past states of the system and the 
counterfactual future states of the system, i.e., the states which will be in the 
case we do not disturb the evolution of the system by the operation of our 
time machine. Define "now," t = 0, to be the time at which we begin the 
operation of the time machine. The time interval of the operation of the 
time machine is 7: Moving the system to the past means moving it to 
the state in which the system actually was at some time t < 0. Moving the 
system to the future means moving it to the state in which it would have 
wound up after undisturbed evolution at some future time t > T. Evidently, 
the classical time machine does neither of these, since all it can achieve is 
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that at time T the system is in the state corresponding to the time t, 
0 < t < T .  

When we speed up or slow down the rate of the time evolution, the 
system passes through all states of its undisturbed evolution only once. 
More bizarre is the situation when we reverse the direction of the time 
flow, thus ending up, after completing the operation of the time machine, 
in the state in which the system was before t = 0. In this case the system 
passes three times through some states during its evolution. 

For our time machine to operate properly, it is essential that the 
system is isolated from the external world. In the case of the time transla- 
tion to the past state, the system has to be isolated not only during the 
time of operation of the time machine, but also during the whole period of 
intended time translation. If the system is to be moved to the state in which 
it was at the time t, t < 0, then it has to be isolated from the time t until 
the end of the operation of the time machine. This seems to be a limitation 
of our time machine. It leads, however, to an interesting possibility. We can 
send a system to its counterfactual past, i.e., to the past in which it was sup- 
posed to be if it were isolated (or if it were in any environment chosen by 
us). Consider an excited atom which we isolate in vacuum at time t = 0 
inside our time machine. And assume that our time machine made a suc- 
cessful time translation to a negative time t, such that It[ is larger than the 
lifetime of the excited atomic state. Since the atom, now, is not in the 
environment it was in the past, we do not move the atom to its actual state 
in the past. Instead, we move the atom to the state of its counterfactual 
past. By this we mean the state of the isolated atom which under its normal 
evolution in the vacuum during the time period It[ winds up in the excited 
state. In fact, this is the state of the atom together with an incoming radia- 
tion field. The radiation field is exactly such that it will be absorbed by the 
atom. Although our procedure is very complicated and only very rarely 
successful, still, it is probably the easiest way to prepare the precise incom- 
ing electromagnetic wave which excites a single atom with probability one. 
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