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A recent criticism by Kunstatter et al. (2020) [1] of a quantum setup violating the pigeon counting 
principle Aharonov et al. (2016) [2] is refuted. The quantum nature of the violation of the pigeonhole 
principle with pre- and postselection is clarified.
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In a recent paper [1] Kunstatter et al. analyzed the work [2] of 
Aharonov et al. which presented a violation of the pigeon counting 
principle (PCP) in a particular pre- and postselected system. Kun-
statter et al. claimed “we have provided a proof that the PCP is not 
violated in quantum mechanics”. In this Comment we will argue 
that Kunstatter et al. did not resolve the PCP conundrum because 
they analyzed a different problem.

The quantum pigeon conundrum is a paradox about the lo-
cations of pre- and postselected quantum particles. We prepare 
a particular state of three particles in two boxes and consider a 
possible event in which the particles are found later in another 
particular state. The PCP tells us that when we put three clas-
sical particles in two boxes, we must find one pair in the same 
box. Aharonov et al. [2] argued that for particular pre- and post-
selected quantum states, three quantum particles are put in two 
boxes, yet no two particles are in the same box. In standard quan-
tum mechanics there is no definition of the location of a pre- and 
postselected particle. The proposed definitions [3,4] led to heated 
controversies, and it seems that we are still very far from a consen-
sus regarding this question. In particular, the meaning of “no two 
particles present in the same box” has to be carefully specified. Ob-
viously, it does not mean that the results of strong simultaneous 
measurements of the locations of all pairs of particles contradict 
the PCP for this particular pre- and postselection, since the results 
of strong measurements correspond to classical elements of reality 
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for which the PCP must hold. Elements of reality of quantum pre-
and postselected systems [5], similarly to Einstein-Podolsky-Rosen 
elements of reality [6] of preselected quantum systems, cannot be 
all be tested simultaneously by strong measurements. What justi-
fies assigning elements of reality to observables which cannot be 
measured simultaneously is that we can infer with certainty the 
outcome of a measurement of any of these observables. Another 
argument supporting assigning elements of reality to a pre- and 
postselected system is the robust and universal modification of all 
weak (or short) interactions with the environment, see [7]. We 
spell out these arguments in the context of the quantum pigeon 
conundrum below as claims (i) and (ii). A more extensive analysis 
of the original proposal [2] and of other variants of the quantum 
violation of the PCP appears in [8].

In their paper Kunstatter et al. first allegedly reproduced the 
argument of [2] in three steps and then showed that this three-
step argument fails. Kunstatter et al. are correct that their three-
step argument does not work, but are wrong that their argument 
faithfully reproduces the quantum pigeon conundrum as stated in 
Aharonov et al. [2]. The argument of Kunstatter et al. is based on 
their Eq. 2. (repeated as Eq. 32 in their conclusion), but this equa-
tion, or anything equivalent to it, does not appear in [2]. This is 
the essence of our Comment. We now analyze the argument of 
Kunstatter et al. in more detail.

Kunstatter et al. start with Eq. 1:

〈+i + i + i|�ab| + ++〉 = 0; for all a,b ∈ {0,1,2}, (1)
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where �ab is a projection on the space of states in which particles 
a and b are in the same box. Equation (1) is indeed the basis of the 
argument in [2], but Kunstatter et al. use it differently. Kunstatter 
et al. correctly state that from (1) follows their Eq. 2:

|〈+i + i + i|�| + ++〉|2 = 0; where � ≡ �01 + �12 + �02.

(2)

This equation, however, was not used and cannot be used for the 
argument of Aharonov et al. [2]. The equation is true, but not rel-
evant.

Let us reproduce the original argument for the PCP failure in a 
way that clarifies the inapplicability of (2). Aharonov et al. make 
two claims:

i) Given pre- and postselection of three particles in two boxes 
in states | + ++〉 and | + i + i + i〉, a single strong von Neumann 
measurement of any pair of particles being together in the same 
box will show a null result with certainty, �ab = 0.

ii) Given the above pre- and postselection of three particles, the 
effect of weak bipartite interactions between all pairs of particles 
present in the same box disappear in the first order of the coupling 
strength.

From (1) and 〈+i + i + i| + ++〉 �= 0, we obtain the weak value 
[9] of the projection operator corresponding to a pair of particles 
being together in the same box:

(�ab)w ≡ 〈+i + i + i|�ab| + ++〉
〈+i + i + i| + ++〉 = 0; for all a,b ∈ {0,1,2}.

(3)

Claims (i) and (ii) both follow from this equation.
Aharonov and Vaidman [10] proved a theorem stating that if 

the weak value of a dichotomic variable is equal to an eigenvalue, 
then a strong measurement of this variable will yield this eigen-
value with certainty. �ab is a dichotomic variable and 0 is one of 
its eigenvalues. Thus (i) follows from (3).

The weak value of a projection operator characterizes the modi-
fication of all local weak interactions [7]. Therefore, (ii) also follows 
from (3). Note that the weak coupling of any particular pair does 
not significantly change the forward and backward evolving states, 
and thus (�ab)w = 0 remains valid to first-order in the coupling 
strength for all pairs also when weak interactions between all par-
ticles are present.

Kunstatter et al. consider � instead of �ab . From (2) and 〈+i +
i + i| + ++〉 �= 0 we obtain

(�)w ≡ 〈+i + i + i|�| + ++〉
〈+i + i + i| + ++〉 = 0. (4)

� ≡ �01 + �12 + �02 is a dichotomic variable, but its eigenval-
ues are 1 and 3 (see [1] for derivation), so the weak value 0 is 
not equal to any of its eigenvalues. Thus we can learn nothing 
about the probability of outcomes of strong measurements from 
(4). Statement (i) does not follow from (4).

Statement (ii) also does not follow from (4). The claim in (ii) is 
about the separate effects of all the weak couplings between pairs 
of particles, even when they are applied in parallel. The weak value 
(�)w = 0 only describes a single global property of these bipartite 
couplings. The weak value of a sum is the sum of the weak values, 
but the fact that the sum of weak values of projections vanishes 
tells us little about each individual weak value, since in general, it 
can be any complex number.

Kunstatter et al. considered operator identities assuming the 
eigenvalue - eigenstate link. They showed, not surprisingly, that 
there is no (eigen)state of an operator describing three particles in 
two boxes such that no two particles are together. To find such a 
situation would be a mathematical contradiction. The quantum vi-
olation of the PCP [2,11] is not more and not less than statements 
2

(i) and (ii). Kunstatter et al., however, read [2] in a different way. 
Representing Aharonov’s proof they wrote in Section 1:

Thus they [Aharonov et al.] conclude that, for these particular 
pre- and post-selected elements of the ensemble, “no two par-
ticles are in the same box” during the transition even when the
�ab operations are not applied.

Kunstatter et al. explicitly mentioned that the words in italic are 
their addition. Similarly, in Section 4 they wrote:

Their [Aharonov et al.’s] point is that measuring (i.e. project-
ing onto) the final state | + i + i + i〉 cancels all branches of 
the initial state in which a and b are in the same box. Due to 
the symmetry of the initial and final states, this is true for any 
choice of a, b ∈ {0, 1, 2}.

These quotations show that Kunstatter et al. interpret the quan-
tum violation of the PCP presented in [2] in classical terms: if it is 
true for any pair, it is true for all pairs together. Aharonov et al., 
however, write: “given the above pre- and post-selection, we have 
three particles in two boxes, yet no two particles can be found in 
the same box...” This statement is about a measurement performed 
on a single pair. Although only one pair is measured, the statement 
is about all pairs because it is true for any pair.

The PCP is a principle of classical logic, so it is not surpris-
ing that it cannot be violated with an eigenvalue - eigenstate link 
connecting the classical and quantum domains. The violation takes 
place for a pre- and postselected system for which, similarly to the 
Hardy paradox setup [12,13], “elements of reality” as certain re-
sults of strong measurements or as surprising weak traces do not 
correspond to eigenstates [5].
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