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We report the first implementation of the von Neumann instantaneous measurements of nonlocal
variables, which becomes possible due to technological achievements in creating hyperentangled photons.
Tests of reliability and of the nondemolition property of the measurements have been performed with high
precision, showing the suitability of the scheme as a basic ingredient of numerous quantum information
protocols. The method allows us to demonstrate for the first time with strong measurements a special
feature of pre- and postselected quantum systems: the failure of the product rule. It has been verified
experimentally that for a particular pre- and postselected pair of particles, a single measurement on particle
A yields with certainty σAx ¼ −1, a single measurement on particle B yields with certainty σBy ¼ −1, and a

single nonlocal measurement on particles A and B yields with certainty σAx σ
B
y ¼ −1.
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All known interactions in nature are local. It was thus
believed (e.g., Ref. [1]) that measurements of nonlocal
variables (variables that are related to more than one region
of space) are impossible. However, Aharonov and his co-
authors [2,3] showed theoretically that some nonlocal
variables can be measured. For two separate locations,
the sum of local variables, Aþ B, and the modular sum
ðAþ BÞ mod c are always measurable. On the other hand,
they also showed that some other nonlocal variables cannot
be measured as this would lead to superluminal signaling.
Note that if we do not require the measurement to be
nondemolition, then theoretically all nonlocal variables are
measurable [4], but the procedure places high demands on
entanglement resources [5–7].
Aharonov’s main motivation was to shed light on rela-

tivistic quantum field theory [2,8–11], but the main impact
of the analysis of measurements of nonlocal variables was in
the field of quantum information [12–20]. In particular, it
allowed an efficient method for teleportation [21] and was
the basis for cryptographic protocols [22–25].
In this work, we demonstrate the measurement of non-

local variables in its original sense, the one that is closest to
the standard von Neumann definition of measurement in
quantum mechanics [26]. Note that there exists an

alternative scheme [27] alongside a particular proposal
for its implementation [28,29], which, however, has the
drawback of being a probabilistic measurement; i.e., even
with ideal devices it might not provide an outcome.
After performing and testing our measurement pro-

cedure, we apply it to show the peculiar phenomenon of
the failure of the product rule for two separate (and thus
commuting) local variables, which can take place only for
pre- and postselected quantum systems [30–32]. There have
been several demonstrations of the failure of the product
rule for weak values—the outcomes of weak measurements
[33–35] in the context of the Hardy paradox [30]. These,
however, are very different results, obtained from many
measurements on an ensemble of particles. In our scenario,
we are able to violate the product rule using strong non-
demolition measurements, providing direct information
about single pairs of particles. We show below that the
same cannot be done in the setting of the Hardy paradox.
Let us start by spelling out the properties of a von

Neumann measurement. It has to be reliable, nondemoli-
tion, and instantaneous.
Reliability: If the initial state is an eigenstate of the

measured nonlocal variable, the corresponding eigenvalue
is found with certainty.
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Nondemolition property: If the initial state is an eigen-
state of the measured nonlocal variable, the state is not
changed. This ensures repeatability, namely, that identical
consecutive measurements all agree with the reading of the
first measurement.
Instantaneousness: The standard definition in nonrela-

tivistic quantummechanics is that the measurement process
has a negligible duration. According to the principles of
relativistic quantum mechanics, there is no physical mecha-
nism that allows a local observer simultaneous coupling to
spatially separated parts of a physical system. Thus, a
measurement of a nonlocal observable must consist of two
separate local couplings at distinct spatial locations fol-
lowed by the creation of macroscopic records. In addition

to the requirement of negligible duration of these local
couplings, together with the respective creation of local
records, we require that the processes at the two locations
are spacelike separated. The measurement coupling and
creation of macroscopic records, which specify the result of
the measurement, happen instantaneously and simultane-
ously in some Lorentz frame, e.g., that of the observer.
To satisfy the above requirements, our scheme for the

measurement of nonlocal variables has two stages (see
Fig. 1). In the first stage, spatially separated measuring
devices (“pointers”) interact locally with the respective
components of the system. In the second stage, immedi-
ately after, macroscopic records are created via local
measurements of the measuring device. To gain nonlocal
information from these local measurements, the crucial
element in our scheme is the preparation of the measuring
device in a nonlocal entangled state.
We perform a measurement of the product of polariza-

tion operators of two photons separated in space. The
measuring device is given by the path degree of freedom
(d.o.f.) of the photons themselves, which is measured
interferometrically (see Fig. 2). In this setting, the local
macroscopic records correspond to ports of the interfer-
ometer in which the detectors eventually click. The mean-
ing of “nondemolition” is that the polarization state of the
pair of photons in the corresponding pair of ports is still the
initial (possibly entangled) polarization state as long as it
starts in an eigenstate of the nonlocal variable. While in our
experiment there is no spacelike separation of the local

FIG. 1. Measurement scheme of a nonlocal variable. Entangled
parts of the measuring device in locations A and B couple
simultaneously to the respective parts of the system for a short
time. The locally obtained records IA and IB provide, when
brought together, the eigenvalue oi of the nonlocal variable OAB
of the system.

FIG. 2. Experimental setup. The two-photon, path-polarization, hyperentangled state is generated from the SPDC using β − BaB2O4

(BBO) crystal in a round-tripping confocal structure [36,37]. Photon A will be in the upper layer (green lines), while the lower layer is
site B (red lines). The attenuator and sets of λ=2-λ=4 wave plates prepare the polarization state. The local coupling between the system
(polarization d.o.f.) and the measuring device (path d.o.f., L and R) is realized by sets of wave plates (λ=4-λ=2-λ=4) in a particular arm of
the interferometer. For the nonlocal measurement, two such local couplings are applied. In the other arms, compensation crystals (CO)
ensure identical optical path length. The relative phases are tuned using thin glass plates (GP) before bringing the arms to interference
using a polarization insensitive beam splitter (BS). For testing the nondemolition property, polarization filters composed of a set of
λ=4-λ=2 plates and a polarization beam splitter (PBS) are placed in front of the detectors.
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measurement processes, each one consisting of a coupling
in one arm of the interferometer and the detector click,
which provides the macroscopic record, our scheme in no
way relies on the proximity of the two parties and thus
allows for a modification with a spacelike separation of the
local measurements.
The Hilbert spaces of photon polarization states and of

the states of a spin− 1
2
particle are isomorphic, which allows

us to use a more familiar language of spin operators.
Expressed with spin operators, our measurement corre-
sponds to the measurement of σAz σ

B
z on two remote

particles. There is no general method for the measurement
of the product of variables belonging to remote locations;
however, σAz σBz ¼ ðσAz þ σBz Þ mod 4–1, so the measurement
of this product is equivalent to the measurement of a
modular sum, which is proven to be possible [3]. For the
polarization d.o.f., we use the correspondence

σzj↑zi ¼ j↑zi ↔ jHi; j↓zi ↔ jVi; ð1Þ

with jHi and jVi identifying horizontal and vertical
polarization, respectively. Similarly, for the measuring
device, which we mark with “∼” in the spin notation,

σ̃zj↑̃zi ¼ j↑̃zi ↔ jLi; j↓̃zi ↔ jRi; ð2Þ

where jLi and jRi denote the two arms the photons can take
at both locations.
The measurement scheme requires us to correctly match

the preparation of the initial pointer state, the interaction
Hamiltonian, and the pointer measurement. We prepare the
measuring device in the entangled state,

jΨþiAB ≡ 1
ffiffiffi

2
p ðj↑̃ziAj↓̃ziB þ j↓̃ziAj↑̃ziBÞ; ð3Þ

and perform local pointer measurements in the plane
perpendicular to σ̃z. The interaction Hamiltonian is

H¼ gðtÞ½ð1A−σAz Þð1A− σ̃Az Þþð1B−σBz Þð1Bþ σ̃Bz Þ�; ð4Þ

where
R

gðtÞdt ¼ π=4.
Given a polarization state that is an eigenstate of σAz σBz

with eigenvalue þ1, the interaction Hamiltonian (4) does
not change the state jΨþiAB of the measuring device. On
the other hand, for an eigenstate with eigenvalue −1, the
state of the measuring device is changed to

jΨ−iAB ≡ 1
ffiffiffi

2
p ðj↑̃ziAj↓̃ziB − j↓̃ziAj↑̃ziBÞ: ð5Þ

The states jΨþiAB and jΨ−iAB can be distinguished reliably
using our simultaneous local measurements in A and in B,
after the records have been combined. In both cases, after
the interaction, the system and the pointer are not entangled

with each other and the system state is not changed. This
makes the measurement nondemolition. Note that the
product of spin operators in other directions can also be
measured in this way, when the Hamiltonian is adapted
accordingly. In addition, a strictly local spin measurement
can be achieved using this scheme when only one of the
two local coupling terms is present in the interaction
Hamiltonian.
In our experiment (as shown in Fig. 2), a vertically

polarized ultraviolet (λ ¼ 406.7 nm) laser beam is focused
and reflected to pump a 0.5-mm-thick BBO crystal (type-1
cut at 29.11°). Because of the degenerate spontaneous
parametric down-conversion (SPDC), horizontally polar-
ized photon pairs are emitted in a cone with apex angle
3° (postselected by spectral filters centered at λ ¼ 813.4 nm
with bandwidth Δλ ¼ 3 nm). After passing a wave plate,
acting as λ=4 for 813.4 nm light, with optical axis oriented at
45°, both the pump laser and the emitted photons are
reflected by a spherical mirror with a 150-mm radius.
While the polarization of previously produced photon pairs
is converted to vertical, a second pass through the BBO of
the pump can produce another pair of horizontally polarized
photons.
The two processes overlap both spatially and temporally

due to the confocal structure and the long coherence time. A
positive lens (f ¼ 150 mm) transforms the conical para-
metric emission into a cylindrical one, preparing a so-called
entanglement ring [37]. By selecting four points in the ring,
we obtain the two-photon four-qubit hyperentangled state,
maximally entangled both in the polarization and spatial
d.o.f., while separable between the two. The spatial state
reads jΨþiAB ¼ ð1= ffiffiffi

2
p ÞðjLiAjRiB þ jRiAjLiBÞ. An attenu-

ator near the spherical mirror together with the wave-plate
sets in the four arms of the interferometer allow us to prepare
arbitrary polarization states.
The two parts of the interaction Hamiltonian of Eq. (4) at

the two sites A and B are each implemented by sets of wave
plates, introducing a conditional phase shift of π for
horizontally polarized photons in the right arm at site A
and in the left arm at site B. Using glass plates, we tune the
interferometer such that without interaction we get com-
plete correlation between clicks of the detectors in sites A
and B. Then, observing the clicks corresponds to a “spin”
measurement in some unknown direction in the x − y
plane, which, however, is the same for the two particles.
In the notation of the photon states, these are the mea-
surements in the basis j�i≡ ð1= ffiffiffi

2
p ÞðjLi � eiφjRiÞ with

unknown phase φ, which is equal at both sites. In this
notation, the states of the measuring device (3) and (5) are

jΨþiAB ¼ e−2iφ
ffiffiffi

2
p ðj þ þiAB − j − −iABÞ; ð6aÞ

jΨ−iAB ¼ e−2iφ
ffiffiffi

2
p ðj þ −iAB − j −þiABÞ; ð6bÞ
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where we used the shortcut notation j þ þiAB ≡ jþiAjþiB,
etc. Thus, the correlations and the anticorrelations of the
outcomes for the measurements of jþi and j−i in the path
d.o.f. allow us to distinguish between the eigenstates þ1
and −1 of the product operator of the system.
We test the reliability and the nondemolition property of

our measurement procedure for three different states,

jψ1i ¼ j↑ziAj↑ziB; ð7aÞ

jψ2i ¼
1
ffiffiffi

2
p ðj↑ziAj↓ziB þ ij↓ziAj↑ziBÞ; ð7bÞ

jψ3i ¼
ffiffiffiffiffiffiffi

0.5
p

j↑ziAj↑ziB þ
ffiffiffiffiffiffiffi

0.1
p

j↑ziAj↓ziB
− i

ffiffiffiffiffiffiffi

0.2
p

j↓ziAj↑ziB þ
ffiffiffiffiffiffiffi

0.2
p

j↓ziAj↓ziB: ð7cÞ

The results of the reliability test are presented in Fig. 3.
For jψ1i and jψ2i, only 1.3% and 3.2% of the events are
erroneous, respectively. State jψ3i, which is not an eigen-
state of the nonlocal operator, leads to 64% events
corresponding to outcome þ1 and 36% to outcome −1,
roughly agreeing with the theoretical predictions of 70%
and 30%, respectively.
To confirm that the measurement is nondemolition, we

perform state verification measurements by adding polari-
zation analyzers directly in front of the detectors. We test
the polarization in one of the pairs of output ports, between
which coincidences are expected, and repeat the test for the
same measurement time with differently set filters. For the
state jψ1i, the results are very robust, as shown in Fig. 4(a),
as only 0.2% changed their polarization. This measurement
verifies that the output state is indeed j↑A

z ij↑B
z i. The

entangled state jψ2i requires two tests. The first measure-
ment in the basis σAz , σBz shows that the state corresponding
to the −1 outcome (j þ −iAB) of jψ2i is in a superposition

(or mixture) of j↑A
z ij↓B

z i and j↓A
z ij↑B

z i according to
Fig. 4(b). The second measurement in basis σAx , σBy (with
σx ≡ j↓zih↑zj þ j↑zih↓zj and σy ≡ ij↓zih↑zj − ij↑zih↓zj)
[see Fig. 4(c)] fixes the phase relation between those
contributions. In both bases, we get only 0.7% errors.
For state jψ3i, we test the projection onto the subspace
corresponding to outcomeþ1 in the ports j þ þiAB. Again,
we observe a good correspondence with theoretical pre-
dictions [see Figs. 4(d) and 4(e)].
In the second part of the experiment, we use our

technique of measurement of nonlocal variables to dem-
onstrate the failure of a product rule for pre- and post-
selected quantum systems.
Before presenting our measurement, we show that the

failure of the product rule appearing in the Hardy paradox
[30] (which was demonstrated using weak measurements
[33–35]) cannot be observed using von Neumann meas-
urement. Such a measurement would allow superluminal
communication between Alice at site A and Bob at remote
site B. In this case, Alice would be able to change the
probability distribution at Bob’s site instantaneously.
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FIG. 3. Reliability test. Coincidence counts on various pairs of
detectors for the three polarization states of Eq. (7). The states
jψ1i and jψ2i are eigenstates of the nonlocal variable σAz σBz . The
percentage of outcomes for state jψ3i corresponds well to the
initial superposition.
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FIG. 4. Test of nondemolition property. (a) jψ1i is measured on
the detectors jþþiAB in the σAz , σBz basis using polarization filters
to verify that the state is unaltered during the coupling. (b,c) For
jψ2i, the measurements were done on detectors jþ−iAB in bases
σAz , σBz and σAx , σBy . (d) State jψ3i was measured first in the σAz , σBz
basis. To fix the phase relation between j↑A

z ij↑B
z i and j↓A

z ij↓B
z i,

a second measurement (e) was conducted with projections
also containing rotated states with j↑θ1i ¼ ð ffiffiffiffiffiffi

0.5
p j↑zi þ

ffiffiffiffiffiffi

0.2
p j↓ziÞ=

ffiffiffiffiffiffi

0.7
p

and j↑θ2i ¼ ð ffiffiffiffiffiffi

0.5
p j↑zi −

ffiffiffiffiffiffi

0.2
p j↓ziÞ=

ffiffiffiffiffiffi

0.7
p

.
The results prove that we performed nondemolition measure-
ments of nonlocal variables.
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Assume that a nondemolition measurement of PA
1P

B
1 is

performed at time t with PA
1 ≡ j1ih1jA and PB

1 ≡ j1ih1jB.
Just before t, Bob prepares the state ð1= ffiffiffi

2
p Þðj0iB þ j1iBÞ

and performs a projection measurement of this state
immediately after time t. If, also just before t, Alice
prepares state j0iA, then at time t the state in the two sites
is an eigenstate of PA

1P
B
1 with eigenvalue 0, so the nonlocal

measurement will not change the state and Bob will find
ð1= ffiffiffi

2
p Þðj0iB þ j1iBÞ with probability 1. If, instead, Alice,

just before t, prepares state j1iA, the nonlocal measurement
will either lead to state j1iAj0iB for the outcome PA

1P
B
1 ¼ 0

or to state j1iAj1iB for the outcome PA
1P

B
1 ¼ 1. In

both cases, the probability for Bob to find the state
ð1= ffiffiffi

2
p Þðj0iB þ j1iBÞ is 1

2
, and Alice would have changed

the probability distribution of Bob’s outcomes instanta-
neously by her state preparation.
For our demonstration of the failure of the product rule,

we measure the product σAx σ
B
y , instead of measuring a

product of projection operators, which is measurable in the
von Neumann sense. In our example, we have a pair of
particles for which we know with certainty that a single
local measurement of σAx or of σBy results in the outcome −1.
If, however, we measure the product σAx σBy , it will also
provide the outcome −1 with certainty, instead of the
naively expected product outcome þ1.
To this end, we preselect the singlet state

ð1= ffiffiffi

2
p Þðj↑ziAj↓ziB − j↓ziAj↑ziBÞ and postselect the prod-

uct state j↑yiAj↑xiB [31]. Indeed, the initial state is
anticorrelated for all directions, so σAx ¼ −1 follows
immediately from postselection of j↑xiB and σBy ¼ −1
follows immediately from postselection of j↑yiA. We can
see that σAx σ

B
y ¼ −1 with certainty by noticing that the

outcome þ1 can never occur. If prior to the postselection
the nonlocal measurement yields σAx σ

B
y ¼ þ1, the initial

state is projected on the space spanned by states j↑xiAj↑yiB
and j↓xiAj↓yiB. Then, in the basis of σAy and σBx , the
projected state is −ð1þ iÞ=2ðj↑yiAj↓xiB þ j↓yiAj↑xiBÞ.
Since it is orthogonal to the postselected state
j↑yiAj↑xiB, the postselection will never be successful,
and thus the outcome of the measurement will always
be σAx σ

B
y ¼ −1.

To implement this measurement of σAx σBy , we only need a
simple modification of our measurement scheme. The
interaction Hamiltonian is changed to

H¼ gðtÞ½ð1A−σAx Þð1A− σ̃Az Þþð1B−σBy Þð1Bþ σ̃Bz Þ�; ð8Þ

which is achieved experimentally in a straightforward way
by modifying the settings of the wave plates at the two sites
accordingly. The measurement procedure is then com-
pletely analogous to the measurement of σAz σ

B
z . For the

local measurements of σAx and σBy , the coupling at the

respective opposite site is switched off by setting the optical
axis of the wave plates at zero, such that the interaction
Hamiltonians become H ¼ gðtÞð1A − σAx Þð1A − σ̃Az Þ and
H ¼ gðtÞð1A − σ̃Az Þð1B þ σ̃Bz Þ.
The results are presented in Fig. 5. As in the nonlocal

measurement of σAz σBz explained above, the correlations and
the anticorrelations of the outcomes for the measurements
of jþi and j−i in the path d.o.f. allow us to distinguish
between the eigenstates þ1 and −1 of the product operator
of the system. Figure 5(a) shows σAx σBy ¼ −1with very high
precision. For the local measurement at site A (B), we use
the same procedure without the interaction at site B (A)
such that, again, the observed anticorrelations, Figs. 5(b)
and 5(c), clearly demonstrate σAx ¼ −1 and σBy ¼ −1.
We have performed the first experimental implementa-

tion of von Neumann measurements of nonlocal variables.
We also demonstrated a peculiar property of pre- and
postselected composite systems: the failure of the product
rule for commuting observables. The experiment sheds
light on the fundamental question of the physical meaning
of nonlocal variables. The high fidelity of the experimental
results demonstrates that the method is potentially useful
for quantum information applications.
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