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Determining the quantum expectation value by
measuring a single photon
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One of the most intriguing features of quantum mechanics is that variables might not have definite values. A complete
quantum description provides only probabilities for obtaining various eigenvalues of a quantum variable. The eigenvalues
and the corresponding probabilities specify the expectation value of a physical observable, which is known to be a statistical
property of an ensemble of quantum systems. In contrast to this paradigm, here we demonstrate a method for measuring
the expectation value of a physical variable on a single particle, namely, the polarization of a single protected photon.
This realization of quantum protective measurements could find applications in the foundations of quantum mechanics and
quantum-enhanced measurements.

Despite its unprecedented success in accurately predicting
experimental results, there is no consensus about the foun-
dational concepts of quantum mechanics. The reality of the

wavefunction is still hotly debated1–4. In stark contrast to clas-
sical physics, quantum observables lack definite values. A com-
plete description of a quantum system predicts only the spec-
trum and probabilities for the measurement outcomes of a physical
observable. Given the quantum state of the system |Ψ 〉, which,
according to standard quantum mechanics, comprises its complete
description, to each observable A we can associate a definite num-
ber: 〈Ψ |A|Ψ 〉 =

∑
piai (pi being the probability to obtain the

(eigen)value ai as the result of the measurement of A). The meaning
of this number is statistical: to find the expectation value of A one
needs to measure an ensemble of identically prepared systems.

Single measurements yielding the expectation value of a physical
variable seem to be against the spirit of quantum mechanics.
However, it has been suggested that, in certain special situations, one
can find the expectation value of an observable by performing only a
single measurement. This is the method of protective measurement
(PM), originally proposed as an argument supporting the reality of
the quantum wavefunction5.

However, this is a highly controversial issue6–12; namely, does
the procedure allow observing the state or only the protection
mechanism? Nevertheless, the idea of PM triggered and helped in
studying various foundational topics beyond exploring themeaning
of the wavefunction, such as Bohmian trajectories13, stationary
basis determination12 and analysis of measurement optimization for
minimizing the state disturbance14. The concept of protection was
also extended to measurement of a two-state vector15.

Protection can be realized5 both actively or passively: here we
employ a variant of an active protection technique based on theZeno
effect16. Since in our Zeno protection method we strongly project
on a particular state, our experiment corresponds to a protocol
where Bob wants to measure the expectation value of an observable

on a quantum state unknown to him, in presence of a protection
mechanism designed for such state. The state, together with its
protection mechanism, is provided by Alice, who needs to know
the state to set up the protection. Thus, Bob actually measures the
photon in conjunction with the ‘protection apparatus’.

In spite of the rich and diverse analysis of the theory behind
PM, it has not yet been realized experimentally. Indeed, although
weak measurements (WMs)17–20 and the Zeno effect21–26 have been
largely considered in experiments for several physical systems, no
experiment joining them in a PM has been realized yet.

Our main result is the extraction of the expectation value
of the photon polarization by means of a measurement per-
formed on a single protected photon (see Fig. 1) that survived
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Figure 1 | Estimation of the polarization expectation value 〈P〉 by means
of a single protective measurement. The x coordinate of the pixel which
detected the single photon tells us—without the need of any statistics—the
expectation value of the polarization operator, 〈P〉=−0.3(3), where the
uncertainty is estimated from the width of the photon counts distribution
presented in the paper, the theoretical value being (for θ= 17π/60)
〈P〉=−0.208.
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Figure 2 | Experimental setup. Heralded single photons are produced by
type-I parametric down-conversion in a LiIO3 crystal, then properly filtered,
fibre coupled and addressed to the open-air path where the experiment
takes place. After being prepared in the polarization state
|ψθ 〉=cosθ |H〉+sinθ |V〉, they pass through a birefringent material,
shifting them in the transverse direction x (according to their polarization).
The weak interaction is obtained by means of K=7 birefringent units, each
unit composed of a first crystal separating the beam by 1.66 pixels (less
than the beam width) and a second crystal used to compensate the phase
and time shift induced by the first crystal: only the action of all units
together allows separating orthogonal polarizations. The protection of the
quantum state, implementing the quantum Zeno scheme, is realized by
inserting a thin-film polarizer after each birefringent unit, projecting the
photons onto the same polarization as the initial state |ψθ 〉. At the end of
the optical path, the photons are detected by a spatial-resolving
single-photon detector prototype—that is, a two-dimensional array of
32×32 ‘smart pixels’. ML, mode-locked; SHG, second-harmonic generator;
SMF, single-mode fibre; SPAD, single-photon avalanche diode; PBS,
polarizing beam splitter; HWP, half-wave plate.

the Zeno-type protection scheme. The polarization operator is
defined by

P=|H〉〈H |−|V 〉〈V | (1)

where H (V ) is the horizontal (vertical) polarization. Because of
the presence of active protection in our experiment, the single
click of a multi-pixel camera tells us that the expectation value
of the polarization operator of the single protected photon is
〈P〉=−0.3±0.3 (see Fig. 1), in agreement with the theoretical
predictions (〈P〉=−0.208).

In our experiment (see Fig. 2), heralded single photons27, pre-
pared in the polarization state |ψθ〉 = cos θ |H〉 + sin θ |V 〉, pass
through a birefringent material, shifting them in the transverse dir-
ection x (according to their polarization). The spatial mode is close
to Gaussian with σ = 4.1 pixels (σ being the source of uncertainty
associated with the estimation of 〈P〉 presented in Fig. 1). The WM
interaction is obtained exploiting by K=7 birefringent units, while
the state protection is implemented via the quantumZeno scheme—
that is, by inserting a thin-film polarizer after each birefringent unit,
realizing a state filtering equivalent to the one made at the prepara-
tion stage. Finally, the photons are detected by a spatially resolving
single-photon detector prototype28.Without protection, the photons
end up in one of the two regions corresponding to the vertical and
horizontal polarizations, centred around x=±a (see Fig. 3a).

Then, the expectation value can be statistically found by the
counts ratio:

〈P〉=
NH−NV

N
(2)

In contrast, with PM the photons end up in a region centred at
x= a〈P〉 (see Fig. 3b). A large ensemble of measurements allows
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Figure 3 | Illustrative drawing showing the measurement of unprotected
and protected photons. a, Unprotected photons: six photons fall close to
x=−a (corresponding to P=−1), while four photons fall near x=a
(corresponding to P= 1), giving the expectation value 〈P〉=−0.2.
b, Protected photons: all the photons accumulate close to x=−0.2a, the
〈P〉=−0.2 position; this indicates that, with PM, we can estimate the
expected value of our observable even with a single photon.

the centre to be found with arbitrarily good precision, but even one
single-photon detection provides information about 〈P〉, albeit with
a finite precision defined by the distribution width.

In Fig. 4a–d we show the results obtained by collecting heralded
single photons for a measurement time of 1,200 s. Figure 4a,c
shows, respectively, a histogram and a contour plot of the photon
counts distribution observed in the unprotected case for the
input state |ψ17π/60〉 = 0.629|H〉 + 0.777|V 〉. As in a standard
Stern–Gerlach experiment, we observed photons only in two regions
corresponding to the eigenvalues of P . The polarization expectation
value 〈P〉 evaluated using (2) from this distribution (dark counts
subtracted) is 〈P17π/60〉=−0.21(4), in agreement with theoretical
expectations, 〈P17π/60〉 =−0.208. Figure 4b,d shows, respectively,
a histogram and a contour plot of the photon counts distribution
obtained in the protected case for the same polarization state.
Instead of two distributions around x = ±a, here we find a
single distribution of photon detections centred very close to
x=〈P〉a. The measured expectation value is 〈P17π/60〉=−0.19(2)
(dark counts subtracted). This result demonstrates that we have
been able to realize and exploit the PM concept, providing
the estimation of the polarization operator, 〈P〉, by detecting a
single photon.

This is further confirmed in Fig. 4e,f, presenting typical photon
detection maps for the input state |ψ17π/60〉 obtained from a small
number of detected photons. Specifically, Fig. 4e,f corresponds
respectively to the unprotected (N = 14 detection events) and
protected (N = 17 detection events) case; the circles drawn in the
two panels represent the width of the distributions reported in
Fig. 4a–d. As expected, counts are clearly concentrated inside the
circles (despite the non-negligible dark counts level of our non-
ideal SPAD array, likely responsible for the detection events outside
the circles), demonstrating the validity of PM even when just few
detections are considered. The first detected photons in the runs are
signified with white pixels. We see that, although the white pixel of
Fig. 4f provides a good estimate of 〈P〉, we cannot learn much from
the white pixel of Fig. 4e.

Indeed, using a single photon is what makes PMs special.
However, Zeno protection ensures survival of the photon only
for the ideal case of noiseless devices in the infinite protection
operations limit K→∞. For our, non-ideal case, one could argue
that our experiment concerns a single post-selected photon (that is,
that survived all protection stages) and, allowing post-selection, one
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Figure 4 | Results obtained for the input state |ψ17π/60〉=0.629|H〉+0.777|V〉. a,c, Histogram and contour plot of the photon counts distribution,
respectively, obtained for the unprotected state. b,d, Histogram and contour plot of the photon counts distribution, respectively, obtained for the protected
state. e, Experiment with 14 single events (the first one in white), without protection. The yellow dashed line indicates the x=a〈P17π/60〉 value.
f, Experiment with 17 single events (the first one in white), with protection: as expected, all the photons accumulate around the x=a〈P17π/60〉 position
(yellow dashed line).

can perform a measurement yielding the expectation value in the
case of both weak and strong interaction.

To discuss quantitatively the performance of PM, we compare
it with the straightforward alternative, a projective measurement
exploiting, for example, a polarizing beam splitter (note that,
when estimating P , the simple projective measurement saturates
the Quantum Cramér–Rao bound29). For this purpose we plot in
Fig. 5 the ratio R= (uPBS(P))/u(P) between the uncertainties on
〈P〉 in the two cases. We consider in both cases the same initial
number of photons, taking into account the photons lost in PM (see
Supplementary Information). We consider two different scenarios:
K = 7 (yellow surface) and K = 100 (blue surface) interaction–
protection stages. In both cases, PM is almost always advantageous
(R>1) with respect to the projective measurement, going below the
R= 1 plane (in magenta) only for extremely weak interactions. In
our experiment, with ξ ∼ 0.4 and just K = 7, a 10% advantage is
already present for most of the possible states, even if the maximum
for R corresponds to ξ ∼ 1. For K = 100, instead, the reasonably
weak interaction ξ ∼ 0.4 grants the maximum of the advantage
(R>8.5 almost everywhere), while for stronger interaction the
advantage is reduced to R < 4. The advantage of PM stems
from the very high survival probability of the protected photons
(see Supplementary Information). We also point out that our
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Figure 5 | Comparison between the uncertainty on P with the PM
approach (u(P)) and the one given by projective measurement (uPBS(P)).
Yellow surface: ratio R= (uPBS(P))/u(P) for a PM scheme with K=7
interaction–protection stages (as in our experiment), plotted versus the
interaction strength ξ and the H-polarization component ( cosθ)2 of the
single-photon state |ψ〉. Blue surface: ratio R for a PM with K= 100 stages.
Magenta surface: R= 1 bound, discriminating the part where PM approach
is advantageous (above) and disadvantageous (below) with respect to the
projective measurement.
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experiment is the first realization of a ‘robust’ WM30 at the single-
photon level.

This is the first experimental realization of PMs5. Our results
demonstrate that a single-event detection can provide reliable
information regarding a certain property of a quantum system—
the expectation value of the polarization operator—supposed to be
only statistical, belonging to an ensemble of identically prepared
quantum systems. In doing this, PMs require that prior information
on the preparation stage is exploited in realizing the protection.
Although our results may not resolve the controversy regarding the
meaning of PMs, they are of interest for all approaches. Proponents
of the quantum state ontic interpretation should be excited to
see this first single-particle measurement (they will argue that
the necessity of protection is not surprising: every measurement
obeys the Heisenberg uncertainty principle). At the same time,
proponents of the minimalist approach, where only measurement
outcomes exist, should also be interested to see a property of various
preparation/protection methods of the quantum state directly
inferred from a single-photon detection as the pointer shift.

Furthermore, we demonstrate that PMs outperform the tra-
ditional quantum measurements and could find several signifi-
cant applications, for example, when testing an unknown state
preparation–protection procedure, given that both the state prepa-
ration and protection exploit the same projective measurement
system (or equivalently a set of identical projective measurements,
as in our case).
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