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It is argued that a weak value of an observable is a robust property of a single pre- and postselected quantum
system rather than a statistical property. During an infinitesimal time a system with a given weak value affected
other systems as if it had been in an eigenstate with eigenvalue equal to the weak value. This differs significantly
from the action of a system preselected only and possessing a numerically equal expectation value. The weak
value has a physical meaning beyond a conditional average of a pointer in the weak measurement procedure. The
difference between the weak value and the expectation value has been demonstrated on the example of photon
polarization. In addition, the weak values for systems pre- and postselected in mixed states are considered.
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I. INTRODUCTION

Contrary to classical physics, in quantum mechanics phys-
ical observables or, in short, variables might not have definite
values even if the full quantum description of the system
is given. If the system is in a superposition or a mixture
of eigenstates corresponding to different eigenvalues, then
only an expectation value of a variable is defined. But since,
in general, this value cannot be measured given a single
system, the expectation value is commonly regarded as a
statistical property of an ensemble of quantum systems. If,
however, the system is in an eigenstate of the observable, a
measurement on a single system is enough to observe the
corresponding eigenvalue. This constitutes the definite nature
of the eigenvalue in contrast to the statistical nature of the
expectation value.

Again, contrary to classical physics, even if we have
complete information about the preparation of a system,
the outcomes of future measurements are in general not
determined. The two-state vector formalism [1,2] uses such
future results to describe systems in between two mea-
surements. It employs two quantum states, the usual one
defined by the preparation and the backward evolving state
defined by the result of the postselection. For describing
the coupling to variables of a pre- and postselected system
the concept of a weak value has been introduced [3]. It was
accepted with harsh criticism [4–6], but its significance was
appreciated in a number of experiments performing weak
measurements in a regime of anomalous weak values achieving
unprecedented precision in measuring small parameters [7,8].
New proposals and experiments continue to appear [9–15].
Still, a controversy regarding the usefulness of anomalous
weak values for parameter estimation and metrology compared
to conventional methods based on strong measurements arose
[16–29]. Moreover, even the quantum nature of weak values
was questioned [30–37].

Weak values were introduced as outcomes of weak mea-
surements [3], which have large uncertainty in the pointer
position. Thus, in experiments, the weak value is obtained
as a statistical average of the pointer readings. Even among
proponents of this concept the weak value is frequently

understood as a mere generalization of the expectation value
for the case when the quantum system is postselected, i.e., a
conditional expectation value [38,39].

In this paper we argue that although we obtain weak values
from many measurement outcomes, they represent definite
properties of single pre- and postselected quantum systems.
Furthermore, we show a fundamental equality between weak
values and eigenvalues, concerning the interaction of quantum
systems.

This holds when the system is described by a pure two-state
vector and also when it is described by a generalized two-state
vector [40]. In addition, we generalize the definition of weak
values for genuine mixed pre- and postselected states [41].
Then, but only then, the weak value has a statistical nature.

II. COMPARING WEAK VALUES
AND EXPECTATION VALUES

The weak value of a variable A is defined for a single
quantum system preselected in a state |ψ〉 and postselected in
a state |ϕ〉 as

Aw ≡ 〈ϕ|A|ψ〉
〈ϕ|ψ〉 . (1)

In our analysis we stay within the framework of the standard
quantum theory describing the system and systems it interacts
with using wave functions only. Our feature of interest is
the interaction of a quantum system, which is operationally
defined as the measurable change in the state of external
systems after a certain interaction period. In particular we view
the weak value (as well as the eigenvalue and the expectation
value) as a description of this interaction. In case of the
weak value, the measurable change of the external system
is the result of an interaction followed by postselection. The
interaction of a pre- and postselected system and thus the weak
value are considered only after the postselection.

While the definition of the weak value is based on the
pure two-state vector with states |ψ〉 and |ϕ〉 considered at a
particular time t , its operational meaning as stated above relies
on interactions with other systems which create entanglement.
The way to deal with this problem is by a delicate play of
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limits. We should consider a short period of time around time
t to evaluate the action of the system on other systems. The
change in the other systems should be large enough to be seen,
but the back action on the system should be small enough, such
that the change in the two-state vector describing the system
can be neglected. Since we allow an unlimited ensemble of
experiments with identical pre- and postselection, the required
limits are achievable.

We start our analysis with a von Neumann measurement
Hamiltonian coupling a quantum system to a continuous
pointer system defined by its position Q:

Hint = gAP, (2)

where P is a conjugate momentum to Q and g is a coupling
constant. We assume that at time t = 0 the system was prepared
in state |ψ〉 and, shortly after, at time t = ε was found in state
|ϕ〉. For simplicity of calculations, we assume that the pointer
at time t = 0 is in a Gaussian state:

�0 = 1

(2π )1/4
√

�
e
− Q2

4�2 . (3)

For a comparison of different cases, we consider the pointer
state after the interaction with the system and the postselection
measurement at time t = ε. Let us consider a particle with the
integer spin observable

A ≡ Sz =
∑

j

j |j 〉〈j |. (4)

If, e.g., the spin state is the eigenstate |1〉, i.e., the variable has
the eigenvalue A = 1, then at time t = ε, independently of the
result of the postselection measurement, the pointer state is
shifted:

�e = 1

(2π )1/4
√

�
e
− (Q−gε)2

4�2 , (5)

where we have set h̄ ≡ 1 here and throughout the rest of the
paper. If the system is not in an eigenstate of A, the pointer
state might also be distorted.

To compare various cases we evaluate the effect of the
interaction by calculating the distance between quantum states
expressed by the Bures angle. The distance between the initial
state of the measuring device (3) and the final state (5) is

DA(�0,�e) ≡ arccos |〈�0|�e〉| = gε

2�
+ O(ε3). (6)

The amplitude of the additional orthogonal component is of
the order of gε

2�
, but since our theoretical small parameter is

ε � �
g

, we take into account only the lowest order of ε.
Consider now a pre- and postselected system with Aw = 1,

but in which both preselection and postselection do not include
the eigenstate |1〉. A two-state vector which provides this weak
value is

〈ϕ| |ψ〉 = 1√
5
(〈−1| − 2〈0|) 1√

2
(| − 1〉 + |0〉). (7)

After the postselection, the state of the pointer variable is

�w = N (ε)
(

2e
− Q2

4�2 − e
− (Q+gε)2

4�2

)
≈ N ′(ε)e

−Q2g2ε2

4�4 �e. (8)

Note that because �2/gε 	 �, the distortion factor e
−Q2g2ε2

4�4

is almost constant relative to �e. Therefore �w is effectively

a Gaussian centered around Aw = 1 and is thus very close to
�e as seen from the Bures angle

DA(�e,�w) = g2ε2

2
√

2�2
+ O(ε4). (9)

The characteristic distance between states after the interac-
tion for the time ε is approximately gε

2�
, so when the additional

distance is proportional to ε2, it can be neglected. Thus, in
the limit of short interaction times, the pre- and postselected
system with some weak value interacts with other systems in
the same manner as a system preselected in an eigenstate with
a numerically equal eigenvalue. Not only are the expectation
values of the positions of the pointers essentially the same but
the full quantum states of the pointers are almost identical.

The situation changes considerably when the system is
only preselected in a state with the expectation value 〈A〉 = 1,
which, however, is not the eigenstate |1〉. To show this, assume
that the particle is in the state

|ψ〉 = 1√
2
(|0〉 + |2〉). (10)

At time t = ε, now without postselection, the pointer system
is not described by a pure state, but by a mixture. The density
matrix describing this mixture is

ρex = 1

2
√

2π�

(
e
− Q2+Q′2

4�2 + e
− (Q−2gε)2+(Q′−2gε)2

4�2

)
. (11)

The distance between ρex and �e, the state of the pointer
after coupling to an eigenstate (5), is

DA(�e,ρex) ≡ arccos(
√

〈�e|ρex|�e〉) = gε

2�
+ O(ε3). (12)

This is a significantly larger distance than (9). In fact, the
distance (12) is of the same order as (6) and cannot be neglected
for small ε.

While the pointer states (8) and (11) correspond to similar
probability distributions, they are fundamentally different. As
in the case of an eigenstate (5), the final pointer state (8) cor-
responds to a shift of the original distribution given by a single
number, the weak value. In this sense, we call eigenvalues
and weak values “robust.” The situation changes significantly
when the system is prepared in a superposition of eigenstates.
This results in a mixture of pointer distributions (11), which
cannot be described by a single parameter anymore, but by
several parameters, namely, all eigenvalues corresponding
to the superposed eigenstates. Consequently, this pointer
is in a statistical mixture of independent distributions in
stark contrast to the other cases. In the above example, the
statistical character of the expectation value is reflected in (11),
which represents the mixture of two independent distributions
centered around the eigenvalues 0 and 2.

Note that if we add postselection on the original state (10),
such that Aw = 1, then the final state of the external system
converges to that of the eigenvalue case with A = 1, again.

The system evolves as in the eigenvalue case also when
the weak value is anomalously large and lies very far from
the range of the actual eigenvalues. It might be equal to an
eigenvalue which is not present in the pre- and postselected
states, or it might be equal to a nonexisting “hypothetical”
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eigenvalue of the system, as in the canonical example [3]. For
example, a system described by the two-state vector

〈ϕ| |ψ〉 = 1√
20 201

(100〈−1| − 101〈0|) 1√
2

(| − 1〉 + |0〉)

(13)

has a weak value of 100. Then, the distance between the states
of the external system at time t = ε in this case and in the case
when the system has an eigenvalue A = 100,

DA(�e,�w) = 100×101g2ε2

4
√

2�2
+ O(ε4), (14)

is larger than (9), but still scales favorably with ε2. As will be
shown in Sec. IV, the resulting scaling order is not restricted
to these examples, but holds in general.

III. EXPERIMENTAL DEMONSTRATION

Our claim that the interaction with a pre- and postselected
system described by some weak value is similar to the standard
interaction with a system described by a numerically equal
eigenvalue, but different from the interaction with a system
described by a numerically equal expectation value, is tested
experimentally. Our system is the polarization degree of
freedom of the Gaussian light beam. The “other” or “pointer”
system is the transverse position of the beam. The variable A

of the system includes the polarization operator P:

P|H 〉 = |H 〉, P|V 〉 = −|V 〉. (15)

The coupling to this variable is achieved by passing the beam
through a birefringent crystal which shifts the beam according
to its polarization. We consider situations in which the weak
value and expectation value equal 0. The operator P has only
eigenvalues ±1, but effectively we can perform the experiment
also for A with the eigenvalue 0 by removing the birefringent
element from the beam or tilting it so that there is no shift.

We start by preparing light in the state

|ψ〉 = 1√
2
(|H 〉 + |V 〉) ≡ 1√

2
(|1〉 + | − 1〉). (16)

Then, effectively, we have the three cases of interest: (i)
without the crystal, the eigenvalue A = 0; (ii) with the crystal,
preselection only of the state (16) with expectation value
〈A〉 = 0; and (iii) pre- and postselection of the same state (16)
with the weak value Aw = 0.

Coupling to a state with “eigenvalue” 0 causes no change
of the state of the pointer system, meaning that the Gaussian
beam is not shifted, and �e has the form of (3).

Coupling to the state (16) with expectation value 0 leads to
the mixed state of the pointer described by density matrix

ρex = 1

2
√

2π�

(
e
− (Q+gε)2+(Q′+gε)2

4�2 + e
− (Q−gε)2+(Q′−gε)2

4�2

)
. (17)

For postselected systems, the coupling to a state with weak
value 0 leads to the pointer state

�w = N
(
e
− (Q−gε)2

4�2 + e
− (Q+gε)2

4�2

)
. (18)

FIG. 1. Experimental setup for comparing pointer wave func-
tions. By varying the phase α, we can change between constructive
and destructive interference in order to measure the maximal visibility
and thus to find the Bures angle. The first polarizer in the reference
beam (ref) is used to vary the intensity of the reference beam. The
postselection polarizer in the test beam (test) used when analyzing the
weak value (WV) case is removed and put in front of the YVO4 when
observing the expectation value in the test arm (ExpV) to keep the
number of optical components equal. Note that for practical reasons a
folded Mach-Zehnder interferometer, i.e., a nondegenerate version of
a Michelson interferometer, is used, where the phase can be scanned
by means of a retroreflecting prism coupled to a piezo. The shift of
the center of the test beam caused by the YVO4 is compensated by a
lateral displacement of the beam.

The distances between the states and the reference �e given
by (3) behave according to the results of the first example, (12)
and (9), and are given by

DA(�e,ρex) 
 gε

2�
, (19)

DA(�e,�w) 
 g2ε2

4
√

2�2
. (20)

The center of the beam is the same in all cases; the
difference between the states is only due to different distortions
of the initial Gaussian beam. Our method to measure this
difference is to perform an interference experiment between
the reference beam and the beam distorted by the measurement
interaction for the two other cases. It is based on the following
simple relation between maximal obtainable visibility of the
interference between two beams and the Bures angle between
their quantum states:

arccosVmax = DA. (21)

This formula holds when the visibility is maximal under
variation of all parameters: alignment, relative intensity,
and—in the case of interference between pure and mixed
state—unitary transformation of auxiliary degrees of freedom,
the polarization in our case. It follows from the well-known
expression for the pure states, Vmax = |〈
|�〉|, and from
Uhlmann’s theorem [42] about purification of mixed states.

In our experiment we use a balanced Mach-Zehnder
interferometer where the incoming beam is preselected in
the specified polarization (16) (see Fig. 1). In one arm of
the interferometer, the spatial mode remains Gaussian (λ =
780 nm, beam waist w = 2� = 813 μm) and can therefore
be described by (3). The state in this arm, �e, is used as
reference. In the other arm we insert a yttrium orthovanadate
(YVO4) crystal (of thickness d = 4.52 mm), which causes
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FIG. 2. Maximally achievable visibility for different couplings
gε in the interference experiment between the undisturbed beam and
the test beam (weak value case, blue boxes with blue solid line;
expectation value case, red circles with red dashed line) as a function
of the coupling strength gε/2�. The lines represent the theoretical
curves with fitted offsets. Each setting was measured ten times to
reduce the errors introduced by the optimization procedure.

a transversal shift according to the action of P from (15),
thus coupling the (Gaussian) spatial mode of the beam to
the different polarizations. For a tilting angle θ , the beam
separation is

δx = d

(
sin(θ − θ (o))

cos(θ (o))
− sin(θ − θ (e))

cos(θ (e))

)
, (22)

where θ (i) = arcsin ( sin(θ)
n(i) ) is obtained via Snell’s law for i ∈

{o,e} with o (e) denoting the ordinary (extraordinary) beam.
Varying the tilting angle θ mimics varying the interaction time
ε according to δx = 2gε.

For the expectation value case the system is described by
density matrix (17). For the weak value case (18) we add,
behind the YVO4 crystal, a polarization filter aligned in the
original polarization state (16). In order to find the maximal
visibility for different interaction strengths, the alignment of
the interferometer was optimized and the relative intensities
of the arms were varied by means of the first polarizer in
the reference arm. There was no need to vary the reference
polarization since in our setup the optimal polarization does
not depend on the interaction strength.

Figure 2 presents our results for the observed visibility
values for the two cases. The action of the crystal leads to the
intended (spatial) pointer shifts, resulting in the Bures angles
gε

2�
and g2ε2

4
√

2�2 for the expectation value case and the weak
value case, respectively. The precision of the measurement is
not sufficient to observe the tiny reduction of visibility in the
weak value case when increasing gε in the range available in
the experiment given by the properties of the crystal. However,
the decrease of visibility for the expectation value case can
clearly be resolved.

With real optical components, the maximal visibility is lim-
ited, in our experiment to about 99.0% for gε = 0, mainly due
to coupling to higher-order spatial modes. These imperfections
can be modeled by a fixed pointer shift with amplitude ξ into a
Hilbert-space direction orthogonal to the initial pointer state.
Because of the high dimensionality of the Hilbert space of
the pointer, it is unlikely that the imperfections are collinear
to the intended shift and we assume them to be orthogonal.
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FIG. 3. Bures angles between the spatial state of the undisturbed
beam (3) and the spatial states of the beam coupled to the weak value
Aw = 0 (blue boxes with blue solid fitted line) and the expectation
value 〈A〉 = 0 (red circles with red dashed fitted line) as a function
of the coupling strength gε/2�. The fitting according to Eqs. (24)
and (23) includes offset parameters ξ1 and ξ2 appearing due to
imperfections of the optical setup.

Taking into account the influence of the imperfections, the
dependences of the Bures angle given in (19) and (20) change
to

DA(�e,ρex) =
√

ξ 2
1 +

( gε

2�

)2
, (23)

DA(�e,�w) =
√

ξ 2
2 +

(
g2ε2

4
√

2�2

)2

, (24)

respectively. Due to slight differences in the setup, the
parameters ξ1 and ξ2, i.e., the offsets, are not exactly equal.

The Bures angles as functions of gε for both cases are
shown in Fig. 3 together with the corresponding least-squares
fits according to (23) and (24) with ξ1 and ξ2 being the only
fit parameters. We observe a good agreement with the theory
[(23) and (24)] in both cases. While the Bures angle remains
almost constant in the weak value case, it increases signif-
icantly for the expectation value case, which underpins our
theoretical claim.

IV. GENERALIZATION OF THE RESULT
TO ARBITRARY SYSTEMS

A system with a weak value behaves in general in the same
manner as a system described by an eigenvalue, not just for
coupling to a Gaussian state through the Hamiltonian (2). For
the limit of an infinitesimally small time ε, the evolution of
the system interacting with the pre- and postselected system
according to the Hamiltonian (2) is

�(Q) = �0(Q − gεAw). (25)

This holds not just for Gaussian distributions but for a wide
class of wave functions with the Fourier transform reducing
fast enough for large P . Yet, it is not directly applicable for
coupling to a pointer with a discrete spectrum (see Appendix A
for the case of a spin pointer). What is generally true is that
for a pre- and postselected system the weak value (as an
eigenvalue) should replace the corresponding operators in any
interaction Hamiltonian, even when it is different from (2).
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Note, however, that unlike eigenvalues, if in a nonlinear
Hamiltonian there appears, say, A3, it should not be replaced
by (Aw)3 but by the weak value of the respective operator, i.e.,
by the complex number (A3)w, which is in general different. In
Appendix A we demonstrate the difference between coupling
to systems described by weak values and systems described
by expectation values for the case of a very different system
than what was analyzed above, a spin- 1

2 particle [43].
The different scaling behavior demonstrated in the previous

examples can be derived for arbitrary states and interactions.
Consider two systems, coupled by the Hamiltonian

Hint = gAB, (26)

where A is a variable of the system, B is a variable of the
second system which we call the pointer system, and g is a
coupling constant. The system is preselected in state |ψ〉 and
postselected in state |φ〉. The pointer system is prepared in
state |�0〉. Its state after the postselection of the system is

|�w〉 = N 〈ϕ|e−igεAB |ψ〉|�0〉. (27)

If the system state |
〉 is an eigenstate with eigenvalue A = a,
numerically equal to the above weak value Aw = a, then the
pointer ends up in the state

|�e〉 = e−igεaB |�0〉. (28)

Estimating the distance between these two states by
expanding the exponents (including those in normalization
factor N ) in powers of ε gives the Bures angle

DA(�e,�w) = |(A2)w − a2|
√

〈B4〉 − 〈B2〉2
g2ε2

2
+ O(ε3),

(29)

where
√

〈B4〉 − 〈B2〉2 is computed at the time of preselection,
i.e., for |�0〉. Note that the first order of ε vanishes in all cases.

Now consider the first system to be preselected in the state
|ψ〉 = �αk|ak〉 written in terms of eigenstates of A without
postselection. The expectation value 〈A〉 is assumed to be
numerically equal to a. We will compare the mixed state of
the external system after the interaction

ρex = �|αk|2e−igεakB |�0〉〈�0|eigεakB (30)

to the state |�e〉 corresponding to coupling to the eigenvalue
a (actual or hypothetical). Straightforward calculation based
on (12), in which we expand in powers of ε, yields the Bures
angle

DA(�e,ρex) = �A�Bgε + O(ε2), (31)

where the uncertainties �A and �B are again those of the
initial state. In contrast to the weak value case the first order
of ε does not drop out unless the system is preselected in
an eigenstate of A or if the pointer system is prepared in an
eigenstate of B.

We have shown that the distance in the weak value case
generally scales with a higher order than in the expectation
value case. Thus, in the weak interaction limit, the distance in
the weak value case is infinitesimally small compared to the
distance in the expectation value case. In this limit we may say
that the coupling specified by the weak value is identical to the
coupling specified by an eigenvalue. The coupling given by an

expectation value is clearly different. The application of (29)
and (31) to several specific cases is considered in Appendix B.

Care has to be taken for a complex weak value which
cannot be an eigenvalue. In this case the statement that in
the interaction Hamiltonian the operator corresponding to a
variable of a pre- and postselected system should be replaced
by the weak value remains correct. Consequently, the effective
Hamiltonian of systems coupled to a pre- and postselected
system is, in general, non-Hermitian [44]. In Appendix C we
demonstrate the effect of a system with an imaginary weak
value on other systems. The scaling of the distance when the
pre- and postselected system characterized by a complex weak
value is coupled to an arbitrary system is identical to that
obtained for the real weak value case given by (29).

V. GENERALIZATION OF WEAK VALUES FOR MIXED
PRE- AND POSTSELECTED STATES

A natural way to generalize the expression for weak values
(1) to density matrices is

Aw ≡ tr(ρpostAρpre)

tr(ρpostρpre)
. (32)

For pure pre- and postselection states the density matrices
describing the system are ρpre = |ψ〉〈ψ |, ρpost = |ϕ〉〈ϕ|, and
the validity of this ansatz is immediately seen. In the following,
we will show that the expression (32) for a weak value at time
t correctly shows the average effect of the system coupled to
other systems at time t through variable A also for a case of a
genuine mixed two-state vector:

(ρpost,ρpre). (33)

We do not expect that in a genuinely mixed case the weak
value will be robust as an eigenvalue. It can be shown that for
external systems coupled to the system through variable A the
deviation of the final states from the final states in the case of a
numerically equal eigenvalue of A is of order ε. This is similar
to the case of the expectation value.

In order to introduce the concept of a mixed two-state
vector, we need to clarify how to pre- and postselect onto
genuinely mixed states. The concept of a mixed forward
evolving state is well understood. The mixed state ρpre is
obtained by preparation of a state entangled with an ancilla
(A1). The state of the system remains mixed provided no
measurement has been carried out on A1 after the preparation.
The future of the ancilla is unknown and this is what ensures
that the state of the system is mixed.

In order to obtain a mixed backward evolving state we
cannot just perform a postselection measurement of a state
entangled with another ancilla (A2). We need also to ensure
that no measurement has been carried out on A2 before the
postselection measurement. But since A2 was created in a
possibly known state, we have to erase its past [45].

The scheme for the creation of a mixed two-state vector
(33) at time t , t1 < t < t2, is described in Fig. 4. At time t1
we prepare an entangled state with A1 and ensure that no
measurement is performed on it after creation of the entangled
state. This provides a preselected mixed state. Shortly before
time t2 we prepare a maximally entangled state of A2 and
ancilla A3. This erases the past of A2 relative to time t2
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FIG. 4. Preparation of a mixed two-state vector (ρpost,ρpre).
System S and ancilla A1 are prepared at t1 in an entangled state
|
〉S,A1 such that the reduced density matrix of S is ρpre. The system
is then found at t2 in another entangled state |�〉S,A2 with ancilla A2

such that the reduced density matrix of S is ρpost. Just before t2, ancilla
A2 was prepared in a maximally entangled state with yet another
ancilla A3. At intermediate times all ancilla systems are protected to
avoid any interaction.

by connecting it to the future of A3 which can be ensured
to be unknown. (Another way to create a genuinely mixed
backward evolving state might be realized by crossed in
time nonlocal measurements, which were used in the first
continuous variables teleportation scheme [46], removing the
need for the third ancilla.)

The preselected mixed state, described by density matrix

ρpre =
∑

k

pk|ψk〉〈ψk|, (34)

is created by preparing an entangled state with A1:

|
〉S,A1 =
∑

k

√
pk|ψk〉|k〉1. (35)

The postselected mixed state, described by density matrix

ρpost =
∑

i

p̃i |φi〉〈φi |, (36)

is created by first preparing a maximally entangled state
between A2 and A3,

|�〉A2,A3 = 1√
N

N∑
i=1

|i〉2|i〉3, (37)

and shortly afterwards, at time t2, performing a postselection
measurement of the entangled state

|�〉S,A2 =
∑

i

√
p̃i |φi〉|i〉2. (38)

Straightforward application of the formula (32) for a weak
value of A for this mixed two-state vector yields

Aw =
∑

i,k p̃ipk〈ψk|φi〉〈φi |A|ψk〉∑
i,k p̃ipk|〈φi |ψk〉|2 . (39)

In Appendix D we prove that this is the correct expression and
by this show the validity of the expression for weak values
(32) for a mixed two-state vector.

Systems described by mixed states, with various ways of
obtaining information from future measurements, have been
discussed before [38,41,47–49]. What allowed us to derive
the symmetrical expression (32) is our special procedure for
introducing the backward evolving mixed state.

The weak value (32) is not analogous to an eigenvalue in
the sense described in the previous sections. What we have
here is a statistical weak value, as explained in Appendix D.
The pointer is in a mixed state similar to the expectation value
case discussed before.

It is important to note that pre- and postselected systems
described by a generalized two state vector [40]

N∑
k=1

αk〈φk| |ψk〉 (40)

are not described by a genuine mixed two-state vector and
the weak value for such a system is robust as for a system
described by a pure two-state vector.

The generalized two-state vector arises when the system
and ancillas are described together by a pure two-state vector.
It is postulated that between the pre- and postselection the
ancilla is isolated and there is coupling to the system only. A
simple construction for the generalized two-state vector (40)
is the following two-state vector describing the system and
ancilla:

1√
N

N∑
k=1

〈φk|〈k|
N∑

k=1

αk|ψk〉|k〉, (41)

where {|k〉} is an orthonormal basis of states of the ancilla.
Naively one can apply (32) for the case of a generalized two-
state vector, too. Indeed, (41) tells us that the system is prepared
in a mixed state since it is entangled with an ancilla, and that
it is also postselected in some other mixed state. But applying
formula (32) in this case is a mistake. We cannot trace out the
ancilla in preparation and in postselection separately, because
it is the same ancilla. Indeed, from (41) we obtain

ρpost = 1

N

N∑
k=1

|φk〉〈φk|, ρpre =
N∑

k=1

|αk|2|ψk〉|〈ψk|. (42)

Substituting in (32) yields

Aw =
∑

i,k |αk|2〈ψk|φi〉〈φi |A|ψk〉∑
i,k |αk|2|〈φi |ψk〉|2 , (43)

which is obviously different from the correct expression
defined in [40]:

Aw ≡
∑

αk〈φk|A|ψk〉∑
αk〈φk|ψk〉 . (44)

This weak value for the generalized two-state vector (40) is
equal to the standard weak value of the combined system with
the two-state vector (41), Aw = (A ⊗ I )w, as defined in (1).
For weak values defined for generalized two-state vectors, it
should therefore also be true that for coupling to other systems
during infinitesimal time the system behaves as a system in an
eigenstate.
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VI. WEAK VALUES AND WEAK MEASUREMENTS

In this section we want to connect our results with the
general literature on weak values which considers it as an
outcome of weak measurements, and define a procedure for
specifying the weak value for situations when the postselection
measurement does not specify the backward evolving state
of involved systems completely. In such cases the system
is described neither by a pure two-state vector nor by a
generalized two-state vector, nor by a mixed two-state vector.
Such a situation occurs when the system is coupled to an
external system which is not postselected. Here, we will
consider an example of a measurement procedure which would
represent a weak measurement in the limit of weak coupling
or a small period of time between pre- and postselection.
We, however, take a finite time τ and a finite strength of the
interaction g.

We consider a spin variable (4) pre- and postselected in
the same states as in (13). But while (13) describes a two-
state vector at a particular time, we take the forward evolving
state from (13) as the preselected state at time t = 0 and the
backward evolving state from (13) as the postselected state
at some finite time τ . For simplicity, we consider a coupling
of the system to a spin pointer, prepared in the initial state
|�0〉 = |↑x〉, with interaction Hamiltonian (A1) as described
in Appendix A. Note that the final state of the spin pointer
can only be read with a tomographic analysis involving a large
ensemble.

If the interaction of this system with a spin pointer was very
weak, we would expect the spin of the pointer to rotate by the
angle θ = 100gτ in proportion to the weak value Aw = 100
corresponding to the two-state vector (13). For an arbitrary
strength of the interaction the state of the spin and the pointer
spin at time τ immediately before the postselection is

1
2 (|0〉|↑〉 + |0〉|↓〉 + eigτ | − 1〉|↑〉 + e−igτ | − 1〉|↓〉). (45)

The state of the pointer spin at time τ immediately after the
postselection of the system is

|�τ 〉 = (100eigτ − 101)|↑〉 + (100e−igτ − 101)|↓〉√
40 402 − 40 400 cos(gτ )

. (46)

This is a pure state of the spin rotated around the z axis. Only
in the limit of a weak measurement, i.e., gτ → 0, the angle θ

of this rotation corresponds to A = 100. The continuous line
on the plot in Fig. 5 shows the dependence of the relative shift
of the pointer variable θ

gτ
on the strength of the measurement

interaction.
During the finite measurement interaction, the system

couples to (and entangles with) a pointer, which is not
postselected. Therefore, the system itself is not described
by a pure two-state vector, and thus the basic definition (1)
at an intermediate time t cannot be applied. The system is
also not described by a mixed two-state vector if no special
procedures as the one presented in the previous section are
performed. In order to find the weak value, we here present
two approaches—a more general one and a special but simpler
procedure. Our general approach uses the same “trick” as in the
proof of Appendix D. We rely on the fact that future operations

0.000 0.001 0.002 0.003 0.004 0.005
80

85

90

95

100

FIG. 5. The pointer reading and the weak value as a function
of the strength of the measurement interaction. The pointer reading
θ

gτ
(calibrated to correctly show eigenvalues of A) is given by the

continuous red line. The weak value Aw is given by the blue dashed
line.

cannot change any measurable property at present. Taking into
account the assumption of a vanishingly weak coupling at
time t to external systems, we can calculate the final state of
the pointer. Then we introduce a verification measurement of
this pointer state which we know will effectively succeed with
certainty. Therefore, the weak value as a description of the shift
of the pointer state, in case this measurement is successfully
performed, has to be (in the limit of a small coupling to the
external systems) equal to the weak value in our experiment
without the verification measurement. With the measurement,
the composite system, including the pointer, is described
by a pure two-state vector which allows us to calculate the
generalized two-state vector of the system. Finally, this gives
the weak value at any intermediate time of any variable of the
system.

The second method we present for calculating Aw can
be applied here because the variable A commutes with the
interaction Hamiltonian, and thus Aw at t = τ , the time of the
postselection, is Aw during the whole period. At time t = τ ,
just before the postselection, the composite system is described
by mixed two-state vector (it is mixed only in the forward
evolving state), so we can directly apply (32). The entangled
state of the system and the spin pointer just before time τ is
(45), so the system is described by a forward evolving density
matrix:

ρpre =

⎛
⎜⎝

0 0 0

0 1
2

1
2 cos(gτ )

0 1
2 cos(gτ ) 1

2

⎞
⎟⎠. (47)

The backward evolving state is given in (13). The formula (32)
yields the weak value at t = τ , and thus at all times:

Aw = 201

40 402 − 40 400 cos(gτ )
− 1

2
. (48)

The dependence of the weak value on the strength of the
measurement interaction is shown by the dotted line in Fig. 5.

In the previous sections, we argued that the weak value
of a physical variable at time t characterizes an effective
coupling to this variable at this moment. At first glance, the
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discrepancy between the final reading of the spin pointer used
in our measurement procedure and the weak value (which
remains constant during the interaction) seems contradictory
to the previous sections, since we might expect that the pointer
spin rotates as if the system has a (hypothetical) eigenvalue
equal Aw. The reason for the discrepancy is the entanglement
between the system and the pointer, so we have to consider
the evolution of the whole composite system. The weak
value (48) remains relevant for coupling of the system to
external systems which are currently not entangled with our
system.

VII. DISCUSSION

There is a fundamental difference between the outcomes
of coupling to a variable of a quantum system depending
on whether it is in a state corresponding to some eigenvalue
of that variable or whether it is in a superposition of states
with different eigenvalues, even when the expectation value
is numerically equal to the aforementioned eigenvalue. The
eigenvalue is an observable property of a single quantum
system. A pointer coupled to that system changes its state
in a well-defined manner that is manifested in the certainty
of the result of a projection measurement on the final pointer
state. Coupling to a system in a superposition with a certain
expectation value results in a pointer state with a corresponding
expectation value, yet there is no complete measurement
of the pointer system which succeeds with certainty. The
manifestation of the expectation value of a variable of the
system is a statistical average of results of measurements
performed on an ensemble.

The weak value, introduced as an outcome of a weak
measurement, is traditionally considered to be a conditional
expectation value and, as such, a property of a pre- and
postselected ensemble. We have shown, however, that it has
meaning for a single system. In the limit of coupling for a short
time, the pointer state becomes identical to the pointer state
coupled to the system in a state described by a numerically
equal eigenvalue. It is measurably different from the case of
coupling to a system in a superposition state with a numerically
equal expectation value.

Our demonstration of the weak value as a property of
a single pre- and postselected system shows that recent
classical statistical analogies of weak values [30], which can
be formulated only given an ensemble, are artificial.

Let us now discuss our result in light of different interpreta-
tions of quantum mechanics. The weak value has ontological
meaning in only some of them; nevertheless, it is a useful
tool regardless of interpretation. All interpretations agree
about experimental results and are consistent with the “shut
up and calculate” approach. In all interpretations, after the
postselection measurement, predictions about the outcomes of
possible measurements on systems coupled to our pre- and
postselected system are the same.

Natural candidates for interpretations in which weak
values might have ontological meaning are time-symmetric
approaches. The strongest ontological meaning is in the
interpretation due to Aharonov [50]. According to this interpre-
tation, in addition to the usual forward evolving wave function,

there is a real ontological wave function evolving backward
in time. It corresponds to particular outcomes of all quantum
experiments performed in the future, when it is assumed that
every experiment has a single outcome. Both forward and
backward evolving quantum states are ontological and thus
weak values are ontological entities, too. This interpretation,
however, is far from being widely accepted.

Consistent or decoherent histories interpretations [51,52]
also have pre- and postselection on equal footing. Yet, it seems
that these approaches are talking about reality in classical
terms and the only values associated with physical variables are
eigenvalues [53]. In another interpretation in which a backward
evolving state is present, the transactional interpretation [54],
ontological meaning is also attributed only to eigenvalues
while the weak value is considered as a sort of amplitude [55].

A more popular interpretation (for which one of us is
arguably the strongest proponent [56]) is the many-worlds
interpretation (MWI) originated by Everett [57]. In MWI only
the forward evolving wave function has ontological physical
meaning, but in every world we have a particular outcome
of the postselection measurement, so within each world the
weak value has an ontological meaning as in the Aharonov
interpretation [58].

Weak measurements are useful for analyzing the Bohmian
interpretation [59]. For a particular postselection, weak values
yield local currents which allow one to verify calculations
of Bohmian trajectories [60,61]. Also, when the postselection
measurement is completed, there is an effective collapse of the
wave function of the pointer to that observed in our experiment.
However, the weak values do not have ontological meaning in
the Bohmian picture. The ontology includes only the forward
evolving wave functions and Bohmian positions, the motions
of which supervene solely on the forward evolving wave
function. Weak values of local projections do not coincide
with Bohmian trajectories [62].

Weak values also do not have an ontological meaning in
collapse interpretations, since only the (forward evolving)
wave function is ontological [63,64]. Similarly, they also have
no ontological meaning in the Copenhagen interpretation and
in its modern derivative, quantum Bayesianism [65], which
distance themselves from reality. However, none of these
interpretations would dispute our results about predictions
regarding measurements of the pointer.

While we argue that the weak value is closer to an
eigenvalue than to an expectation value, there is an important
aspect in which the weak value differs both from the eigenvalue
and expectation value cases. Eigenvalues and expectation
values have a meaning for the coupling in the present, past,
and future. The weak value has a meaning for the coupling
only in the past, at times after the postselection. It is relevant
only to the question of describing the interaction of a pre- and
postselected system in the past.

The weak value requires the two-state vector formalism for
its definition [1,66]. Standard formalism, without a backward
evolving quantum state, lacks this concept. There, one has
to involve entanglement of the system with the pointer.
Postselection on the state of the system then collapses the
pointer to a particular state. The weak value formalism allows
us to simplify the standard description: for weak coupling
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we can replace entanglement and collapse with an effective
evolution determined by the weak value. In Aharonov’s
interpretation, one can say that this is what actually happens,
while in the MWI one can say that this is what happens in each
world. Nevertheless, in any interpretation one can use the weak
value as a simple way to make predictions regarding changes
of states of systems coupled to a pre- and postselected system.

VIII. CONCLUSIONS

We have analyzed the concept of the weak value. Although
it can be viewed as a statistical entity, i.e., the average
reading of a measuring device, it has the deeper meaning of
a property associated with a single quantum system similar
to an eigenvalue when the quantum state of the system is a
corresponding eigenstate. We have shown theoretically and
experimentally that the pre- and postselected system coupled
to external systems through a particular variable affects these
systems at any infinitesimal period of time as if it were in an
eigenstate corresponding to an eigenvalue numerically equal
to the weak value.

In the experiment we observe different effects on the
pointer state for the cases of preselected photons (without
postselection) with expectation value 〈A〉 = 0 and pre- and
postselected photons with Aw = 0. Our results demonstrate
that the nature of the weak value is different from the nature
of the expectation value. The measurements confirm that the
weak value describes the interaction in the same way an
eigenvalue does.

This opens rich possibilities to emulate otherwise unachiev-
able eigenvalues by employing suitable pre- and postselected
systems with the respective eigenvalues, as demonstrated in
our experiment. For example, it allows us to mimic the
behavior of complex eigenvalues as they occur in systems
with PT -symmetry breaking using ordinary quantum systems
[67]. Furthermore, the lack of distortion of the wave function
of the pointer, even in weak measurements with anomalously
large weak values, represents the foundation of precision
measurements employing the principle of weak amplification.

We have analyzed the concept of weak values for systems
pre- and postselected in mixed states and derived a formula
for weak values of variables of systems described by density
matrices. Note, however, that due to the statistical nature of
mixed states the coupling to systems described by a mixed
two-state vector is in general not equivalent to the coupling to
an eigenvalue and the nature of weak values in this case has a
genuine statistical element.
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APPENDIX A: ANALYSIS OF A MEASUREMENT
WITH A SPIN POINTER

The interaction Hamiltonian with a spin system is given by

Hint = gAσz. (A1)

We repeat the analysis of the cases of various pre- and
postselections of our system considered in Sec. II, but now
coupled to the spin. We take the initial state of the spin to be

|�0〉 = |↑x〉 = 1√
2
(|↑〉 + |↓〉), (A2)

which has maximal sensitivity to the coupling (A1).
When the system has the eigenvalue A = 1, the coupling

for time ε causes the rotation to the quantum state

|�e〉 = 1√
2
(e−igε |↑〉 + eigε |↓〉), (A3)

such that

DA(�0,�e) = gε. (A4)

When the system is pre- and postselected and described
by the two-state vector (7) corresponding to Aw = 1, the final
state of the measuring device is

|�w〉 = N [(2 − eigε)|↑〉 + (2 − e−igε)|↓〉]. (A5)

This state is very close to the state given by (A3) resulting in
the Bures angle

DA(�e,�w) = (gε)3 + O(ε5). (A6)

For the case of a system preselected in the state given in
(10) without postselection, the density matrix representing the
measuring device after the interaction is

ρex =
(

1
2

1
4 (1 + e−4igε)

1
4 (1 + e4igε) 1

2

)
. (A7)

This mixed state is far from the final state in case of coupling
to the eigenvalue described by (A3), which gives

DA(�e,ρex) = gε + O(ε3). (A8)

Postselection on the same state, which corresponds to the
weak value Aw = 1, leads to a coupling which is again similar
to the coupling to the eigenvalue A = 1. The distance between
the states of the external system in these cases is proportional to
ε3. This is also true for the distance between the case Aw = 100
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obtained when the system is described by (13) and the state of
the system with eigenvalue A = 100. Thus, also in the case of
coupling to a system very different from the Gaussian beam,
described by a weak value and a numerically equal eigenvalue,
the couplings are the same (in the limit of weak interaction),
while the coupling to a system described by a numerically
equal expectation value is different.

APPENDIX B: CONSISTENCY OF THE GENERAL
RESULTS WITH EXAMPLES CONSIDERED IN THE PAPER

In Sec. IV we obtained general expressions for coupling
to systems described by weak values (29) and expectation
values (31), respectively. Here we show that these results are
consistent with analyses of the examples in previous sections.

In Sec. II the spin A = Sz was measured by a continuous
pointer according to (2) with B = P . For the initial Gaussian
pointer state we obtain

〈P 2〉 = 1

4�2
, 〈P 4〉 = 3

16�4
. (B1)

For a spin described by the two-state vector (7) it holds that

(Sz)w = a = 1,
(
S2

z

)
w

= −1. (B2)

Plugging these into (29) yields (9).
When the spin is described by the two-state vector (13) we

have

(Sz)w = 100,
(
S2

z

)
w

= −100, (B3)

which allows one to obtain (14).
The formula (29) works for coupling to the spin (A1) when

B = σz as well. For the initial pointer spin state (A2), we
obtain 〈

σ 2
z

〉 = 〈
σ 4

z

〉 = 1. (B4)

Together with (B2) it shows that (29) is in agreement with
(A6).

The general expressions are also confirmed by the examples
in the expectation value case. For example, considering the
continuous pointer with B = P , coupled to the spin A = Sz in
the initial state (10), yields the uncertainties

�P = 1

2�
, �Sz = 1. (B5)

Plugging these into (31) results in an estimate of the distance
consistent with (12).

APPENDIX C: WEAK VALUES WHICH
ARE NOT REAL NUMBERS

For the coupling (2) to a continuous variable system, the
pointer wave function is “shifted” as in (25) even if the weak
value is complex. Note, however, that the presence of the
imaginary part in Aw requires adding a normalization factor.
To demonstrate this behavior we will consider coupling to the
photon polarization (15) with weak value Aw = i obtained for
initial state (16) and the postselected state

〈φ| = 1√
2
(〈1| + i〈−1|). (C1)

The pointer state after the postselection is

�w = N
(
e
− (Q−gε)2

4�2 − ie
− (Q+gε)2

4�2

)
, (C2)

while the state shifted by the imaginary “eigenvalue” i is

�e = N ′e− (Q−igε)2

4�2 . (C3)

Straightforward calculation shows that the distance between
these states is small:

DA(�w,�e) = g2ε2

2
√

2�2
+ O(ε4). (C4)

If the coupling is to a spin variable (A1) instead of a
continuous transverse degree of freedom, and we start again
with the initial state of the measuring device |�0〉 = |↑x〉, then
the effective evolution of the spin is a rotation around the y

axis instead of the z axis [68]. It is approximately the same as
the evolution under an effective non-Hermitian Hamiltonian in
which the polarization operator is replaced by i. The distance
between the states in this case is

DA(�w,�e) = 2g3ε3

3
+ O(ε5). (C5)

APPENDIX D: PROOF OF THE WEAK VALUE
FORMULA FOR MIXED STATES

We want to prove the expression for the weak value (32)
for a mixed two-state vector by deriving it from the basic
definition (1). However, our procedure, Fig. 4, does not provide
a pure backward evolving state even for the composite system
which includes our system and the three ancilla systems.
In order to resolve this issue we consider a verification
measurement in the future, chosen such that it will have a
definite result, thus providing the required backward evolving
state.

The act of performing this verification measurement cannot
change any measurable property at time t . Having a large
enough pre- and postselected ensemble of systems (with their
own ancilla systems) as described, the weak value of A at time
t is a measurable property: the average shift of pointers weakly
coupled at time t to the systems in the pre- and postselected
ensemble. In the limit where the weak coupling does not
change the evolution, we can calculate the quantum state of
the composite system after the whole process. A verification
measurement of this state at t3 then will effectively succeed
with certainty. It will provide the pure backward evolving
state with the same weak value (in the limit) as without the
verification measurement, which is the weak value we wish to
know.

Let us proceed with the proof. At time t1 we start with an
entangled state of the system and ancilla A1, |
〉S,A1 , see Fig. 6.
Shortly before t2 we prepare a maximally entangled state of
ancillas A2 and A3, |�〉A2,A3 . Thus, before the postselection
measurement at time t2, the total state of the system and the
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FIG. 6. In order to calculate the weak value, a (hypothetical)
verification measurement is introduced at t3 which provides a pure
two-state vector for the system and ancilla A1 and thus a generalized
two-state vector for the system.

three ancilla systems is(∑
k

√
pk|ψk〉|k〉1

)(
1√
N

N∑
i=1

|i〉2|i〉3

)
. (D1)

The postselection measurement of the system and A2 leaves
ancilla systems A1 and A3 in the state

|ϒ〉A1,A3 = N
∑
i,k

√
p̃ipk〈φi |ψk〉|k〉1|i〉3. (D2)

We consider a verification measurement at t3 of state |ϒ〉A1,A3 ,
which effectively succeeds with certainty. Thus, the state of
the system and the three ancilla systems evolving backward in
time from t2 is⎛
⎝∑

j

√
p̃j 〈φj |〈j |2

⎞
⎠(

N
∑
i,k

√
p̃ipk〈ψk|φi〉〈k|1〈i|3

)
. (D3)

After evolving backwards through the Bell-type measurement
of A2 and A3, the backward evolving state toward time t is

〈�|S,A1 = N
∑
i,k

p̃i

√
pk〈ψk|φi〉〈φi |〈k|1. (D4)

We have obtained a pure two-state vector of the system and A1

at time t with pre- and postselected states given by (35) and
(D4). This allows us to apply (1) to find the weak value of A:

Aw = (A ⊗ I1)w = 〈�|A ⊗ I1|
〉
〈�|
〉

=
∑

i,j,k p̃i
√

pj
√

pk〈ψk|φi〉〈φi |〈k|1A ⊗ I1|ψj 〉|j 〉1∑
i,j,k p̃i

√
pj

√
pk〈ψk|φi〉〈φi |〈k|1|ψj 〉|j 〉1

.

(D5)

This result reduces to the same expression as in (39), which
provides the proof of our general formula (32).

In our proof we have assumed that the verification mea-
surement at t3 effectively succeeds with certainty, which holds
in the limit of vanishing interaction at time t . This is enough
for the proof since the weak value is defined at the limit, but
the tiny probability for the failure of this measurement, which
always exists, is crucial for the nature of the weak value of the
genuinely mixed two-state vector.

The weak value (32) is not analogous to an eigenvalue in
the sense described in the previous sections. Only the center
of the affected pointer distribution shifts in the same manner
as in the case of coupling to a system with a numerically equal
eigenvalue. In fact, it is the same situation as for the system
described by an expectation value, where after the coupling
the pointer is in the mixed state (30). The mixture with a tiny
probability of an orthogonal pointer state (in case of the failure
of the verification measurement) is equivalent to the mixture of
almost identical states with comparable probabilities obtained
via weak coupling to a system in a superposition of eigenstates.
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