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Abstract
The counterfactuality of the recently proposed protocols for direct quantum
communication is analyzed. It is argued that the protocols can be counter-
factual only for one value of the transmitted bit. The protocols achieve a
reduced probability of detection of the particle in the transmission channel by
increasing the number of paths in the channel. However, this probability is not
lower than the probability of detecting a particle actually passing through such
a multi-path channel, which was found to be surprisingly small. The relation
between security and counterfactuality of the protocols is discussed. An
analysis of counterfactuality of the protocols in the framework of the Bohmian
interpretation is performed.

Keywords: counterfactual communication, interaction-free measurements, past
of the photon, Bohmian trajectories

1. Introduction

Penrose [1] coined the term ‘counterfactuals’ for describing quantum interaction-free mea-
surements (IFM) [2].

Counterfactuals are things that might have happened, although they did not in
fact happen. Penrose 1994

He argued that in the IFM, an object is found because it might have absorbed a photon,
although actually it did not. The idea of the IFM has been applied to ‘counterfactual com-
putation’ [3], a setup in which one particular outcome of a computation becomes known in
spite of the fact that the computer did not run the algorithm. Noh [4] created counterfactual
cryptography, a method for secret key distribution using events in which the particle was not
present in the transmission channel. Noh used a random choice of orthogonal input states (like
in [5]) in contrast with the non-orthogonal states of BB84 cryptographic protocol [6].
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It was argued [7], that a modification of the counterfactual computation proposed above,
which includes quantum Zeno effect, can achieve counterfactuality for all outcomes of the
computation. Recently, this idea has been used for performing ‘counterfactual communica-
tion’ [8], which supposedly allowed to send information from Bob to Alice without trans-
ferring any particle between them. The transmission happens in a counterfactual way: the
mere possibility of transmitting the particle allows transmitting the value of the bit.

I find all these results very paradoxical since they contradict physical intuition of
causality: information is usually transmitted continuously in space. I argued [9] that to resolve
the paradoxical feature of the IFM one has to adopt the many-worlds interpretation of
quantum mechanics [10, 11], in which the particle touches the object in a parallel world
restoring causality at least within the complete physical Universe which includes all the
worlds. However, I believe that a protocol which can transmit both values of a bit without any
particle present in the transmission channel is impossible, irrespectively of the interpretation
of quantum mechanics one adopts. I have expressed this opinion already [12, 13], but more
protocols were suggested [14] and the controversy remains open [15–17]. The clarification of
these conceptual issues is particularly important due to the recent increasing interest in the
applications of counterfactual protocols [18–26]. Here I discuss this issue in more detail and
try to resolve the controversy.

The plan of the paper is as follows. In section 2 I introduce the general setup of quantum
communication protocols. In sections 3 and 4 I describe two recent protocols which are
claimed to be counterfactual. In section 5 I analyze various possible definitions of counter-
factuality and define my preferred criterion which is based on the magnitude of the trace left
in the transmission channel. In section 6 I calculate the trace left by a single particle present in
the channel, i.e. the trace of a non-counterfactual communication protocol. In sections 7–9 I
show that the trace in the protocols claimed to be ‘counterfactual’ is not less than the trace in a
non-counterfactual protocol. In section 10 I analyze the security of ‘counterfactual’ protocols
against an eavesdropper. Section 11 is devoted to counterfactuality in the framework of the
Bohmian interpretation. I summarize the results in section 12.

2. Communication with quantum particles

There is a surprisingly low bound on the number of bits which can be sent using 1 qubit: the
Holevo bound of 1, when the qubit is not entangled [27], and 2, when entanglement is
allowed [28]. This is when we transmit one particle with an internal structure of a qubit such
as a polarization state of a photon. In this paper I analyze protocols in which the particle does
not have an internal structure: the information is encoded in the presence or absence of the
particle.

Let Alice and Bob be on the two separate sides of a region, see figure 1. Bob has a mirror
on his side which causes particles sent by Alice to be bounced back to her. For a bit value of
1, Bob places a shutter which absorbs Alice’s particles, while for 0, the shutter is absent.

Quantum mechanics, via IFM, allows, at least sometimes, to transmit the bit 1 in a
counterfactual manner, i.e., without having any particle in the transmission channel, see
figure 2. Alice arranges a Mach–Zehnder interferometer (MZI) tuned to destructive inter-
ference in one of the ports, say D1, such that one arm of the interferometer crosses the place
where Bob’s shutter might be. Detection of the particle in the dark port of the interferometer
tells her with certainty that the bit is equal to 1 (the shutter is present).

The simplest argument that in this case the particle was not present in the transmission
channel is: ‘if the particle were in the transmission channel, it could not be detected by Alice’.
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In my view, this argument cannot be used for claims about quantum particles [29]. I, instead,
suggest to rely on the fact that the particle does not leave any trace in the transmission
channel.

Note that counterfactual transmission of just one bit value can be achieved using a
classical particle [30]. Alice and Bob agree in advance that at a particular time, for a particular
value of a bit, Bob sends the particle to Alice, while for the other bit value, he sends nothing.
Note, however, that this classical protocol cannot achieve the task of the quantum IFM. In the
IFM, Alice learns about the shutter in Bob’s place without prior agreement with Bob and
without Bob knowing that she acquired this information.

In the IFM shown in figure 2, Alice does not obtain a definite information about the
classical bit 0. Without the shutter, the click in the bright port happens with certainty, but it
might happen (with probability 25%) with the shutter too. This protocol is also not the most
efficient method for communication of the bit 1. When the particle is detected by a bright port
(probability 25%) we get no decisive information, and in half of the cases the particle is lost
(then we get the information that the bit is 1 but not in a counterfactual manner).

The quantum method can be modified to be a reliable transmission of both values of the
bit. To this end, instead of the shutter, Bob inserts a half-wave plate (HWP), see figure 3. This
transforms the dark port to bright port and vice versa. However, half of the wave always
passes through the communication channel, so one cannot argue that this is a counterfactual
communication.

Consider next what happens when we combine the quantum Zeno effect with the IFM
[31]. It allows to perform a counterfactual transmission of bit 1 with probability arbitrary

Figure 1. Simple communication with a quantum particle. Alice sends a particle to Bob
and knows the bit chosen by Bob through observation whether or not the particle
comes back to her.
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close to 1. The device consists of a chain of N interferometers with identical beam splitters
with small transmittance T sin ,1

2 a= see figure 4(a). Each one of the beam splitters in the
chain performs the following unitary evolution of the state of the particle:

L L R

R L R

cos sin ,

sin cos . 1

∣ ∣ ∣
∣ ∣ ∣ ( )

a a
a a

 +
- +

A straightforward calculation shows that n beam splitters perform the following evolution of
the wave packets of the particle entering the chain:

L n L n R

R n L n R

cos sin ,

sin cos . 2

∣ ∣ ∣
∣ ∣ ∣ ( )

a a
a a

 +
- +

For the particular choice of the transmittance parameter, ,
N2

a = p after passing all N beam
splitters, the wave packet of the particle moves from one side to the other: L R ,
R L . -

The Zeno effect takes place when the right arms of the interferometers are blocked,
figure 4(b). The state remains L with probability close to 1 when N is large,

cos 1 .N
N N

2
2 4

2

-p p
In summary, for bit 0 Bob does nothing and Alice gets the click with certainty at the right

port in the detector D2. For bit 1 Bob blocks the interferometers and Alice gets the click with a
very high probability in the detector D1.

Figure 2. A single bit value communication with IFM. The interferometer is tuned in
such a way that detector D1 never clicks if the paths are free. Alice knows that bit 1 has
been chosen (Bob blocked the path) when she observes the click in D1.

J. Phys. A: Math. Theor. 48 (2015) 465303 L Vaidman

4



3. ‘Direct counterfactual quantum communication’

In this section 1 describe the recent protocol by Salih et al [8] which followed the idea of
counterfactual computation [7, 12].

Let us first consider a MZI nested in another MZI, see figure 5. The inner interferometer
is tuned for destructive interference toward the second beam splitter of the external inter-
ferometer, see figure 5(a). The external interferometer is tuned for destructive interference
towards D2 when the lower path of the inner interferometer is blocked, see figure 5(b). This
configuration provides (sometimes) definite information about value 0 of the bit, namely the
absence of the shutter. Indeed, click in D2 is possible only if the shutter is not present. One
can naively argue that Alice obtains this information in a counterfactual way, since the
particle cannot pass through Bob’s site and reach D2. However, as detailed in section 5, the
presence of a weak trace inside the inner interferometer contradicts it.

Salih et al [8] further argued that a scheme with numerous nested interferometers leads to
a protocol for transmitting both values of the bit in a counterfactual way with an efficiency
which is arbitrarily close to 100%. In the protocol, M − 1 chains of the N − 1 interferometers
described in figure 4 are parts of another chain of interferometers with M beam splitters
having transmittance, T sin .

M1
2

2
= p To simplify the analysis, I modify Salih et al protocol

making it slightly less efficient, but still good according to their line of argument. I replace the
mirrors of the external chain of interferometers by highly reflective beam splitters. Trans-
mitted waves are lost, but the modification balances the losses in the inner chains when

Figure 3. Communication with MZI and HWP. The interferometer is tuned to
destructive interference towards D1. Bob communicates the bit to Alice by changing
the destructive interference to detector D2 by inserting the HWP in the right path of the
particle.

J. Phys. A: Math. Theor. 48 (2015) 465303 L Vaidman

5



Figure 4. Efficient communication using IFM and quantum Zeno effect. (a) The chain
of interferometers wih highly reflective beam splitters is tuned such that the particle has
destructive interference towards D1. (b) Bob blocks the interferometers and then, due to
Zeno effect, the particle reaches detector D1 with probability close to 1.
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Figure 5. Communication with nested MZIs. (a) The inner interferometer is tuned such
that the particle cannot pass through the right arm of the external interferometer. (b)
There is a destructive interference towards D2 when the right path of the inner
interferometer is blocked.

J. Phys. A: Math. Theor. 48 (2015) 465303 L Vaidman

7



shutters are introduced, such that the states of particles which are not lost are still described by
the same equation (2).

The setup is described in figure 6. The external chain of interferometers has M beam
splitters with transmittance T sin

M2
2

2
= p and the transmittance of the side beam splitters

serving as mirrors is T 1 cos .N
N3

2
2

= - p

All right mirrors of the internal chains are in Bob’s territory. He knows that Alice sends a
particle at a particular time at the top of the external chain in the state L . For communicating
bit 1, Bob blocks all inner interferometers, see figure 6(a). Then, after m beam splitters of the
external interferometer, the normalized quantum state is

N

m

M
L

m

M
Rcos

2
cos

2
sin

2
3m

m N1 1 ∣ ∣ ( )( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠

p p p
Y = + +- 

Figure 6. ‘Direct counterfactual quantum communication’ (a) For bit 1 Bob blocks all
inner interferometers. In this case detector D2 clicks with probability close to 1, while
D1 cannot click. (b) For bit 0 Bob leaves all inner interferometers undisturbed. For
large N, D1 clicks with probability close to 1, while the probability for a click in D2

goes to zero.
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and after all M beam splitters the state is

N
Rcos

2
. 4M

M N1 1 ∣ ( )( ) ( ) p
Y = +- 

In both equations ‘...’ signify states orthogonal to the term which is shown. If M N1 , 
then the norm of the leading term in (4) is close to 1:

N

M

N
cos

2
1

4
. 5M N2 1

2
( )( ) p p

-- 

Thus, in the limit of large N, Bob’s choice of bit 1 leads to a click of Alice’s detector D2.
Since the state M

1( )Y is orthogonal to the state L at the output port of the interferometer,
there is zero probability for a click of D1. The particle can be lost in Alice’s or Bob’s
territories, and then none of the detectors click, but the probability of such a case vanishes for
large N.

If Bob wants to communicate the bit 0, instead, he does nothing, figure 6(b). Then, every
wave packet entering any of the inner chains of the interferometers follows evolution (2)
inside this chain and does not come back to the external interferometer. At the output of the
interferometer, the normalized quantum state is

N M
Lcos

2
cos

2
. 6M

M N M0 1 ∣ ( )( ) ( ) p p
Y = +- 

Under the condition M N1 ,  the norm of the leading term in (6) is also close to 1:

N M

M

N M
cos

2
cos

2
1

4

1
. 7M N M2 1 2

2
( )( ) ⎜ ⎟⎛

⎝
⎞
⎠

p p p
- +- 

Therefore, the detection of the particle in the left port by D1 tells Alice that Bob sent bit 1.
Note, that the probability for a failure might become large if the condition M N1  

is not fulfilled. The particle might be lost or detected by D2. However, if the condition holds,
the probability for a failure is vanishingly small. The probability for loosing the particle and

getting no result is of order M

N4

2p for bit 1 and
M

N M4

12
⎜ ⎟⎛
⎝

⎞
⎠

p
+ for bit 0.

The click of D2 tells Alice with certainty that the bit is 1, and the click of D1 tells her that
the bit is 0 with only a very small probability for an error: about .

M4

2

2

p This is a good direct
communication protocol.

4. ‘Direct quantum communication with almost invisible photons’

As in the simple example in section 2 (figure 3), using HWPs instead of absorbing shutters
leads to a communication protocol which is theoretically free of errors. Li et al [14] suggest
such a protocol and argue that it has ‘arbitrarily small probability of the existence of the
particle in the transmission channel’.

The configuration is similar to the experiment of Salih et al [8]: a chain of M − 1
interferometers with inner chains of N − 1 interferometers (but now M, N have to be even
numbers). Without absorbers, the evolution is unitary and the Zeno effect is not used in this
protocol. There is no need to modify the protocol by replacing mirrors with beam splitters,
because there are no losses to compensate.

The new protocol is different also in the transmittance of the beam splitters in the inner
chains. The parameter α is bigger by a factor of 2 : .

N
a = p As a result, the chain (without the

HWPs) works as two consecutive inner chains of the protocol discussed in the previous
section. The first half of the chain moves the wave packet to the right side and the second
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brings it back to the left. From (2) we obtain the transformation of the wave packet in the
inner chain of the interferometers L L , - see figure 7(a).

When the HWPs are inserted in every interferometer of the inner chain, see figure 7(b),
they cause a π phase change of every state R and, consequently, every second beam splitter
reverses the operation of the previous one:

Figure 7. The chain of interferometers with highly reflective beam splitters manipulated
by the HWPs. (a) The wave packet of the particle moves from left to right and then to
left again but obtains the phase π. (b) HWPs ‘undo’ the transformation on every second
interferometer and the wave packet ends up in the original state on the left without
additional phase.

J. Phys. A: Math. Theor. 48 (2015) 465303 L Vaidman

10



L L R L R Lcos sin cos sin . 8∣ ∣ ∣ ∣ ∣ ∣ ( )a a a a +  - 

Since every chain has an even number of beam splitters, the transformation of the wave
packet in the inner chain is L L .

The setup for sending bit 0 is described on figure 8(a). Bob leaves the inner inter-
ferometers untouched. Then, each inner chain of the interferometers changes the phase of the
quantum state of the particle: L L . - A state L of the inner interferometer is a state R
of the external interferometer. Thus, the operation of the first external interferometer is

L L R L R Lcos sin cos sin . 9∣ ∣ ∣ ∣ ∣ ∣ ( )a a a a +  -  -

Since the number of beam splitters in the external chain is even, at the end of the process the
particle is on the left side and it is detected by detector D1 with certainty.

If Bob wants to communicate the bit 1, instead, he inserts HWPs in all the interferometers
of the inner chains figure 8(b). Now, after every two beam splitters of the inner chain, the

Figure 8. ‘Direct quantum communication with almost invisible photons’ (a) The
chains of the interferometers are tuned such that D1 clicks with probability 1. (b) If Bob
inserts HWPs in all inner interferometers, then D2 clicks with probability 1.
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wave packet comes back to the left side without acquiring additional phase. Thus, every inner
chain works as a mirror and the external chain of the interferometers moves the particle from
left to right, to be detected with certainty by detector D2. Alice knows with certainty the
choice of Bob by observing which detector clicks. This is an ideal direct communication
protocol: theoretically, when there are no losses, there is zero probability for an error.

5. Criteria for counterfactuality

The question I want to answer in this paper is: can the protocols of sections 3 and 4 be
considered as counterfactual communication protocols? Let us consider the following three
statements which try to capture the meaning of counterfactuality.

(1) The probability of finding the particle in the transmission channel is zero or can be made
arbitrarily small.

(2) The particle did not pass through the transmission channel.
(3) The particle was not present in the transmission channel (or the probability of its

existence in the transmission channel can be made arbitrarily small).

In the papers on counterfactual communication [8, 14] all these statements were con-
sidered to be interchangeable, i.e. all are true and each one of them represents counter-
factuality. I argue that the situation is more subtle and clarification is needed.

Statement (1). A non-demolition measurement of the presence of the particle in the
transmission channel disturbs completely the operation of the communication protocols
which are considered. When such a measurement is added to the protocol, Bob does not
transmit information to Alice by his actions. So, the truth or falsehood of this statement is not
a decisive indication of the counterfactuality of the protocols.

However, since there is a separate controversy about the validity of this statement for the
two protocols under discussion, it should be clarified too. The papers on counterfactual
communication claim that this is a correct statement while I [13] claim that in these protocols
the probability of finding the particle in the transmission channel is 1.

The source of this controversy is our different assumptions. The communication proto-
cols involve preparation and detection of the particle. I consider the probability of finding the
particle in the transmission channel under the condition of the same final detection as in the
protocol without intermediate measurement. In this case, the probability of finding the particle
is exactly 1, since had it it not been found, the result of the final detection could not be that of
the undisturbed protocol. On the other hand, without the condition on the result of the final
detection, the probability to detect the particle in the transmission channel is vanishingly
small. These are two correct statements about the probability of finding the particle in the
intermediate measurement: the probability is 1 when both the proper preparation and the
proper final detection are done, and it is vanishingly small when only the preparation of the
particle is assumed. None of these statements shed much light on the issue of counter-
factuality of the protocols without intermediate non-demolition measurements.

Statement (2). In contrast to such a claim for a classical particle, the meaning of this
statement for a quantum particle is not well defined. For a classical particle, the operational
meaning of (2) is (1), but as discussed above, statement (1) is not helpful in the quantum case.
In a double slit experiment with a screen, there is no good answer through which slit the
particle passed and through which it did not pass. However, if the detector which finds the
particle is placed after one of the slits, and the wave packet passing through the other slit does
not reach the detector, then it is frequently declared, following Wheeler [32], that the particle
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did not pass through the second slit. (Note that this contradicts the textbook picture, attributed
to von Neumann, according to which the wave passes through both slits and then collapses to
the location of the detector.) If we adopt Wheeler’s definition, then statement (2) is correct for
the protocol of section 3. The wave packets of the particle passing through the transmission
channel do not reach the detector which detects the particle in this protocol. I, however,
argued that we should not adopt Wheeler’s definition for discussing the past of a quantum
particle [29].

The concept of a quantum particle passing through a channel has no clear meaning in the
standard quantum mechanics in which particles do not have trajectories. It is rigorously
defined in the framework of Bohmian mechanics [33]. However, since the authors of papers
on counterfactual communication never mentioned Bohmian mechanics, it is not particularly
relevant to the current controversy. Still, due to to its conceptual importance I, following the
advice of a referee, will provide the analysis in the framework of the Bohmian interpretation,
but only at the end of the paper, in section 11.

Statement (3). Apart from Bohmian mechanics, quantum mechanics does not provide a
rigorous meaning also for statement (3). Without a clear ontological definition I suggest to
introduce an operational meaning. We cannot rely on an operational definition based on
statement (1), since strong, even nondemolition, measurements change the setup we want to
analyze. So, my proposal is to look at the weak trace the particle leaves.

All particles interact locally with the environment. If the particle is present in a particular
place, it leaves some trace there, and it does not leave any trace where it was not present.
Therefore, we can run the protocol we want to analyze, and then look at the trace left in the
environment. If in the transmission channel there is a non-zero trace, we will say that the
protocol is not counterfactual. The counterpart of (3), a definition of counterfactual as a
process without a local trace, is less robust, because, although very unlikely, it is possible that
the particle changed the local environment via some local interaction, but then changed it
back to its original state.

Since we are all along analyzing interference experiments, the trace left by the particles
has to be small, as otherwise the interference is destroyed. When the trace is small, one may
argue that it can be neglected. I, however, claim that it can be neglected only if it is small
compare to the trace which a single particle with the same coupling being at the same place
would leave. Hence, the remaining task is the comparison between the trace left in the
transmission channel in the ‘counterfactual’ communication protocols [8, 14] and the trace
left by a single particle passing through the channel. In the next section I will analyze the
minimal trace left by a single particle being in a transmission channel and the comparison will
be made in the following sections.

6. The trace left by a single particle

In the framework of standard quantum mechanics there is no rigorous way to decide if
statement (3) holds, that is: whether or not the particle was present in the transmission
channel. In a two-slit experiment it is not clear whether the particle was in a particular slit. If a
particle starts on one side of a plate with two slits and it is found later on the other side, we do
not know if the particle was in the two slits together, or in one of them. However, we firmly
believe that it cannot be that the particle was not present in both.

Consider first a single-path transmission channel with a single particle in the form of a
single localized wave packet. The wave packet passes from Alice to Bob, see figure 9. Let us
model the interaction of the particle with the transmission channel as von Neumann
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measurement with a Gaussian probe. The initial wave function of the pointer is

x
1

e . 100
x2

2 2 ( )
p

F =
D

-
D

When a particle is present in the transmission channel, the interaction shifts x by δ. Thus, the
state of the measuring device after the interaction is

1 , 112
0∣ ( ) F = - F + F̂

where F̂ is orthogonal to the initial pointer state and 1 e .
2
2 = - - d

D

How to quantify the strength of the trace? One option is to consider the probability of
detecting the change in the state of the channel in an idealized experiment. The probability
equals .2 Another option is just to use the shift of the pointer via the parameter .d

D
For a strong trace, th e probability criterion does not represent the trace well: it remains

almost 1 for 10=d
D

and also for 1000.=d
D

In practice, however, it is plausible that in a
realistic experiment, when in addition to the quantum uncertainty of the pointer there is an
uncertainty of the grid on which we read the pointer, only very large d

D
can be observed.

For a small value of ,d
D

the probability of detection is proportional to the square of this
parameter. The transmission of two particles doubles the shift, but increases the probability of
detection by a factor of 4. The linear response seems to be a better representation of the trace.

Consider now a single particle passing through the transmission channel which consists
of N identical paths as above. The quantum state of the particle is an equal weight super-
position of wave packets in all paths, i ,

N i

N
in

1
1åY = = where i signifies the wave packet

of the particle inside path i in the transmission channel, see figure 10. After the particle passes
the transmission channel, the state of the particle and the pointers representing the trans-
mission channel becomes

N
i

1
1 . 12

i

N

j i
j i i

1
0

2
0( )∣ ( ) å F - F + F

= ¹
^

The probability to detect the particle in the transmission channel is the probability to find one
of the states .iF̂ It is ò2 as in the case of the single-path channel. The sum of the expectation
values of the shifts of the xis is also the same, x .i då =

Figure 9. A single particle in a single localized wave packet passes from Alice to Bob
in the transmission channel. Some trace is invariably left in the channel. We model it as
a shift of a local degree of freedom of the channel (the pointer) described by (11).
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It is important to consider the post-selection measurement of the state of the particle
made by Bob. Let Bob select the undisturbed state i .

N i

N
fin

1
1åY = =

This corresponds to

detection of the particle by Bob’s detector in figure 10. For a good, low noise channel, the
probability to find this state is very close to 1. The state of the transmission channel then
becomes

N

N N

1

1
. 13

j

N

j i

N

i j i j
2

1 0 1 0

2 2 2( )
( )

 

 

 å - F + F F

- +

= = ^ ¹

At this stage, the probability to find one of the states iF̂ is reduced dramatically. This is
because the failure of post-selection by Bob implies that the probability to find one of the
states iF̂ is 1. For small ò, the probability to detect the particle in the transmission channel

after the successful post-selection is approximately .
N

2

It is interesting that the post-selection of the particle state does not change the expectation
value of the sum of the pointer variables x .i då = One way to see this is to note that

xi då = is proportional to the weak value [34] of the sum of the projections on all parts of
the channel which equals 1 because the initial state is the eigenstate of the sum of the
projections with the eigenvalue 1 [35]. For describing the magnitude of the trace, the
directions of the shifts are not important. So the relevant parameter is x .

i iå We have
found a lower bound, x .

i i å d

7. The weak trace

I analyse next the trace left in the transmission channel in communication protocols discussed
above. All protocols are based on interference, therefore, when they work properly, only a
small trace can be left. I use the same model: in every path of the transmission channel, the

Figure 10. A single particle in a superposition of several localized wave packets passes
from Alice to Bob. We assume that the beam splitters are arranged in such a way that
all packets have equal amplitudes and the beam splitters on Bob’s side are tuned to
interfere constructively toward the detector.
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presence of the particle shifts the Gaussian pointer, see (11). I assume that the coupling is
weak: ,d D and consequently, 1.  For simplicity, I consider the trace created by
particles moving from Alice to Bob and disregard the trace created on the way from Bob to
Alice. Then, the example described in figure 1, is identical to that of figure 9. and the trace in
the communication channel is the shift δ of the pointer and the probability to discover the
presence of the particle by observing the trace, is .2 In the communication of the bit 0 using
IFM, figure 2, and in the protocol with HWPs, figure 3 the trace is of the same order of
magnitude.

In the IFM communication of the bit 1, see figure 2, after the interaction with the
transmission channel, the state of the particle and the pointer is

L
1

2
1 absorbed . 140

2
0( )∣ ∣ ( )⎡⎣ ⎤⎦ F + - F + F̂

If the particle is absorbed by Bob, the trace in the channel is exactly as in the single-path
channel of section 6: shift by δ and the probability to find the trace is .2 If the particle is
detected by Alice, then there is no trace in the transmission channel. The wave packet
‘tagged’ by an orthogonal state of the channel, F̂ cannot reach Alice.

Now I consider the IFM experiment with the chain of the interferometers, figure 4,
starting with the communication of bit 0, the case in which Bob leaves the interferometers
undisturbed. The exact expressions are complicated, but for weak coupling, only the first
order contibution in ò is significant. Neglecting the coupling to the channel, we obtain from
(2) the state of the particle in the nth interferometer

n

N
L

n

N
Rcos

2
sin

2
. 15∣ ∣ ( )p p

+

The wave packet R , ‘tagged’ at the nth interferometer by the state nF̂ in the transmission
channel, interferes only with itself and reaches detectors in the state

N n

N
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N n

N
Lcos

2
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In this experiment, the particle ends up in detector D2 (state R ) with the probability close to
1. The state of the transmission channel then is
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with normalization  close to 1. Therefore, the probability to detect the particle in the
transmission channel, i.e., to find at least one of the states nF̂
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is much larger than the minimal probability to find a single particle present in this multiple-
path channel, which can be as low as .

N

2 Thus, the case of the bit 0 is definitely not a
‘counterfactual’ communication. This can also be seen by calculating the pointers shifts.
These shifts are proportional to the expectation value of the projection on the paths of the
transmission channel. The shift in path n is sin n

N
2

2
d p and the sum of all shifts, ,N

2
d~ is much

larger than δ, the standard for the presence of a single particle in the channel.
The situation is different for communication of bit 1, when Bob blocks the paths of the

interferometers, figure 4(b). Due to Zeno effect, the probability of absorbtion by Bob is
negligible. Detector D1 clicks with probability close to 1 telling Alice that the bit value is 1. In
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this case, there is no trace in the communication channel. It is, therefore, a counterfactual
communication for bit value 1.

Let us turn now to the case of nested interferometers, figure 5. The case which is
particularly interesting is described in figure 5(a). Bob does not put the shutter in, and detector
D1 clicks. Alice knows that the bit is 0, and naively, it seems to be a counterfactual com-
munication since the particle ‘could not pass through the transmission channel’. Indeed, the
wave packet entering the nested interferometer does not reach detector D1.

The interferometer was defined only by demanding destructive interferences in particular
situations. To make quantitative predictions, we have to specify the beam splitters of the
interferometer. In a possible implementation of the interferometer [39], the first two beam
splitters transform the localized wave packet entering the interferometer into a superposition:

A B C
1

3
19in (∣ ∣ ∣ ) ( )Y  + +

and the other two beam splitters transform each of the states as:

A

B

C

1

3
1

1

6
2

1

2
3 ,

1

3
1

1

6
2

1

2
3 ,

1

3
1

2

3
2 , 20

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
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where state i signifies a wave packet entering detector Di, (i = 1, 2, 3). It is is easy to see that
these rules ensure the required destructive interferences.

After the interaction, the joint state of the particle and the channel is

A B C
1

3
1 . 212

0 0( )∣ (∣ ∣ ) ( )⎡⎣ ⎤⎦ - F + F + + F^

From (20) we see that the detection of the particle in detector D1 post-selects the state
A B C .1

3
( )- + Therefore, the state of the channel after the post-selection is

1 . 222
0 ( ) - F + F̂

This is exactly the same state of the channel as in the case that a single particle passed through
it, see (11). Thus, contrary to the naive expectation, the scheme with nested interferometers
does not provide counterfactual communication [12].

8. The weak trace in ‘direct counterfactual quantum communication’

Now we are ready to analyze the trace left in the ‘direct counterfactual quantum commu-
nication’. The case of bit 1, figure 6(a), is simple. The trace in the communication channel is
correlated with the final location of the particle. If it is absorbed by Alice, which happens with
a probability close to 1 and corresponds to the proper operation of the protocol, the trace is
zero. The wave packets ‘tagged’ by orthogonal states of the channel, ,m n,F̂ cannot reach
Alice. The trace is present only if the particle is absorbed by one of the Bob’s shutters which
happens with vanishing probability. This is a counterfactual communication protocol for bit 1.

The more interesting case is that of bit 0, when Bob leaves the interferometer undis-
turbed, figure 6(b). We assume that the interaction with the channel is small, ,

M

1  ,
N

1 
so only the first order in ò should be considered.
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The amplitude of the wave packet of the particle in the nth path of mth chain of the inner
interferometers (m, n), is

N M M

n

N
cos

2
cos

2
sin

2
sin

2
. 23m N m1 1 ( )( ) ( )p p p p- -

A particle present in the path (m, n) changes the state of the corresponding pointer according
to (11):

m n m n, 1 , . 24
m n m n m n0 ,

2
0 , ,( )∣ ∣ ( ) F  - F + F̂

The wave packet m n, ‘tagged’ by the orthogonal state m n,F̂ interferes only with itself and
leaves the inner chain in the state, see (16):

m n
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State R is lost and the state L of the last inner interferometer of the chain m enters from the
right the remaining M m 1- - large interferometers. The transformation of this state (which
is named R in the following equation) in the remaining interferometers is:

R
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where ‘L’ signifies the wave packets which do not reach the detectors.
In the protocol, the particle is found with probability close to 1 by detector D1. After the

detection of the particle, the amplitude of the term m n,F̂ corresponding to detection of the
particle in the path (m, n) can be found by collecting the factors in (23)–(26). It is

N M

n

N M2
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2
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As explained in section 3, the protocol works properly if M N1 ,  so that

N M
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2
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and the probability that one of the orthogonal states m n,F̂ will be found in the transmission
channel is, approximately,

M
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The number of paths in the channel is MN.~ We have seen that a single particle present
in such a channel can be found with probability as low as

MN

2 which is smaller than the

probability of detection of the particle in the protocol by a factor of approximately .N

M

2

2 Since
the protocol works well only when N M, the trace in the protocol is larger than the trace of
a single particle passing through the channel.

Another criterion of counterfactuality is the sum of displacements of the pointers in all
paths of the channel, the standard for which is δ. It can be found by calculating the absolute
values of weak values of all projections: P

m n m n w, ,( )åd with pre- and post-selection spe-
cified by the protocol. The scalar product in the denominator of the weak value is close to 1
since the probability of the post-selection is close to 1. The amplitude of the forward evolving
state at path (m, n) is given by (23) and, similarly, the amplitude of the backward evolving
state is
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Thus, the weak value of the projection on the path (m, n) can be approximated as
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and the sum of all shifts of pointers is
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Since N M, the trace in the protocol is much larger than the standard of the trace of a
single particle present in such multiple-path channel.

9. The weak trace in ‘direct quantum communication with almost invisible
photons’

Let us turn to the ‘direct quantum communication with almost invisible photons’ protocol
[14]. When Bob transmits 0, i.e. does nothing, figure 8(a), the amplitude in the path (m, n) is

M

n

N
m

m

sin
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sin for odd,

0 for even. 33( )

p p

The wave packet m n, , ‘tagged’ by the orthogonal state ,m n,F̂ interferes only with itself
and it leaves the inner chain in the state

m n
n

N
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n

N
L, sin cos . 34∣ ∣ ∣ ( )p p
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The state R is lost and the state L of the last inner interferometer of the chain m enters from
the right the remaining M − m − 1 large interferometers. Using the fact that ‘tagging’ takes
place only for odd m, and that the number of the large interferometers is odd (M, the number
of beam splitters is even), and that after every second beam splitter the wave function repeats
itself, we can conclude that the wave packet leaves the last beam splitter of the last inner chain
with the same amplitude. The wave packet entering the last beam splitter of the large
interferometers transforms into

M
R

M
Lcos

2
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2
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In the protocol, the particle is detected with probability close to 1 by detector D1 which
detects the state L . Thus, after detection of the particle, the amplitude of the term m n,F̂
corresponding to the detection of the particle in the path (m, n) can be found by collecting
factors from (33–35) and a factor ò due to the interaction:

n

N M2
sin

2
sin

2
. 362 ( ) p p

This expression holds only for odd m, the amplitude in the paths with even m vanishes.
Summing the probabilities of finding the record the particle leaves in all the paths, i.e.
summing on odd ms up to M − 1 and on integers n up to N − 1, we obtain the probability of
detection of the particle:
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A single particle passing through this transmission channel can be found with probability
of order .

MN

2 Depending on the ratio ,N

M
it can be smaller or larger than (37), so we cannot yet

decide on the counterfactuality of the protocol.
Compare now the sum of the pointer shifts in the channel. It can be found by calculating

the absolute values of weak values of all projections: P
m n m n w, ,( )åd with the pre- and post-

selection specified by the protocol. In this case, the pre- and post-selected states are identical,
so the weak values are expectation values:
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The sum of the pointer shifts when there is one particle in the transmission channel
equals δ, so the ratio N

M
tells us when the sum of displacements in the protocol (39) is smaller

or larger than that of a single particle present in the channel. We can see that the criterion of
the pointer shifts is in agreement with the criterion of the probability of detection.

Let us now repeat the analysis for the case of bit 1, when Bob puts HWPs in every inner
interferometer. Now the amplitude in the path (m, n) is

m

M N
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sin for odd,

0 for even. 40( )

p p

The wave packet m n, , can be ‘tagged’ by the orthogonal state m n,F̂ only for odd n.
Thus, due to the presence of the HWPs, the wave packet comes back unchanged every second
beam splitter. It leaves the chain of the inner interferometers in the state

m n
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R
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State R is lost, and the state L of the last inner interferometer of the chain m enters from the
right the remaining M m 1- - large interferometers. In the chain of the large interferometers
it performs usual evolution (2) and ends up in the state
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In the protocol, the particle is detected with probability close to 1 by detector D2 which
detects the state R . Thus, after the detection of the particle, the amplitude of the term m n,F̂
corresponding to the detection of the particle in the path (m, n) can be found by collecting
factors from (40–42) and the factor ò due to the interaction:

N

m

M2
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2
. 432 2 ( ) p p

This expression holds only for odd n, the amplitude in the paths with even n, vanishes.
Summing the probabilities of finding the record the particle leaves in all the paths, we obtain
the probability of detection of the particle:
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Again, as in the case of bit 0, the ratio N

M
tells us if it is larger or smaller than the minimal

probability of detection in case of a single particle present in the transmission channel.
However, the dependence is opposite: if for bit 0 the probability of detection in the protocol
was smaller than single-particle standard, for bit 1 it will be larger, and vice versa.

The pointer shifts criterion of counterfactuality is in agreement with these results. The
sum of pointers shifts in all paths of the channel is proportional to the sum of the weak values
of all projections: P .

m n m n w, ,( )åd Also in this case, the pre- and post-selected states are
identical and the weak values are expectation values:
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The ratio N

M
tells us when the sum of displacements in the protocol (46) is smaller or larger

than that of a single particle. If it is smaller for bit 1, it is larger for bit 0, and vice versa.

10. Security of counterfactual protocols

One of the motivations for ‘counterfactual’ protocols, in which no particles are present in the
transmission channel, is that it is secure against Eve who is trying to eavesdrop the com-
munication: she has no particles to look at [36]. The obvious cryptographic weakness of the
protocols with shutters which are 100% counterfactual is that Eve can use an active attack
detecting the presence of the shutters. Moreover, the shutter can be detected by Eve in a
counterfactual way [37], and recently there has been a claim of a very efficient attack of this
kind [38].

If Eve uses an active attack, probing Bob’s bit by sending her particles, the counter-
factuality property does not help. So, for the analysis of counterfactuality we should only
consider passive attacks in which Eve ‘eavesdrops’, i.e. measures the presence of the particle
in the transmission channel. Under this condition, the counterfactual protocols with shutters
are secure.

Consider the following counterfactual key distribution protocol. There are two identical
chains of interferometers as in figure 4. One of the chains is defined as bit 0, and the other as
bit 1. On each run of the protocol, Alice randomly sends a single particle through one of the
interferometers and Bob randomly chooses one of the interferometers and places the shutters
in all of its paths. Every time Alice detects the particle in detector D1 of one of the inter-
ferometers, she makes a public announcement. Detector D1 can click only if Alice and Bob
chose the same interferometer, i.e. they chose the same bit. This creates a common key.

The multiple shutters Bob placed represent the weak point of the protocol due to the
reason above, although we can improve it using detectors instead of shutters and telling Alice
to send particles not every time, but only at some random times (using ideas of [5]). Anyway,
we made a postulate here that Eve only performs some (weak) nondemolition measurements
of the presence of the particle running in the interferometer. Let us see if Eve can get some
information about the key in this way.
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If Eve detects the particle in one of the interferometers, it cannot be the one which
generates a correct bit in the key. For a correct bit generation event, Alice and Bob have to
choose the same interferometer. Eve can detect the particle only if it is present, i.e., it has to be
chosen by Alice. If Bob also chooses this interferometer, then after detection by Eve, the
particle has to be absorbed by Bob, so it will not reach Alice.

Only if the interferometer is not chosen by Bob, the particle seen by Eve in the non-
demolition measurement can reach Alice, and there is a nonzero probability that the detector
D1 will click and thus Alice will declare generation of a bit in the key. But this will be an error
bit, since Bob has chosen the other interferometer. Eve introduces errors, and the only
information she gets is about these error bits.

Let us turn to the ‘Direct counterfactual quantum communication’ protocol. When Bob
places the shutters, figure 6(a), Eve cannot get information about the correct bit because Eve’s
detection causes the loss of the particle. (It is not surprising, since in this case the protocol is
counterfactual.)

If the bit is 0, and the interferometer is free, figure 6(b), Eve’s detection will not
necessarily lead to the loss of the particle. Detection of the particle by Eve in the last chain of
inner interferometers will lead to part of its wave packet to enter the last beam splitter from
the right, so most probably it will create an error: D2 clicks, but Bob’s bit is 0. However,
Eve’s detection of the particle in any of the first M − 2 chains of inner interferometers will
lead to part of the particle wave packet to enter the last beam splitter from the left side, so
most probably D1 will click, corresponding to a successful transmission of the correct bit.
Thus, sometimes, Eve gets a reliable information about the transmitted bit.

Eve, who eavesdrops only by observing the original particle of the communication
protocol, cannot learn any correct bit of real counterfactual protocols with shutters which
transmit bit 1, but she does learn some correct bits in ‘counterfactual’ communication pro-
tocols of bit 0. This provides another argument why such protocols should not be named
counterfactual.

11. Counterfactuality according to the Bohmian mechanics

It seems that Bohmian mechanics [33], which postulates that every particle has a trajectory,
should provide the ultimate answer regarding the counterfactuality of a protocol. There are
unambiguous answers to criteria (2) and (3) of section 5: either the Bohmian trajectory passes
through the transmission channel, or it does not. However, the fact that the Bohmian tra-
jectory does not pass through the transmission channel does not tell us that Eve, who has an
access to this channel, cannot get some information about this communication.

For completeness of the counterfactuality analysis, I will consider the following technical
question. Is the Bohmian trajectory present in the transmission channel of the protocols
discussed in this paper?

Bohmian position of a particle cannot be in a place where the (forward evolving) wave
function vanishes. Therefore, the successful IFMs of the presence of an opaque object,
described in figures 2 and 4(b), are counterfactual according to the Bohmian trajectory
criterion. Moreover, the IFM of the absence of an opaque object, figure 5(a), is counterfactual
too. Direct counterfactual communication [8], as its predecessor [7] and their variation pre-
sented in figure 6, are counterfactual. In all these protocols there is no continuous path with
non-vanishing wave function between the source and the detector the particle reached.

In the ‘Direct quantum communication with almost invisible photons’ [14], see figure 8,
the probability that the Bohmian particle will pass through the transmission channel can be
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found from the maximal amplitude in the paths passing through the channel. For bit 0, the
amplitude is given by (33), and therefore, the maximum probability is approximately .

M4

2

2

p For

bit 1, the amplitude is given by (40), and the maximum probability is approximately .
N

2

2

p Thus,
for large M and N, the probability that the communication is counterfactual is close to 1 for
both bit values.

However, it should be mentioned, that in most cases when the communication is not
counterfactual, the Bohmian particle crosses the transmission channel, not once, but many
times. Given equal probability for bit values, the expectation value of the number of crosses
of the transmission channel by the Bohmian particle can be obtained from the sum of the
probabilities on all paths. The amplitudes are given by (33) and (40). Consequently, the

expectation value of the number of crosses is, approximately,
M

N

N

M4 4
,

2
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⎞
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p
+ and it cannot

be much less than 1 for any choice of M and N.
Note that in the ‘direct counterfactual communication protocol’ experiment [8], the

expectation value of the number of crosses of the transmission channel is also of order 1, but
all these events happen when the particle is lost, and these cases are discarded according to
the protocol.

I mentioned above that the protocol presented in figure 5(a), which demonstrates the
absence of an object in the apparently interaction-free manner, is counterfactual according to
Bohm. It is interesting that a slight modification of this setup, similar to the experiment
actually performed [39], is not counterfactual. Consider a setup presented in figure 11.

Figure 11. The modification of the experiment shown on figure 5(a) which is not
counterfactual according to the Bohmian criterion. The interferometer is tuned such that
there is a destructive interference toward D2 when the shutter is present. Thus, if
detector D2 clicks, we know that path A is free. Although naively, the particle reaching
D2 cannot pass through the inner interfereometer, the Bohmian trajectory of the particle
(solid line) does pass through A.
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A straightforward calculations of Bohmian trajectories (similar to that of Bell [40], or in a
simplified way [42]) show that all particles detected by D2 passed through arm A.

In fact, the experiment [39] indicated the presence of the weak trace in A, but it had
nothing to do with the presence of the Bohmian trajectory there. The weak trace appeared also
in B and C where the Bohmian particle was not present.

Empty waves cause observable difference when they ‘catch’ Bohmian particles. This
allows a very simple communication protocol which is counterfactual according to Bohmian
criterion, see figure 12. Particles are sent through a MZI without a second beam splitter at
particular times. One of the mirrors is in Bob’s place and he has two options for placing it,
such that the wave bouncing off the mirror will end up in detector D1 or D2 on Alice’s side.
The wave packet going through another arm ends at detector D3 on Bob’s side. If the particle
does not reach D3, Bob knows that it reaches Alice and that it he has chosen the detector
which will detect the particle. Every time D1 or D2 clicks the Bohmian particle does not pass
through Bob’s place. Only an empty wave was directed by Bob’s mirror. Indeed, the wave
packets overlap at point O1 or O2 and the Bohmian particle must ‘change hands’ in the
overlap, so Bohmian particles reaching Alice’s detectors never cross communication channel.

Probably the majority would not consider the communication protocol described in
figure 12 as counterfactual. According to Wheeler’s common sense argument [32], the

Figure 12. Simple protocol which is counterfactual according to Bohmian criterion.
Bob places the mirror in the position 1 or 2. This makes clicks of Alice’s corresponding
detectors D1 or D2 possible. Only empty wave passes through the transmission channel
when Alice’s detector clicks.

J. Phys. A: Math. Theor. 48 (2015) 465303 L Vaidman

24



particle reaching Alice could come only through Bob’s site. This example, and Englert et al
setup [41], in which a strong trace (observed at a later time) is left in a place where the
Bohmian particle was not present, explain why the Bohmian criterion of counterfactuality
does not agree with the intuition of most physicists.

12. Conclusions

The standard quantum formalism, in contrast to Bohmian mechanics, does not specify the
position of a quantum particle. Thus, it does not provide an unambiguous answer to the
question: is a particular communication protocol counterfactual? I.e.: was the particle present
in the transmission channel? In this paper I analyzed an approach to answering this question
based on the weak trace the particle leaves in the channel. I compared the trace left in the
channel in recently proposed protocols claimed to be counterfactual with the trace in the
protocol constructed to transmit a single particle in the same channel.

In the analysis, I considered two criteria for comparing the traces. First, the probability of
finding a conclusive evidence for the presence of the particle, and second, the expectation
value of the sum of total shifts of some variables of the channel.

The question of counterfactuality of the protocols is considered in cases the protocols
work properly, i.e. when the particle is detected by the right detector. It means that the particle
is pre- and post-selected. The protocols were compared with the transmission of a single pre-
and post-selected particle. In all these cases the probability of post-selection was closed to 1.

The analyses using the two criteria of the trace led to the same conclusion. It is possible
to communicate only one value of a bit in a counterfactual way.

The protocol ‘Direct counterfactual quantum communication’ [8] is fully counterfactual
for bit value 1. The trace is identically 0. Nothing changes in the transmission channel and
therefore there is zero probability to detect the particle in the transmission channel. Passive
eavesdropping provides no information about the transmitted bit.

However, the protocol is not counterfactual for the bit value 0. It is true that by increasing
the number of paths in the channel, the probability of finding a conclusive evidence of the
presence of the particle reduces, but increasing the number of paths also reduces the prob-
ability to find a single quantum particle when it passes the channel. The probability to find the
presence of the particle in the transmission channel in the event of successful operation of the
protocol is larger than the probability to detect a particle successfully passing through this
channel. Eve, using passive attack, obtains some information about the transmitted bit.

The criterion of the shifts of variables of the channel tells us the same. The expectation
value of the sum of the shifts is zero for bit 1, but for bit value 0 it is larger than the sum of the
shifts when a single particle passes the channel.

The protocol ‘Direct quantum communication with almost invisible photons’ is not fully
counterfactual for any bit value. Some trace is always left in the transmission channel.
However, if we are ready to consider a protocol as counterfactual when it leaves a trace which
is much smaller than the trace of a single particle passing through this channel, then we can
arrange that it will be counterfactual for one of the bit values. By playing with the numbers N
and M of the inner and the external interferometers respectively, the protocol can be made
counterfactual for value 0 or for value 1 of the bit. It cannot be made counterfactual for both.

The analysis of the trace left by a particle passing through a N-path channel of section 6
showed a surprising result: the probability of detection in the channel of the successfully
transmitted particle is reduced by the factor of .

N

1 It helped me to analyse the counterfactuality
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of the protocols, but it might also open new avenues for useful quantum communication
applications.

I also hope that this study will lead to a deeper understanding of the question: ‘Where are
particles passing through interferometers?’ [29, 43–46].

I thank Yakir Aharonov, Eliahu Cohen and Shmuel Nussinov for helpful discussions.
This work has been supported in part by the Israel Science Foundation Grant No. 1311/14
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