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Abstract We present a family of nonlocal games in

which the inputs the players receive are continuous. We

study three representative members of the family. For the

first two a team sharing quantum correlations (entangle-

ment) has an advantage over any team restricted to clas-

sical correlations. We conjecture that this is true for the

third member of the family as well.
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The nonlocal nature of quantum mechanics, as manifested in

Bell inequalities violation (Bell 1964; Clauser et al. 1969), has

recently been highlighted in a number of games (Tsirelson

1996; Vaidman 1999, 2001; Cabello 2003; Aravind 2004;

Cleve et al. 2004; Brassard et al. 2003). Termed nonlocal

(Cleve et al. 2004), these are cooperative games with incom-

plete information for a team of remote players. Each of the

players is assigned by a verifier an input generated according to

a known joint probability distribution. The players must then

send an output to the verifier, who carries a truth table dictating

for each combination of inputs, which combinations of outputs

result in a win. The players may coordinate a joint strategy

prior to receiving their input, but cannot communicate with one

another subsequently. A team sharing quantum correlations

(entanglement) is said to employ a ‘‘quantum strategy,’’ while

a team restricted to sharing classical correlations is said to

employ a ‘‘classical strategy.’’

In this paper we analyze three representative members

of a novel family of nonlocal games, which differ from

other nonlocal games in the literature in that the input sets

are continuous rather than discrete and finite. Moreover,

most nonlocal games include a ‘‘promise’’ regarding the

allowed input combinations and their frequency. This

means that the joint probability distribution governing the

assignment of combinations of inputs is not uniform. This

restriction is especially tailored to guarantee a maximum

quantum advantage, and can make the rules of the game

complex. In the games that we analyze there is no such

promise. The joint probability distribution governing the

assignment of inputs is uniform, and the rules are simple.

Nevertheless, a non-negligible quantum advantage obtains.

In the first game two remote players A and B receive a

uniformly generated input a 2 ½0; 1� and b 2 ½0; 1�,
respectively. Following this, each of the players sends a

classical bit representing an output oi 2 f1;�1g ði ¼ A;BÞ
to the verifier. The game is considered to have been won if

oA � oB ¼
þ1; aþ b\1

�1; aþ b� 1
:

(
ð1Þ

The game, therefore, amounts to the problem of returning a

positive (negative) product of outputs when the sum of the

inputs is less than (greater than or equal to) 1. In the
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following we show that a team employing a quantum

strategy can achieve a higher probability for winning the

game than a team restricted to classical strategies.

We begin by presenting the optimal classical strategy. It is

easy to show that it is deterministic, i.e. the output is a single-

valued function of the input, and is given for example by

oA ¼ 1; oB ¼
þ1; b\

1

2

�1; b� 1

2

:

8><
>: ð2Þ

The winning probability then equals 75 % (see Fig. 1).

This may be verified by noting that the game can be cast as

the continuum limit of a family of Bell inequalities, first

discovered by Gisin (1999), for which Tsirelson proved

both the classical and quantum bounds (Tsirelson 2007).

For more details see Silman et al. (2008).

In the quantum strategy we present the players share a

two qubit singlet state

wsj i ¼
1ffiffiffi
2
p ð "#j i � #"j iÞ: ð3Þ

Having beforehand agreed on a coordinate system, the

players then measure the spin component of their qubits

along different axes in the xy plane. The choice of axes is

dictated by the inputs as follows: A measures along an axis

spanning an angle of hA(a) from the negative x axis, while

B measures along an axis spanning an angle of hB(b) from the

negative y axis (see Fig. 2). The players then send the results

of the measurements to the verifier. For a ? b C 1 the game

is won if the two players obtain opposite results, while for

a ? b \ 1 the converse holds. Given a and b the probability

for identical results is sin2ðD=2Þ, where D ¼̂ ð3p=2Þ �
hAðaÞ � hBðbÞ is the angle between the axes of

measurement. The winning probability is therefore given by

PW ¼
Z1

0

da

Z1

0

db Hðaþ b� 1Þ cos2 D
2

� ��

þHð1� a� bÞ sin2 D
2

� ��
: ð4Þ

where H is the unit step function ðHð0Þ ¼ 1Þ. To maximize

PW we look for hA(a) and hB(b) such that when

aþ b� 1ðaþ b\1ÞD is small (large). A most natural

choice is

hAðaÞ ¼ pa; hBðbÞ ¼ pb; ð5Þ

as is evident from Fig. 2. The integral then equals ð1=2þ
1=pÞ corresponding to a winning probability of &81.8 %

and saturating the Tsirelson bound of the corresponding

Bell inequality (Tsirelson 2007). This gives an advantage

of &6.8 % to a team making use of quantum correlations

over a team limited to classical correlations.

The above game is a special case of a more general joint

task in which A and B are assigned the uniformly generated

inputs a 2 ½0;m� and b 2 ½0; n�, respectively, and must

return correlated (anticorrelated) outputs when aþ b\ nþm
2

ðaþ b� nþm
2
Þ. Note that by setting n = -m and defining

~b¼̂ � b, the task reduces to having to return identical

outputs when a\~b and opposite otherwise.

The second game is identical to the first in all but the

winning conditions. The game is now considered to have

been won if

oA � oB ¼
þ1; 4jb� ajmod 3 [ 1

�1; 4jb� ajmod 3� 1
:

(
ð6Þ

That is, the players must return correlated outputs if the

absolute value of the their inputs’ difference is in the

Fig. 1 Game 1—the classical strategy. The lower (upper) big

triangle is the region where identical (opposite) outputs are required

to win. Given the choice of outputs regions in which the game is won

(lost) are colored in green (red). It is easy to see that the green regions

add up to 3/4 of the total area of the square. (Color figure online)

Fig. 2 Game 1—the quantum strategy. hA and hB denote the angles at

which players A and B, respectively, measure the spin of their qubit.

The dotted and dashed arcs denote the range of hA and hB
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interval 1=4; 3=4½ �, otherwise they must return anticorre-

lated outputs.

A possible realization of the optimal classical strategy is

oA ¼
þ1; a� 1

2

�1; a [
1

2

;

8><
>: oB ¼

�1; b� 1

2

þ1; b [
1

2

:

8><
>: ð7Þ

The winning probability equals 75 %, as in the first game

(see Fig. 3). To see that this is the maximum, consider

Fig. 3. If we cyclically shift the input of one of the players

by 1/4, then the regions that require correlated or anticor-

related outputs within each quadrant correspond to the first

game.1 Therefore, if the game admitted a strategy with a

winning probability greater than 75 % in any of the

quadrants, so would the first game.

The quantum strategy we present differs from that of the

first game only in the choice of axes A and B measure

along. The winning probability now equals

PW ¼
Z1

0

da

Z1

0

db

�
Hð4jb� ajmod 3� 1Þ cos2 D

2

� �

þHð1� 4jb� ajmod 3) sin2 D
2

� ��
: ð8Þ

Here D ¼̂ hAðaÞ � hBðbÞ with both angles now spanning

from the y axis in the xy plane. The maximum obtains for

hAðaÞ ¼ 2pa; hBðbÞ ¼ 2pb; ð9Þ

giving the same winning probability as in the first game,

i.e. &81.8 %, and equalling the Tsirelson bound of the

corresponding Bell inequality (Tsirelson 2007).

Both games described naturally accommodate a geo-

metric description. For example, as is evident from the

quantum strategy, the second game can be reformulated as

the problem of returning identical outputs when the angle

between a pair of nonvanishing two-dimensional vectors is

greater than p=2. The question arises as to how the quan-

tum advantage changes when playing the game in three

dimensions. More specifically, two remote players are each

assigned a pair of angles 0 B hi B p, 0�ui\2p, desig-

nating a three dimensional unit vector r̂iði ¼ A;BÞ. The

game is considered to have been won if

oA � oB ¼
þ1; r̂A � r̂B\0

�1; r̂A � r̂B� 0
:

(
ð10Þ

The joint probability distribution governing the assignment

of angles is a product qAðhA;uAÞ � qBðhB;uBÞ with

qiðhi;uiÞ ¼ sin hi; ð11Þ

guaranteeing isotropy.2

The classical strategy that we present is an extension of

the optimal classical strategy of the second game, where in

the geometric description A (B) returns an output equal to 1

(-1), respectively, if the angle corresponding to his input is

less than or equal to p. Otherwise, A (B) returns -1 (1).

Similarly, we now have A (B) return 1 (-1) when

hA� p=2 ðhB� p=2Þ, independent of uAðuBÞ, and -1 (1)

otherwise. This gives &68.2 % (1� 1=p) probability of

winning. It seems likely that this strategy is the optimal.

As in the other games, in the quantum strategy that we

consider, A and B share a singlet state of two qubits and

measure along axes dictated by their inputs, n̂Aðr̂AÞ and

n̂Bðr̂BÞ. The probability for winning is then given by

PW ¼
Z
XA

dXA

Z
XB

dXB Hðr̂A � r̂BÞ cos2 D
2

� ��

þHð�r̂A � r̂BÞ sin2 D
2

� ��
; ð12Þ

with D ¼̂ arccosðn̂Að̂AÞ � n̂Bðr̂BÞÞ, and maximizes for

n̂Aðr̂AÞ ¼ r̂A; n̂Bðr̂BÞ ¼ r̂B: ð13Þ

The probability of winning than equals 75 %. Numerical

evidence obtained using semi-definite programming indi-

cates that this strategy is optimal. Interestingly, the quan-

tum advantage remains unchanged equaling &6.8 %.

Fig. 3 Game 2—the classical strategy. The two small triangles and

the strip between the two middle dashed lines are regions where

identical outputs are required to win. Given the choice of outputs

regions where the game is won (lost) regions are colored in green
(red). The green regions add up to 3/4 of the total area of the square.

(Color figure online)

1 To be more precise, each of the quadrants corresponds to the truth

table of the a \ b or a [ b formulation of the first game.

2 The differential of a solid angle, X, in spherical coordinates is

proportional to sin h. This introduces a weight function when

integrating over h and u.
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In fact, all the games share a unifying ‘‘theme’’. Suppose

that A and B each receive the coordinates of a randomly

generated three dimensional vector rA and rB, respectively.

Then by a suitable choice of the joint probability distri-

bution governing the assignment of the vectors, each of the

games translates to a question about the quantity

n ¼̂ jrB � rAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

B � 2rB � rA þ r2
A

q
: ð14Þ

The third game obtains if we restrict the vectors to unit

magnitude. Actually, it is enough to require that the vectors

be nonvanishing so long as they are generated isotropically.

We then ask whether n\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

B þ r2
A

p
. The second game is

identical except that we further restrict the vectors to lie on

the same plane. In the first game we abolish isotropy alto-

gether. The vectors are generated antiparallel to one another,

with their magnitudes uniformly distributed between 0 and 1.

n then equals rA ? rB, and the players must decide whether

n[ 1. In particular, we see that by asking different questions

and imposing different constraints we obtain different

games. In this sense the three games can be considered as

belonging to a larger family of games.
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