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The concept of a modular value of an observable of a pre- and postselected quantum system is

introduced. It is similar in form and in some cases has a close connection to the weak value of an

observable, but instead of describing an effective interaction when the coupling is weak, it describes a

coupling of any strength but only to qubit meters. The generalization of the concept for a coupling of a

composite system to a multiqubit meter provides an explanation of some current experiments.
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In 1988 Aharonov, Albert, and Vaidman (AAV) [1]
discovered that a weak coupling to any observable C of a
pre- and postselected system becomes an effective cou-
pling to a ‘‘weak value’’ of this observable. Recently, there
has been increased interest in weak values, in particular,
due to the successful applications of the AAV effect as an
amplification scheme for high precision measurements of
tiny effects [2,3]. In 2004 Resh and Steinberg considered
the weak values of nonlocal observables in composite
systems [4], culminating in experimental demonstrations
[5,6] of the Hardy paradox [7,8]. While most research on
weak values considered coupling to continuous variables,
increasing attention has turned to weak values appearing in
couplings to qubit meters [9,10].

In this Letter we introduce a new concept, the modular
value of an observable, which characterizes the coupling of
pre- and postselected quantum systems to qubit variables.
The modular values can be measured efficiently using
strong coupling. In some cases, modular values are equal
to weak values. Measurements of modular values, then,
provide an efficient method of measuring these weak val-
ues. This is particularly important for measuring weak
values of nonlocal observables.

In the two-state vector formalism, a quantum system
at times t, intermediate between two measurements, is
described by a two-state vector [11]:

h�j jc i; (1)

where jc i is the state prepared before t and the state j�i
was found after t. For simplicity we assume that the free
Hamiltonian is zero.

The most general statement of the AAV effect is that
weak coupling at the intermediate times t to any physical
observable C of the system is an effective coupling to the
weak value of C:

Cw � h�jCjc i
h�jc i : (2)

The operational meaning of this is that during the time
between the two strong measurements, when considering
the action of our system on other systems, we can

replace any operator of our system by the corresponding
c number:

C ! Cw: (3)

In particular, coupling the observable C to a continuous
variable P (as in the von Neumann measurement proce-
dure), via

H ¼ gðtÞPC; (4)

with

Z
gðtÞdt ¼ k; (5)

such that the interaction Hamiltonian (4) is weak, leads to
an effective Hamiltonian of the external system (measuring
device)

H ¼ gðtÞCwP: (6)

For the standard choice, k ¼ 1, the interaction leads to a
‘‘shift’’ of the wave function of the conjugate variable Q:

�finðQÞ ¼ N�ðQ� CwÞ; (7)

where N ¼ ðR j�ðQ� CwÞj2dQÞ�ð1=2Þ is the normaliza-

tion factor (which is equal to 1 when Cw is real).
For real Cw, the shift of the probability distribution of

the (pointer) variable Q (the outcome of the von Neumann
procedure) is equal to the corresponding weak value. Note
that the shift is the only effect of the measurement inter-
action, the shape of the distribution remains unchanged.
If the weak value is a complex number, the effective

Hamiltonian is non-Hermitian, which is a less familiar
situation [12]. In the context of weak measurements,
the simplest picture is obtained when the state of the

measurement system is given by a Gaussian �inðQÞ ¼
ð�2�Þ�1=4e�Q2=2�2

. Then, the shift of the distribution of
the pointer variable provides the real part of theweak value:

�finðQÞ ¼ ��
fin�fin ¼ 1

�
ffiffiffiffi
�

p e�ðQ�ReCwÞ2=�2
; (8)

while the shift of the Gaussian in the P representation
provides the imaginary part:
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~� finðPÞ ¼ ~��
fin

~�fin ¼ �ffiffiffiffi
�

p e�ðP�ImCw=�
2Þ2�2

: (9)

Note that measuring ImCw is particularly helpful for prac-
tical applications of the AAVeffect [13].

The formal shift (7) is valid for any wave function of an
external system, but it is not observable directly becauseQ
is real. Simple shifts (without distortion) of the distribu-
tions of Q and P, (8) and (9) are special features of a
Gaussian. For a complex valued wave function, the two
distributions depend on both the real and the imaginary
parts of the weak value [14] and are better described using
cumulants [15].

There are two different physical methods which trans-
form standard von Neumann measurement procedure to a
weak measurement. The first, described above, is to keep
the coupling the same as in a strong measurement, but to
change the initial state of the measuring device. The sec-
ond, is to keep the initial state of the measuring device, but
reduce the strength of the coupling characterized by k in
Eq. (5).

The AAVeffect is not limited to couplings to continuous
variables as in the von Neumann measurement procedure.
If an observable C of a pre- and postselected system is
coupled to a discrete variable, the replacement (3) will still
lead to a correct effective Hamiltonian for weak enough
coupling [10]. In this case, however, we do not have two
options for enforcing weakness of the interaction. For
discrete variables, we may not achieve weakness by pre-
paring a particular initial state, but rather we have to reduce
the strength of the coupling. For example, in the coupling
to a spin- 1

2 particle:

H ¼ gðtÞ�zC; (10)

�z cannot be made small. Instead, we reduce gðtÞ such that
k � 1, and this does validate the replacement (3). Then, if
the initial state of the spin is �j "i þ �j #i, the final state of
the spin is

N ð�e�ikCw j "i þ �eikCw j #iÞ: (11)

Thus, the effect of the weak coupling is a small change in
the direction of the spin: �� ¼ 2kReCw and �� ¼
�2k sin�ImCw.

Let us consider another coupling to a qubit:

H ¼ gðtÞPC; (12)

where the qubit has states j0i and j1i, and P � j1ih1j. Let
the initial state of the qubit be

�j0i þ �j1i: (13)

Here, the choice � � 1 in the initial state, enforces small
expectation value of the interaction Hamiltonian (12) while
keeping the coupling strong, k ¼ 1. However, the substi-
tution (3) which leads to the final state

N ð�j0i þ �e�ikCw j1iÞ; (14)

does not provide the correct description in this case. The
correct analysis of this example will lead to the main result
of our Letter.
The state of the qubit, after the interaction (12) and

postselection of the state of the system j�i, is

N ð�j0i þ �
h�je�ikCjc i

h�jc i j1iÞ: (15)

(In general, this is different from (14), but the two expres-
sions are equal in the limit of weak coupling k � 1.) The
action of the pre- and postselected system on the qubit is
completely described by a single complex number which
we name modular value:

Cm � h�je�ikCjc i
h�jc i : (16)

The modular value can be found through a measurement on
an ensemble, by making a tomography measurement of the
final state of the qubit. If the final state is found to be
	j0i þ �j1i, then, comparing with (15), we obtain:

Cm ¼ ��

�	
: (17)

The modular value resembles a weak value in its form. It
has the same ‘‘amplification’’ factor 1

h�jc i . Further, just like
the weak value, it is defined only for postselected states
which are not orthogonal to the preselected state. However,
the reasons for this are different. The weak value describes
a weak coupling of a pre- and postselected quantum sys-
tem. In the limit of vanishing coupling, the postselection of
an orthogonal state is impossible. The modular value is
defined for a particular finite coupling strength k. Thus,
when it is measured at an intermediate time, the postse-
lection of an orthogonal state is, in general, possible.
However, in this case, the final state of the qubit meter is
always j1i and thus, the only information we can learn
from tomography of the final state is that h�je�ikCjc i � 0.
Consider the modular value of a spin- 12 with k ¼ �

2 :

�m ¼ h�je�ið�=2Þ�jc i
h�jc i ¼ h�j � i�jc i

h�jc i ¼ �i�w: (18)

The modular value of a spin component yields its weak
value, but the former can be measured using a coupling
which is not weak. Thus, weak values appear not only in
the AAVeffect, i.e., not only as effective interactions in the
limit of the weak coupling.
Another situation in which we can see a manifestation of

weak values outside the range of validity of the AAVeffect
is the weak values of nonlocal observables, such as the
product of variables A and B related to separate parts of a
composite system. Formally, we can consider ðABÞw, but it
will have no meaning as an effective interaction. Indeed,
replacing an observable in the Hamiltonian by the
c-number weak value requires that the observable will
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appear in the Hamiltonian in the first place. Relativistic
quantum mechanics puts constraints on the allowed inter-
actions, and products AB where A and B are observables
related to separate locations in space, cannot appear in the
Hamiltonian.

Surprisingly, Resch and Steinberg (RS) [4] showed that
it is still possible to find ðABÞw from a statistical analysis
of correlations of the outcomes of local measuring devices
(4), one interacting with A and the other with B. Starting

with the initial product state �inðQA;QBÞ ¼ ð�2�Þ�1=2

e�ðQ2
A
þQ2

BÞ=2�2
, they find [16]:

Re ðABÞw ¼ 1

k2
ðhQAQBi � 4�4hPAPBiÞ: (19)

The RS method is universal: it is applicable to any local
observables A and B and it was generalized to a product of
any finite number of local observables. The analysis of
correlations of local measurements of observables Ci (each
related to location i) allows calculation of any productQN

i¼1 Ci [17]. The drawback of the method is that it

requires a very large ensemble, since it is based on an
Nth order effect [18]. We will show below that for a
particular case of product of qubit variables we can find
the weak values much more efficiently by measuring the
modular values instead.

Let us show now that the modular value of the sum of a
set of observables Ci related to various locations i is
measurable using qubit meters placed at each location.
To this end, we use interaction Hamiltonian

H ¼ gðtÞXPiCi; (20)

where Pi ¼ j1iih1ji is the projection on the state of qubit i
and gðtÞ defines the coupling strength k. If the initial state
of the multiple qubit measuring device is

�
Y j0ii þ �

Y j1ii; (21)

then the final state is

�
Y j0ii þ �

�X
Ci

�
m

Y j1ii: (22)

The tomography of the final state performed on an
ensemble yields the modular value of the sum ðP CiÞm.

Minor modifications of this method will allow us to
measure modular values of any partial sum

P
i2�Ci, by

choosing the initial state

�
Y j0ii þ �

Y
i2�

j1ii
Y
i=2�

j0ii; (23)

or any linear combination of Ci, by choosing different
strengths ki for the local couplings.

For qubit variables, modular value of a sum with k ¼ �
2

yields the weak value of a product:

�XN
i¼1

�i

�
m
¼ ð�iÞN

�YN
i¼1

�i

�
w
: (24)

ForN spins, measuring the weak value of the product using
our method requires tomography of the N-qubit state (22),
but still is much easier to perform than the measurements
in the RS approach based on the observation of correlations
of N Guassian-state pointers [17].
Let us apply our method to the analysis of the Hardy

paradox [7] which has recently been extensively analyzed
theoretically and experimentally [5,6,8]. In Hardy’s setup
there are two pre- and postselected particles at four sepa-
rate locations A, B, C, D, described by a two-state vector:

1

2
ðhAj � hCjÞðhBj � hDjÞ
1ffiffiffi
3

p ðjAijDi þ jCijDi þ jCijBiÞ:
(25)

The paradoxical property tested using weak measurements
is that the product rule does not hold:

ðP1
AÞw ¼ 1; ðP2

BÞw ¼ 1; but ðP1
AP

2
BÞw ¼ 0: (26)

A similar paradox can be formulated for two pre- and
postselected spin- 12 particles described by a two-state

vector [19]:

h"y"x j 1ffiffiffi
2

p ðj "z#zi � j #z"ziÞ; (27)

where h"y"x j ¼ h"y j1h"x j2, j "z#zi ¼ j "zi1j #zi2, etc. The

failure of the product rule here is seen as follows:

ð�1
xÞw ¼�1; ð�2

yÞw ¼�1; but ð�1
x�

2
yÞw ¼�1: (28)

Using (24), the results (28) can be demonstrated directly
using measurements of the modular values ð�1

xÞm, ð�2
yÞm,

and ð�1
x þ �2

yÞm.
For the measurement of modular values of several

observables there are two conceptually different methods.
In the first method, we split the pre- and postselected
ensemble and measure on each subensemble a modular
value of a single observable, such that each member of the
ensemble is coupled to a single meter. Another approach is
a ‘‘weak’’ regime of measurement of modular values in
which we choose the initial states of the qubit and multi-
qubit meters (13) and (21), respectively, with � � 1. We
can then couple each member of the ensemble with the
meters of all observables without causing significant dis-
turbance. (Note again that limit � � 1 does not make the
replacement (3) valid.)
The original Hardy setup has been experimentally real-

ized by two groups. Both used polarization variables of
pairs of photons. In the first experiment [5], the polariza-
tion variables were not entangled, the coupling was weak,
and the analysis followed the RS approach [4]. In the
second experiment, the entangled photons flip polarization
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in the interaction region [6]. We will argue that the second
experiment was not a weak measurement, but a measure-
ment of modular values, which, surprisingly, yielded weak
values.

The two qubits of the measuring device were the polar-
ization variables of the photons themselves. The local
interactions caused the vertical polarization state to acquire
the phase of �: jHi ! jHi, jVi ! �jVi. This corresponds
to the interaction Hamiltonian:

H ¼ gðtÞðP1
VP

1
A þ P2

VP
2
BÞ; (29)

where Pi
V ¼ jViihVji, P1

A ¼ jAi1hAj1, P2
B ¼ jBi2hBj2, and

gðtÞ such that k ¼ �. This is the Hamiltonian for measur-
ing ðP1

A þ P2
BÞm as well as ðP1

AÞm and ðP2
BÞm separately,

depending on the type of the initial polarization states, (13)
or (21).

In the Hardy experiment we are interested in measuring
the weak values of the projections (26). But we can express
them through modular values, k ¼ �. Indeed, simple cal-
culations, based on the identity e�i�P ¼ 1� 2P show the
following identities:

ðP1
AÞw ¼ 1

2
½1�ðP1

AÞm�; ðP2
BÞw ¼ 1

2
½1�ðP2

BÞm�; (30)

ðP1
AP

2
BÞw ¼ 1

4
½ðP1

A þ P2
BÞm � ðP1

AÞm � ðP2
BÞm þ 1�: (31)

Thus, measuring modular values yields weak values.
In the actual experiment [6], instead of preparing the

initial states of the qubits in the form (13) or (21), all pairs
of qubits were prepared in the state:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3j�j2p ðj00i þ �½j01i þ j10i þ j11i�Þ; (32)

where j00i ¼ jHi1jHi2, j01i ¼ jHi1jVi2, etc. This initial
state corresponds to a ‘‘superposition’’ of measurements of
modular values of several observables: the wave function
of the qubits is changed as the function of all these modular
values. Indeed, the final state is

N ðj00i þ �½ðP2
BÞmj01i þ ðP1

AÞmj10i
þ ðP1

A þ P2
BÞmj11i�Þ: (33)

Only partial tomography of this final state was performed:
the qubit measurements were performed in a single basis,
1ffiffi
2

p ðj0i1 � j1i1Þ 1ffiffi
2

p ðj0i2 � j1i2Þ. For small �, these mea-

surements provided a good evaluation of the real part of
weak values (26). It is not surprising that this method was
more efficient for the measurement of nonlocal weak val-
ues than the experiment [5] which was based on the second
order effect of local weak measurements (the RS method).
With proper tomography, this experiment could have been
performed for large �, showing both real and imaginary
parts of the weak values with even much better efficiency.

The modular value of an observable is a property of a
pre- and postselected quantum system which provides a

complete description of how it affects a qubit via general
interaction of the form (12). This concept explains the
appearance of weak values in quantum-gate type interac-
tions [6,9]. In particular, it provides a scalable method for
measuring weak values of products of qubit variables of
composite systems, where the direct method is very ineffi-
cient. Because of the simplicity of their form (16), modular
values have a potential for useful applications in devising
and engineering novel quantum protocols.
We should mention two very recent works which might

seem related. In the first [20], modular variables, weak
values, and postselection were applied for explaining the
nature of quantum interference through nonlocal equations
of motion of (nonlocal) modular variables. The basic dif-
ference here is that in this work the system was coupled to
a continuous variable and ‘‘modularity’’ was the property
of the system. In the second work [21], the concept of
‘‘contextual values’’ yielded weak values in some cases,
but the context in which the weak values were obtained
corresponded to the AAV effect.
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