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ABSTRACT. New characteristics of a quantum systemm between two measurements -
"weak values" are defined. It is proved that the "weak values" are outcomes of "weak
measurements” which are standard measuring procedures with "weakened" coupling.

1. Introduction

Suppose we have performed the following set of successive measurements on a
quantum system. At time ¢, we found A=a (¢ is a nondegenerate eigenvalue). At time
t, we accomplished the standard measurement procedure for the observable C but with
"weakened" coupling with the measuring device. At time ¢, we found B=b (b is also a
nondegenerate eigenvalue). The effective free Hamiltonian for the system is zero. Then
the outcome of the measurement of C yields the new surprising value which we call

the weak value:
_ (B=b|C| A=a)
Cw = “(Bb| A=a) M

This is a general result: for any system under the above circumstances, with a weak
enough measurement of C, the most probable outcome will be C,,. The weak value of
C can differ widely from any eigenvalue of C. In particular, the real part ReC, can
be much bigger (smaller) than the maximum (minimum) eigenvalue of C. The weak
value can yield any value: spin component of a spin——; particle can be 100,! kinetic
energy can be negative, the weak value can even be a complex number...

I hope you are still reading, although probably in compete disbelief: what does it
mean when the outcome of measurement of a physical variable is complex?! We have
to explain some "buts" of the above amazing story. (It still will remain amazing). Of
course, the outcome of the standard measurement procedure, even with coupling
weakened enough, will not yield a complex value. The highest probability of the
outcome will be at the value Re C,. More than this, usually the outcome of the
"weakened" measurement will have very large uncertainty and it will not be suitable
even to find Re C,. However, an ensemble of identical systems which are both
preselected and postselected will allow us to find Re C,,. Indeed, the uncertainty of the
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measurement will be improved by the factor 1/+/N. We can find also Im C, by an
"almost" standard procedure: by using the same '"weakened interaction" but with some
other way of "looking" at the measuring device.

2. The Proof that the "Weak Measurements" Yield "Weak Values"

Let us remind ourselves of the standard von Neumann measuring procedure. The
Hamiltonian describing the interaction with a measuring device is:

H=-g0)qgC, 2)

where g(f) is a normalized function which is nonzero only near the time of
measurement, and ¢ is a canonical variable of the measuring device with conjugate
momentum 7. After the interaction (2) is over, we can ascertain the value of C from
the final value of =:
C=mp-my =061 . 3)
Any precise measurement of C necessarily disturbs in an uncontrollable manner
the values of observables which fail to commute with C. The interaction (2) can be
"weakened" by preparing an initial state of the measuring device for which the
probability of finding a large ¢ is sufficiently small. We shall now prove that such a
"weak measurement” of C performed on an ensemble of systems, which were
preselected in a state |\I/1> and were postselected in a state (\I/2| . will yjeld an outcome
which we call a weak value of C :

_ (B[ Cly)

C, = —_‘—N’z Ty 4)

For convenience we take the initial state of each measuring device to be a Gaussian
centered around zero in both the ¢ and the 7 representations, which has a small spread
in g. To simplify the following proof we note that changing the time ordering between
measurements of the 7 and the postselection measurement will not affect any of the
results of the measurement. The state of each (chosen) measuring device after the
postselection (up to a normalization factor) is given by the following wave function in
the g representation:

2 2

. _q X _q* _
<‘Ilzl e —lfHdt !‘I/1> e 4A% _ Z (g)" <‘I/2| " |‘I/1> e 4 2
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By taking A such that

Ar (€, - (] << 1 for all A, ®)
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we can replace in the sum (5) all factors (C%),, by (C,)* , so as to obtain:
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The last wave function in the 7 representation is approximately

2

&, | ¥

The probability distribution of 7 is a Gaussian with spread Ar = 1/(24) centered at
1 = Re C,, i.e. the outcome of the measurement is, indeed, C,,.

The weak value of C as defined by (4) may have, also, an imaginary part. Im C,
can be found by measuring the canonical variable g itself. Indeed, in the ¢
representation the state of the measuring device (obtained by manipulating Eq.(7)) is:

PRt
e ()

1 2 2
igRe C -——— | g + 2A%°Im C
eq w e4A2[ W] &)

Consequently, the probability distribution of ¢ is a Gaussian with the same spread A
centered at ¢ = 2A* Im C,, . The uncertainty in 7 and ¢ will not allow us to deduce
ReC, or Im C, from a single measurement. However, performing the measurement on
an ensemble of N systems will decrease the uncertainty of the outcome by the factor
1/V/N. Therefore, by taking N large enough (1/2AvN) << Re C,. Im C,) we can
measure the complex value of C, with any precision.

3. The Experiment Which Measures a Weak Value of a Spin Component of a
Spin-3 Particle

We shall now describe an experiment that measures the weak value of the z
component of a spin—% particle and yields an arbitrarily large outcome. A version of
this experiment can, we believe, be performed in the laboratory.

We start with a beam of particles moving in the y direction with a well defined
velocity. The particles are initially well localized in the xz plane and have their sping
pointed in a direction ¢ . We choose ¢ in the xz plane with an angle o between &
and x (Fig.1). The prepared beam comes through a Stern-Gerlach device which
measures the spin weakly in the z direction. The requirement of weakness is fulfilled
by making the gradient of the magnetic field sufficiently small. The motion of the
beam changes, therefore, only slightly. This weak measurement causes the spatial part
of the wave function to change into a mixture of two slightly shifted functions in the
p, Tepresentation, correlated to the two values of o¢,. We then pass the particles
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Figure 1. The experiment for measurement of weak value of the spin component of the
spin-4 particle.

through another, normal, Stern-Gerlach device which splits them into two beams
corresponding to the two values of o,. We keep only the beam with o, = 1, which
continues to move freely towards a screen placed in front of it. The screen is placed
sufficiently far, so that the displacement in the Zz direction due to the average
momentum p,, acquired during the above weak interaction, will be larger than the
initial uncertainty Az. On the screen we shall obtain a wide spot whose displacement
in the direction Z is measured. This displacement §z will yield the weak value of o,:

_<TX‘UZ‘T>_ o
Uzw— W—tan 5 . (10)

The amplification of the displacement in the z direction (by the factor of tanwo/2
beyond any "allowed" value) is caused by postselection measurement. But the latler
interacts only in the x direction! Although the outcomes of "weak" measurements seem
to contradict the laws of quantum mechanics, our approach never disputes the validity
of the standard approach. However, using the standard formalism, the surprising result
can be explained only by the following mathematical "miracle".

4. A Mathematical "Miracle"

Look on the Fig.2. Can you believe that the sum of all solid-line graphs yields the
dashed-line graph (there is a scale factor 10° between the graphs)? The solid lines are
all graphs of the same function f(r) which are shifted and multiplied by different
values. All shifts are in the range [1,-1] while the sum (dashed line) is practically the
same Gaussian shifted by the value 3. The figure represents the following equality:
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N
2n—N ~ _ 1
Z n f(m+ ) = fr - — a/z) , (a1
n=0
where ¢, are:
cost & ¥
4 R
R P [ an 4] AN (12)
2

The parameters are: o = 70°, N = 15, f(n) =e 256 |

For large N the above formula is correct not only for this Gaussian, but for a large
class of functions 7. ‘The coefficients ¢, are the same for different functions f(m) !
But the coefficients, of course, depend on o which parametrizes the shift of the sum.
The requirement for the f(m) is that its Fourier trapnsform falls with the large ¢ fast
enough:

(13)

Figure 2. Sum of the Gaussians centered between -1 and 1 (solid lines, scale on the
left) yields, approximately, a Gaussian centered at the value 3 (dashed line, scale on the

right).
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Eq.(11) represents the shift of the wave function in the 7 representation of the
center of mass of the ensemble of measuring devices in the experiment described in
Sec.3. (More precisely, the measurement of the spin here is in the direction which
bisects the angle «. This is the direction of maximal amplification.) The width of the
Gaussian Arn represents the "weakness" of the measurement and N is the number of
systems in the ensemble.

5. Conclusions

We discovered that a quantum system between two measurements can be
described by novel characteristics: "Weak values”. These weak values can be measured
on ensembles which are both preselected and postselected. Although the weak value of
C can differ widely from any "allowed" value of C, the standard measuring procedure
changed only by "weakening" the interaction will yield the real part Re C, and a
small modification will give us Im C,, .

The requirement of "weakness" of the interaction which ensures obtaining the weak
value is not an extraordinary one. In fact, most of experiments which are done in
today's laboratories fulfill the "weakness" condition. Nobody has seen the "weak
values" so far, because usually the experimentalists do not deal with ensembles which
are both preselected and postselected. It seems, however, that such experiments can be
done.'* We believe that a set of Stern-Gerlach devices or their optical analogue can
easily suit this purpose.

The importance of the weak values is that the effective value of C for any (weak
enough) interaction with the systems in preselected and postselected ensembles is, in
fact, the weak value C,. We believe that the idea of weak measurement has a large
potential for practical usage. Weak measurement performed on a both preselected and
postselected ensemble can effectively amplify or "tune" any physical variable to a
certain (even "forbidden') value.
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