
840 Weak Value and Weak Measurements

12. B. R. Wheaton: Atomic waves in private practice. J. Evans, A. Thorndike, eds.: Quantum
mechanics at the crossroads (Springer, Heidelberg 2006, 39–71)

13. B. Falkenburg: Wave-particle duality, in B. Falkenburg: Particle metaphysics: A critical account
of subatomic reality (Springer, Berlin 2007, 265–316)

Weak Value and Weak Measurements

Lev Vaidman

The weak value of a variable O is a description of an effective interaction with that
variable in the limit of weak coupling. For a pre- and post-selected system described
at time t by the two-state vector 〈�| |�〉 [1], the weak value is [2]:

Ow ≡ 〈�|O|�〉
〈�|�〉 . (1)

Contrary to classical physics, variables in quantum mechanics might not have
definite values at a given time. In the complete description of a usual (pre-selected)
quantum system, the state |�〉 yields probabilities pi for various outcomes oi of (an
ideal) measurement of the variable O . Numerous measurements on an � ensemble
of identical systems yield an average – expectation value of O:

∑
pioi . Since

pi = |〈O = oi |�〉|2, the expectation value can be expressed as 〈�|O|�〉. If the
coupling to the measuring device is very small, this expression is related directly
to the response of the measuring device, and the measurement does not reveal the
eigenvalues oi and their probabilities pi . Specifically, 〈�|O|�〉 is the shift of the
quantum state of the pointer variable of the measuring device, which, otherwise, is
not distorted significantly due to the measurement interaction.

For pre- and post-selected quantum system, the response of the measuring device
or any other system coupled weakly to the variable O , is the shift of the quantum
state by the weak value (1). The coupling can be modeled by the von Neumann
measurement interaction

H = g(t)PO, (2)

where g(t) defines the time of the interaction,
∫
g(t) = 1, and P is conjugate

to the pointer variable Q. The weakness of the interaction is achieved by choos-
ing the � wave function of the measuring device so that P is small. Small value
of P requires also a small uncertainty in P , and thus a large uncertainty of the
pointer variable Q in the initial state and consequently, a large uncertainty in the
measurement. Therefore, usually, we need a large ensemble of identical pre- and
post-selected quantum systems in order to measure the weak value.

For rare post-selection, when |〈�|�〉| # 1, the weak value (1) might be far
away from the range of the eigenvalues of O , so it clearly has no statistical meaning
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as an “average” of oi . If we model the initial state of the pointer by a Gaussian
�MD

in (Q) = (Δ2π)−1/4e−Q2/2Δ2
with large Δ ensuring small P , the final state, to a

good approximation, is the shifted Gaussian �MD
fin (Q) = (Δ2π)−1/4e−(Q−Ow)

2/2Δ2
.

The standard measurement procedure with weak coupling reveals only the real part
of the weak value, which is, in general, a complex number. Its imaginary part can
be measured by observing the shift in P , the conjugate to the pointer variable [3,4].

The real part of the weak value is the outcome of the standard measurement pro-
cedure at the limit of weak coupling. Unusually large outcomes, such as � spin
100 for a spin− 1

2 particle [2], appear from peculiar interference effect (sometimes
called Aharonov–Albert–Vaidman (AAV) effect) according to which, the superpo-
sition of the pointer wave functions shifted by small amounts yields similar wave
function shifted by a large amount. The coefficients of the superposition are univer-
sal for a large class of functions for which the Fourier transforms is well localized
around zero.

In the usual cases, the shift is much smaller than the spread Δ of the initial state
of the measurement pointer. But for some variables, e.g., averages of variables of a
large ensemble, for very rare event in which all members of the ensemble happened
to be in the appropriate post-selected states, the shift is of the order, and might be
even larger than the spread of the quantum state of the pointer [5]. In such cases the
weak value is obtained in a single measurement which is not really “weak”.

One can get an intuitive understanding of the AAV effect, noting that the coupling
of the weak measurement procedure does not change significantly the forward and
the backward evolving quantum states. Thus, during the interaction, the measuring
device “feels” both forward and backward evolving quantum states. The tolerance of
the weak measurement procedure to the distortion due to the measurement depends
on the value of the scalar product 〈�|�〉.

Since the quantum states remain effectively unchanged during the measurement,
several weak measurements can be performed one after another and even simulta-
neously. “Weak-measurement elements of reality” [6], i.e., the weak values, provide
self consistent but sometimes very unusual picture for pre- and post-selected quan-
tum systems. Consider a three-box paradox in which a single particle in three boxes
is described by the two-state vector

1

3
(〈A| + 〈B| − 〈C|) (|A〉 + |B〉 + |C〉) , (3)

where |A〉 is a quantum state of the particle located in box A, etc. Then, there are the
following weak-measurements elements of reality regarding projections on various
boxes: (PA)w = 1, (PB)w = 1, (PC)w = −1. Any weak coupling to the particle
in box A behaves as if there is a particle there and the same is true for box B.
Finally, a weak measuring device coupled to the particle in box C is shifted by the
same value, but in the opposite direction. The coupling to the projection onto all
three boxes, PA,B,C = PA + PB + PC “feels” one particle: (PA + PB + PC)w =
(PA)w + (PB)w + (PC)w = 1.
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There have been numerous experiments showing weak values [7–11], mostly of
photon polarization and the AAV effect has been well confirmed. Unusual weak
values were used for explanation peculiar quantum phenomena, e.g., superluminal
velocity of tunneling particles [12,13]. (� Superluminal communication; tunneling).

When the AAV effect was discovered, it was suggested that the type of an am-
plification effect which takes place for unusually large weak values might lead to
practical applications. Twenty years later, the first useful application has been made:
Hosten and Kwiat [14] applied weak measurement procedure for measuring spin
Hall effect in light. This effect is so tiny that it cannot be observed without the
amplification.
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